JP3292408B2 - Membrane ice manufacturing device and ice heat storage system using the device - Google Patents

Membrane ice manufacturing device and ice heat storage system using the device

Info

Publication number
JP3292408B2
JP3292408B2 JP18656393A JP18656393A JP3292408B2 JP 3292408 B2 JP3292408 B2 JP 3292408B2 JP 18656393 A JP18656393 A JP 18656393A JP 18656393 A JP18656393 A JP 18656393A JP 3292408 B2 JP3292408 B2 JP 3292408B2
Authority
JP
Japan
Prior art keywords
ice
plate
water
phase chamber
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18656393A
Other languages
Japanese (ja)
Other versions
JPH0743055A (en
Inventor
秀雄 亀山
協子 山本
賢 本郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP18656393A priority Critical patent/JP3292408B2/en
Publication of JPH0743055A publication Critical patent/JPH0743055A/en
Application granted granted Critical
Publication of JP3292408B2 publication Critical patent/JP3292408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フロン系の冷媒を用い
ずに氷を製造する膜式氷製造装置およびその装置を用い
た氷蓄熱システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film type ice manufacturing apparatus for manufacturing ice without using a chlorofluorocarbon-based refrigerant and an ice heat storage system using the apparatus.

【0002】[0002]

【従来の技術】近年、夏季における最大電力消費量が冷
房等に使用される電力の急増によって増大している。一
方、電力多消費型産業の省エネルギー化に代表されるよ
うに、産業界においては電気エネルギー依存度の低減が
図られ、これに伴って発電設備に対する年平均の負荷率
は低下する傾向にある。そのため、夜間電力エネルギー
を効率良く貯蔵して冷房等に利用する技術が極めて有用
になり、氷蓄熱システムの実用化が図られている。ま
た、フロン系の冷媒を用いる従来の氷蓄熱装置は、オゾ
ン層の保護という観点から好ましくないため、フロン系
の冷媒を用いずに氷を製造することのできる氷製造装置
とそれを用いた氷蓄熱システムが注目されている。
2. Description of the Related Art In recent years, the maximum power consumption in summer has increased due to a rapid increase in power used for cooling and the like. On the other hand, as typified by energy saving in a power consuming industry, the industrial industry is trying to reduce the dependence on electric energy, and accordingly, the annual average load factor for power generation equipment tends to decrease. For this reason, technology for efficiently storing nighttime power energy and utilizing it for cooling or the like has become extremely useful, and practical use of an ice heat storage system has been attempted. In addition, conventional ice heat storage devices using a chlorofluorocarbon-based refrigerant are not preferable from the viewpoint of protection of the ozone layer. Therefore, an ice production device capable of producing ice without using a chlorofluorocarbon-based refrigerant and an ice using the same. Heat storage systems are receiving attention.

【0003】この種の氷蓄熱システムとして、本出願人
は先に、特開平3−912623号公報に記載されるも
のを提案した。このものでは、吸水性高分子ゲルを用い
て水−水蒸気の界面の面積を大きく取り得る蓄熱体を形
成するとともに、その蓄熱体を複数設けた氷蓄熱槽内を
真空排気装置により排気することで、蒸発潜熱の放出に
伴って前記ゲル中の多量の水を効率良く凍結させてい
る。この場合、氷蓄熱槽を減圧状態のまま保持できるの
で、排気のための真空引きのエネルギーロスを低減で
き、運転効率を高めることができるという利点がある。
The applicant of the present invention has previously proposed an ice heat storage system of this type described in Japanese Patent Application Laid-Open No. 3-912623. In this device, a heat storage body that can have a large water-steam interface area is formed using a water-absorbing polymer gel, and the inside of an ice heat storage tank provided with a plurality of the heat storage bodies is evacuated by a vacuum exhaust device. In addition, a large amount of water in the gel is efficiently frozen with the release of latent heat of evaporation. In this case, since the ice heat storage tank can be kept in a decompressed state, there is an advantage that the energy loss of evacuation for exhaust can be reduced and the operation efficiency can be improved.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな氷製造装置および氷蓄熱システムにあっても、吸水
性高分子ゲルを用いた蓄熱体内に氷を生成させるため、
所定の熱交換効率を得つつその氷蓄熱量を増やすために
は前記蓄熱体を多くしなければならず、多くの蓄熱体を
所定の間隔を保って氷蓄熱槽内に整列配置する必要があ
る。また、多数の蓄熱体間に排気のための隙間を設ける
ことから、氷蓄熱スペースの削減という点では改善すべ
き課題が残る。
However, even in such an ice making apparatus and an ice heat storage system, since ice is generated in a heat storage body using a water-absorbing polymer gel,
In order to increase the amount of ice heat storage while obtaining a predetermined heat exchange efficiency, it is necessary to increase the number of the heat storage bodies, and it is necessary to arrange many heat storage bodies in the ice heat storage tank at predetermined intervals. . In addition, since a gap for exhaust is provided between a large number of heat storage bodies, there remains a problem to be solved in terms of reduction of ice heat storage space.

【0005】そこで本発明は、製造した氷を分離して連
続的な氷製造を行なうことのできる氷製造装置を実現
し、分離された氷により効率的な冷熱蓄熱を行なうこと
で蓄熱槽スペースの削減を図った氷蓄熱システムを提供
することを目的とする。
Accordingly, the present invention realizes an ice producing apparatus capable of separating the produced ice and performing continuous ice production, and performing efficient cold heat storage by the separated ice to reduce the space of the heat storage tank. It is an object of the present invention to provide an ice heat storage system that achieves reduction.

【0006】[0006]

【課題を解決するための手段】上記目的達成のため、請
求項1記載の発明に係る膜式氷製造装置は、多数の微細
孔を有し一面側で水に接触する疎水性の膜又は板と、少
なくとも一部が該疎水性の膜又は板の他面により形成さ
れた気相室と、該気相室内を減圧するとともに水蒸気を
排気する排気手段と、を備え、前記排気手段の作動によ
り前記疎水性の膜又は板の一面側に氷を生成することを
特徴とするものである。
In order to achieve the above object, a membrane ice manufacturing apparatus according to the first aspect of the present invention has a hydrophobic membrane or plate having a large number of micropores and one side of which is in contact with water. And a gas chamber formed at least in part by the other surface of the hydrophobic film or plate, and an exhaust unit that exhausts water vapor while depressurizing the gas chamber. Ice is generated on one surface side of the hydrophobic film or plate.

【0007】また、請求項2記載の発明は、前記気相室
が、前記疎水性の膜又は板の一面側に接触する水の水面
より下方に配置されたことを特徴とするものであり、請
求項3記載の発明は、前記気相室内の圧力を減圧状態か
ら高めることにより疎水性の膜又は板に密着した氷を該
膜又は板から分離させることを特徴とするものである。
Further, the invention according to claim 2 is characterized in that the gas phase chamber is arranged below a surface of water that contacts one surface side of the hydrophobic membrane or plate, The invention according to claim 3 is characterized in that ice adhered to the hydrophobic film or plate is separated from the film or plate by increasing the pressure in the gas phase chamber from a reduced pressure state.

【0008】また、請求項4記載の発明は、請求項1、
2又は3記載の膜式氷製造装置を用いた氷蓄熱システム
であって、前記疎水性の膜又は板の一面側に接触する水
を収容する製氷槽と、前記疎水性の膜又は板の一面側で
生成された氷を貯蔵し冷熱蓄熱する氷蓄熱手段と、前記
疎水性の膜又は板の一面側で生成された氷を氷蓄熱槽内
に搬送する搬送手段と、を備えたことを特徴とするもの
である。
[0008] Further, the invention according to claim 4 is based on claim 1,
4. An ice heat storage system using the film-type ice manufacturing device according to 2 or 3, wherein an ice making tank containing water that contacts one surface of the hydrophobic film or plate, and one surface of the hydrophobic film or plate. Ice storage means for storing the ice generated on the side and storing the cold heat, and transport means for transporting the ice generated on one side of the hydrophobic film or plate into the ice storage tank. It is assumed that.

【0009】[0009]

【作用】請求項1記載の発明では、多数の微細孔を有し
一面側で水に接触する疎水性の膜又は板の他面が気相室
の少なくとも一部を形成していることから、排気手段に
よって気相室内を減圧するとともに水蒸気を排気させる
と、気相室側への水蒸気の蒸発に伴って疎水性の膜又は
板の一面側から熱が奪われ、この一面側に接触する水中
に氷が生成する。したがって、前記疎水性の膜又は板の
他面側から氷を分離させると、連続的な氷の製造が可能
になる。
According to the first aspect of the present invention, since the other surface of the hydrophobic film or plate having a large number of micropores and contacting water on one surface forms at least a part of the gas phase chamber, When the vapor pressure chamber is decompressed and the water vapor is exhausted by the evacuation means, heat is taken from one side of the hydrophobic film or plate as the water vapor evaporates to the side of the vapor phase chamber, and the water contacting this one side is removed. Ice forms on the surface. Therefore, if ice is separated from the other side of the hydrophobic membrane or plate, continuous production of ice becomes possible.

【0010】請求項2記載の発明では、気相室が疎水性
の膜又は板の一面側に接触する水の水面より下方に配置
される。したがって、疎水性の膜又は板の一面側に生成
された氷を浮力によって浮上させることができ、氷の分
離および収集を容易化できる。 請求項3記載の発明で
は、前記膜又は板が疎水性であるから、気相室内の圧力
を減圧状態から高めると、該膜又は板に密着した氷が容
易に分離可能となる。
According to the second aspect of the present invention, the gas phase chamber is disposed below the surface of the water in contact with one surface of the hydrophobic membrane or plate. Therefore, ice generated on one surface side of the hydrophobic film or plate can be floated by buoyancy, and ice separation and collection can be facilitated. According to the third aspect of the present invention, since the film or plate is hydrophobic, if the pressure in the gas phase chamber is increased from a reduced pressure, ice adhered to the film or plate can be easily separated.

【0011】請求項4記載の発明では、製氷槽内の水に
疎水性の膜又は板の一面側が接触した状態で、該膜又は
板の一面側で氷が生成され、その氷が搬送手段によって
前記膜又は板から分離され、氷蓄熱手段に搬送されて貯
蔵されるされることで氷による冷熱蓄熱がなされる。し
たがって、分離された氷による効率的な冷熱蓄熱が可能
になる。
According to the fourth aspect of the present invention, in a state where one surface of the hydrophobic film or plate is in contact with water in the ice making tank, ice is generated on one surface of the film or plate, and the ice is produced by the conveying means. Separated from the film or plate, and transferred to and stored in the ice heat storage means, cold heat storage by ice is performed. Therefore, efficient cold heat storage by the separated ice becomes possible.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。 <膜式氷製造装置の一実施例>図1および図2は請求項
1〜3記載の発明に係る膜式氷製造装置の一実施例を示
す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. <Embodiment of Membrane Ice Manufacturing Apparatus> FIGS. 1 and 2 show an embodiment of a membrane ice manufacturing apparatus according to the first to third aspects of the present invention.

【0013】まず、その構成を説明する。図1および図
2において、11は水から水蒸気を分離させることのでき
るいわゆる膜蒸発が可能な精密膜、限外ろ過膜等からな
る疎水性多孔膜であり、疎水性多孔膜11は例えば孔径が
数μm以下(例えば2μm以下)の図示しない多数の微
細孔を有している。この疎水性多孔膜11は周辺部で容器
12に密着し、容器12内を図中上方側の液相室13と図中下
方側の気相室14とに区画しており、液相室13は所定量の
水21(例えば蒸留水)を貯留した状態でその上部を開放
することにより大気圧に保たれている。気相室14は容器
12の下部の排気管部12aに接続された図示しない真空ポ
ンプ(排気手段)によって所定圧力(例えば4.5mmHg
又はそれより低い圧力)まで減圧されるようになってお
り、気相室14内には疎水性多孔膜11の下面に対向するプ
ラスチック製の目皿15が設けられている。この目皿15は
気相室14内が減圧されるとき、疎水性多孔膜11を定位置
に支持するとともに、疎水性多孔膜11の下面から発生す
る水蒸気を容易に通すようになっており、そのために例
えば疎水性多孔膜11を目皿15上に張って容器12の円筒部
12bの下端に固定している。
First, the configuration will be described. In FIGS. 1 and 2, reference numeral 11 denotes a hydrophobic porous membrane composed of a precision membrane capable of separating water vapor from water, a so-called membrane-evaporable precision membrane, an ultrafiltration membrane, and the like. It has a number of micropores (not shown) of several μm or less (for example, 2 μm or less). This hydrophobic porous membrane 11
The interior of the container 12 is divided into a liquid phase chamber 13 on the upper side in the figure and a gas phase chamber 14 on the lower side in the figure, and the liquid phase chamber 13 has a predetermined amount of water 21 (for example, distilled water). It is kept at atmospheric pressure by opening the upper part in the state of storing. Gas phase chamber 14 is a container
A predetermined pressure (for example, 4.5 mmHg) is applied by a vacuum pump (exhaust means) (not shown) connected to an exhaust pipe portion 12a below
(Or lower pressure), and a plastic dish 15 facing the lower surface of the hydrophobic porous membrane 11 is provided in the gas phase chamber 14. When the inside of the gas phase chamber 14 is depressurized, the perforated plate 15 supports the hydrophobic porous membrane 11 at a fixed position, and easily allows water vapor generated from the lower surface of the hydrophobic porous membrane 11 to pass therethrough. For this purpose, for example, a hydrophobic porous membrane 11 is stretched on
It is fixed to the lower end of 12b.

【0014】すなわち、本実施例は、多数の微細孔を有
し一面側で水21に接触する疎水性多孔膜11(疎水性の
膜)と、少なくとも一部が疎水性多孔膜11の他面により
形成された気相室14と、気相室14内を減圧するとともに
水蒸気を排気する真空ポンプとを備えた構成となってお
り、前記真空ポンプの作動により気層室14内を減圧およ
び排気することにより疎水性多孔膜11を通して水21を蒸
発させ、蒸発潜熱の放出に伴って疎水性多孔膜11の上面
側に氷22を生成するようになっている(詳細は後述す
る)。
That is, in the present embodiment, a hydrophobic porous membrane 11 (hydrophobic membrane) having a large number of micropores and contacting water 21 on one side, and at least a part of the other side of the hydrophobic porous membrane 11 And a vacuum pump for depressurizing the inside of the gas phase chamber 14 and evacuating water vapor, and depressurizing and evacuating the inside of the gas phase chamber 14 by operating the vacuum pump. As a result, the water 21 is evaporated through the hydrophobic porous membrane 11, and ice 22 is generated on the upper surface side of the hydrophobic porous membrane 11 with the release of latent heat of evaporation (details will be described later).

【0015】また、図1において、16は容器12の排気管
部12aに装着された圧力計、17は気相室14内の圧力を調
整可能な圧力調整弁、18A、18B、18Cはそれぞれ水21
の液面位置、疎水性多孔膜11の上面位置又は疎水性多孔
膜11の下面位置の近傍に設けられた熱電対(温度検出手
段)である。ここで、圧力調整弁17は開弁により気相室
14内の圧力を減圧状態から高めることのできる弁で、こ
の減圧状態をゆるめることにより疎水性である多孔膜11
から氷22を水21との浮力差によって分離させる分離手段
となっている。
In FIG. 1, reference numeral 16 denotes a pressure gauge mounted on the exhaust pipe portion 12a of the container 12, reference numeral 17 denotes a pressure adjusting valve capable of adjusting the pressure in the gas phase chamber 14, and reference numerals 18A, 18B, and 18C denote water, respectively. twenty one
A thermocouple (temperature detecting means) provided near the liquid surface position, the upper surface position of the hydrophobic porous film 11, or the lower surface position of the hydrophobic porous film 11. Here, the pressure regulating valve 17 is opened to open the gas phase chamber.
A valve capable of increasing the pressure inside the pressure-reduced state from a reduced pressure state.
Is a separating means for separating the ice 22 from the water 21 by a buoyancy difference from the water 21.

【0016】次に、その作用を説明する。まず、予め容
器12内に所定量の水21を貯留し、次いで、気相室14内を
前記真空ポンプにより減圧するとともにその排気量を調
整し、圧力計17が4.5mmHgの圧力値を示すようにす
る。このとき、液相室13内の水21の水蒸気圧より気相室
14内の圧力がかなり低くなることにより、液体としては
疎水性多孔膜11を通過しない水21が水蒸気として疎水性
多孔膜11を通り、気相室14側へと蒸発する。そして、そ
の水蒸気は目皿15を通過して気相室14内に拡散しなが
ら、前記真空ポンプによって連続して排気される。
Next, the operation will be described. First, a predetermined amount of water 21 is stored in the container 12 in advance, and then the inside of the gas phase chamber 14 is depressurized by the vacuum pump and the exhaust amount is adjusted. The pressure gauge 17 indicates a pressure value of 4.5 mmHg. To do. At this time, the vapor pressure of the water 21 in the liquid phase chamber 13 is
When the pressure in 14 becomes considerably low, water 21 that does not pass through hydrophobic porous membrane 11 as liquid passes through hydrophobic porous membrane 11 as water vapor and evaporates toward gas phase chamber 14. Then, the water vapor is continuously exhausted by the vacuum pump while diffusing into the gas phase chamber 14 through the perforated plate 15.

【0017】この排気状態においては、疎水性多孔膜11
を通した水21の蒸発により蒸発潜熱が放出され、疎水性
多孔膜11およびその上面に接触する水21の温度が低下す
るとともに、その温度低下に伴って気相室14内の水蒸気
圧も低下する。また、0℃の水の蒸気圧が4.5mmHgで
あることから水21の温度は氷点まで下がり、氷22が生成
される。この氷22は徐々に厚くなり排気の圧力損失が増
大するから、疎水性多孔膜11から分離させる必要がある
が、多孔膜11が疎水性であるため圧力調整弁17を開放し
て気相室14内の圧力を一時的に常圧側に戻すことで氷22
を疎水性多孔膜11から容易に分離させることができる。
したがって、所定時間が経過した時点で排気を一時的に
停止して気相室14内の圧力を常圧側にゆるめると、氷22
が疎水性多孔膜11から分離して水面側に浮上する。した
がって、このような疎水性多孔膜11と氷22の分離を行な
いながら気相室14内の排気を繰り返すことで、氷22を連
続的に製造することができることになる。
In this exhaust state, the hydrophobic porous membrane 11
The latent heat of evaporation is released by the evaporation of the water 21 passing through, and the temperature of the water 21 contacting the hydrophobic porous membrane 11 and the upper surface thereof decreases, and the water vapor pressure in the gas phase chamber 14 also decreases with the temperature decrease. I do. Further, since the vapor pressure of water at 0 ° C. is 4.5 mmHg, the temperature of the water 21 drops to the freezing point, and ice 22 is generated. Since the ice 22 gradually increases in thickness and the pressure loss of the exhaust gas increases, it is necessary to separate the ice 22 from the hydrophobic porous membrane 11, but since the porous membrane 11 is hydrophobic, the pressure regulating valve 17 is opened to open the gas phase chamber. By temporarily returning the pressure inside 14 to the normal pressure side, ice 22
Can be easily separated from the hydrophobic porous membrane 11.
Therefore, when the evacuation is temporarily stopped after a predetermined time has elapsed and the pressure in the gas phase chamber 14 is reduced to the normal pressure side, the ice 22
Is separated from the hydrophobic porous membrane 11 and floats to the water surface side. Therefore, by repeatedly evacuating the gas phase chamber 14 while separating the hydrophobic porous membrane 11 and the ice 22, the ice 22 can be continuously produced.

【0018】図2は、上述のような作業を行なったとき
の液層室13側の温度と気相室14内の圧力の変化を実験に
より確認した結果を示すグラフである。このグラフにお
いて、温度B[℃]は熱電対18Bで検出される疎水性多
孔膜11の上面近傍の温度、温度A[℃]は熱電対18Aで
検出される気相室14の水面近傍の温度、圧力[mmHg]は
圧力計16が示す気相室14内の圧力、時間[min]は排気
作業開始時点からの経過時間である。
FIG. 2 is a graph showing the results obtained by confirming the changes in the temperature on the liquid layer chamber 13 side and the pressure in the gas phase chamber 14 by performing experiments as described above. In this graph, the temperature B [° C.] is the temperature near the upper surface of the hydrophobic porous membrane 11 detected by the thermocouple 18B, and the temperature A [° C.] is the temperature near the water surface of the gas phase chamber 14 detected by the thermocouple 18A. , Pressure [mmHg] is the pressure in the gas phase chamber 14 indicated by the pressure gauge 16, and time [min] is the elapsed time from the start of the evacuation work.

【0019】この実験は、疎水性多孔膜11として平均孔
径0.5μm、直径80mmのものを使用し、水21とし
て蒸留水110gを用いて、室温22℃の環境下で10
0分間の排気を行なったものであり、氷22の生成量は3
7g、疎水性多孔膜11を通した水蒸気蒸発量は12.5
5gであった。このグラフに示すように、前記真空ポン
プによる排気に伴って液相室13内の水21の温度が下がる
とともに、気相室14内の圧力が低下し、過冷却部を過ぎ
て過冷却が解消するのとほぼ同時に疎水性多孔膜11の膜
面は氷点温度に達することになる。これにより温度と圧
力は若干上昇するが、氷22が疎水性多孔膜11の上面側に
生成され、その厚みが増すにしたがって圧力が低下す
る。図中に矢印で示した部分は、一時的に排気を中止し
て氷22を疎水性多孔膜11から分離したときの温度および
圧力の変化を示している。
In this experiment, a hydrophobic porous membrane 11 having an average pore diameter of 0.5 μm and a diameter of 80 mm was used, and 110 g of distilled water was used as water 21 at room temperature and an environment of 22 ° C.
The pump was evacuated for 0 minutes, and the amount of ice 22 generated was 3
7 g, the amount of water vapor evaporation through the hydrophobic porous membrane 11 is 12.5
It was 5 g. As shown in this graph, as the temperature of the water 21 in the liquid phase chamber 13 decreases with the evacuation by the vacuum pump, the pressure in the gas phase chamber 14 decreases, and the supercooling is eliminated through the supercooling section. Almost at the same time, the surface of the hydrophobic porous membrane 11 reaches the freezing point. As a result, the temperature and the pressure slightly increase, but ice 22 is generated on the upper surface side of the hydrophobic porous membrane 11, and the pressure decreases as the thickness increases. The portions indicated by arrows in the figure indicate changes in temperature and pressure when the evacuation is temporarily stopped and the ice 22 is separated from the hydrophobic porous membrane 11.

【0020】このように本実施例では、多数の微細孔を
有し一面側で水21に接触する疎水性多孔膜11の他面が気
相室14の一部を形成していることから、真空ポンプ等の
排気手段によって気相室14内を減圧するとともに水蒸気
を排気させると、気相室14側への水蒸気の蒸発に伴って
疎水性多孔膜11の一面側から熱が奪われ、この一面側に
接触する水21の中に氷22が生成する。したがって、疎水
性多孔膜11の他面側から氷22を分離させると、連続的に
氷を製造することのできる氷製造装置が実現できる。ま
た、気相室14が液相室13内の水21の水面より下方に配置
され、気相室14内の圧力を減圧状態から高めることで氷
22を多孔膜11から分離させるため、疎水性多孔膜11の一
面側に生成された氷22を容易に分離させ、浮力によって
水面側に浮上させることができ、氷22の疎水性多孔膜11
からの分離と収集とを容易化することができる。
As described above, in this embodiment, since the other surface of the hydrophobic porous film 11 having a large number of micropores and having one surface in contact with the water 21 forms a part of the gas phase chamber 14, When the inside of the gas phase chamber 14 is depressurized and water vapor is evacuated by evacuation means such as a vacuum pump, heat is taken from one surface side of the hydrophobic porous membrane 11 with evaporation of the water vapor to the gas phase chamber 14 side. Ice 22 is formed in the water 21 contacting the one surface side. Therefore, when the ice 22 is separated from the other side of the hydrophobic porous membrane 11, an ice manufacturing apparatus capable of continuously manufacturing ice can be realized. Further, the gas phase chamber 14 is disposed below the surface of the water 21 in the liquid phase chamber 13, and the pressure inside the gas phase
In order to separate 22 from the porous membrane 11, the ice 22 generated on one side of the hydrophobic porous membrane 11 can be easily separated and floated to the water surface side by buoyancy.
Separation and collection can be facilitated.

【0021】なお、本実施例における氷生成の効率は、
排気に用いる真空ポンプ又は真空コンプレッサーの圧縮
効率、疎水性多孔膜11の膜抵抗、膜面温度、並びに排気
される水蒸気の凝縮温度等に依存するが、例えばその圧
縮効率が0.8、排気温度が0℃である場合に、エネル
ギー効率COPを5〜6とすることが期待できる。 <氷蓄熱システムの一実施例>図3は請求項4記載の発
明に係る氷蓄熱システムの一実施例を示す図である。
The efficiency of ice formation in this embodiment is as follows.
It depends on the compression efficiency of the vacuum pump or vacuum compressor used for exhaustion, the membrane resistance of the hydrophobic porous membrane 11, the membrane surface temperature, and the condensation temperature of the water vapor to be exhausted. Is 0 ° C., the energy efficiency COP can be expected to be 5 to 6. <Embodiment of Ice Thermal Storage System> FIG. 3 is a diagram showing an embodiment of an ice thermal storage system according to the fourth aspect of the present invention.

【0022】同図に示すように、この氷蓄熱システム
は、請求項1〜3記載の膜式氷製造装置の他の実施例で
ある膜式氷製造装置30と、膜式氷製造装置30の複数の気
相室容器34およびそれらの外面(一面)側に接触する水
41を収容する製氷槽51と、製氷槽51内で膜式氷製造装置
30により製造された氷42を貯蔵し冷熱蓄熱する氷蓄熱槽
52と、製氷槽51内で気相室容器34の外面側に生成され水
面側に浮上した氷42を氷蓄熱槽52内に搬送するコンベア
状の氷搬送ユニット53(搬送手段)と、所定の製氷時間
毎に膜式氷製造装置30の気相室内の減圧状態を一時的に
解いて製氷槽51内で気相室容器34の外面側に生成された
氷42を気相室容器34から分離させる自動解放弁54(分離
手段)とを備えている。また、この氷蓄熱システムは夜
間電力を利用して氷を製造するとともに氷蓄熱を行な
い、蓄熱した冷熱エネルギーは昼間等に空調器60により
消費される。
As shown in FIG. 1, this ice heat storage system includes a membrane ice manufacturing apparatus 30 according to another embodiment of the present invention, Water in contact with the plurality of gas-phase chamber containers 34 and their outer surfaces (one surface)
An ice-making tank 51 accommodating 41, and a film-type ice making device in the ice-making tank 51
Ice storage tank that stores ice 42 produced by 30 and stores cold energy
A conveyer-shaped ice transfer unit 53 (conveying means) for conveying the ice 42 generated on the outer surface side of the gas phase chamber container 34 and floating on the water surface side in the ice making tank 51 into the ice heat storage tank 52; The ice 42 generated on the outer surface side of the gas-phase chamber 34 in the ice-making tank 51 is separated from the gas-phase chamber 34 in the ice-making tank 51 by temporarily releasing the reduced pressure in the gas-phase chamber of the film-type ice making apparatus 30 every ice-making time. And an automatic release valve 54 (separating means). In addition, this ice heat storage system produces ice using nighttime electric power and performs ice heat storage, and the stored cold energy is consumed by the air conditioner 60 in the daytime or the like.

【0023】具体的には、膜式氷製造装置30は、複数の
略太鼓状又は略箱状の気相室容器34の少なくとも対向す
る一対の平坦面部を疎水性の多孔質の膜(詳細は図示し
ていないが疎水性の多孔質の板でも良い)により形成し
たもので、その疎水性多孔膜は上述例の疎水性多孔膜11
と同様な素材からなる。また、その疎水性多孔膜を有す
る複数の気相室容器34は排気用の配管35を介して真空ポ
ンプ36に連結されており、気相室容器34内の気相室は真
空ポンプ36により減圧および排気される。すなわち、こ
れら気相室容器34、配管35および真空ポンプ36によって
膜式氷製造装置30が構成されている。また、製氷槽51内
に貯留される水41は氷蓄熱槽52の下部に溜った水を製氷
ポンプ55により汲み上げることで製氷時間に応じて適宜
補給される。一方、氷蓄熱槽52内の下部に溜った冷水41
は冷水循環ポンプ61を介して空調器60に供給され、空調
のために冷熱を消費した後、散水器62を介して氷蓄熱槽
52の上部に貯蔵された氷42の上に散水される。なお、製
氷槽51および氷蓄熱槽52内の水41にはできる限り過冷却
を抑えるため氷核物質(例えば氷核活性菌)を添加して
おくのがよい。
More specifically, the membrane-type ice manufacturing apparatus 30 includes a plurality of substantially drum-shaped or substantially box-shaped gas-phase chamber containers 34, at least a pair of opposed flat surfaces of which are formed of a hydrophobic porous membrane (for details, see FIG. (Not shown, a hydrophobic porous plate may be used), and the hydrophobic porous membrane is the hydrophobic porous membrane 11 of the above-described example.
It is made of the same material as. The plurality of gas phase chamber containers 34 having the hydrophobic porous membrane are connected to a vacuum pump 36 via an exhaust pipe 35, and the gas phase chamber in the gas phase chamber container 34 is depressurized by the vacuum pump 36. And exhausted. That is, the gas phase chamber container 34, the pipe 35, and the vacuum pump 36 constitute the membrane ice manufacturing apparatus 30. The water 41 stored in the ice making tank 51 is appropriately replenished according to the ice making time by pumping water collected in a lower part of the ice heat storage tank 52 by an ice making pump 55. On the other hand, the cold water 41 accumulated in the lower part of the ice heat storage tank 52
Is supplied to an air conditioner 60 through a chilled water circulation pump 61 and consumes cold heat for air conditioning.
Sprinkled on ice 42 stored above 52. It is preferable to add an ice nucleus substance (for example, an ice nucleus active bacterium) to the water 41 in the ice making tank 51 and the ice heat storage tank 52 in order to suppress supercooling as much as possible.

【0024】このように本実施例では、製氷槽51内の水
41に接触する気相室容器34の疎水性多孔膜の外面側に氷
42が生成され、自動解放弁54の作動により気相室容器34
内の圧力を減圧状態から一時的に高めることで、その氷
42を前記疎水性多孔膜から分離させ、水面側に浮上した
氷42を搬送ユニット53によって氷蓄熱槽52に搬送するこ
とで夜間電力を利用して夜間の連続的な氷製造を行なう
氷蓄熱がなされる。したがって、製氷槽51内の膜式氷製
造装置30から分離された氷42による効率的な冷熱蓄熱が
可能になり、それにより蓄熱容量に対する氷蓄熱槽52の
スペースを削減することができ、省スペース化を図るこ
とができる。
As described above, in this embodiment, the water in the ice making tank 51 is
Ice is applied to the outer surface of the hydrophobic porous membrane of the gas phase chamber
42 is generated, and the operation of the automatic release valve 54
By temporarily increasing the internal pressure from the reduced pressure, the ice
42 is separated from the hydrophobic porous membrane, and ice 42 that floats on the water surface side is transported to the ice thermal storage tank 52 by the transport unit 53, so that ice heat storage that performs night-time continuous ice production using night power is used. Done. Therefore, efficient cold heat storage by the ice 42 separated from the film ice manufacturing apparatus 30 in the ice making tank 51 becomes possible, whereby the space of the ice heat storage tank 52 with respect to the heat storage capacity can be reduced, and the space can be saved. Can be achieved.

【0025】なお、上述の各実施例では、分離手段とし
て、気相室の圧力を製氷のための減圧状態から一時的に
高め浮力により分離するものを例示したが、疎水性多孔
膜に物理的な振動(例えば超音波振動)や音の振動、何
等かの外力を加えるようなもの又は機械的な剥離作用を
応用したものでもよい。また、疎水性多孔膜に代えて孔
径数μm以下の多数の微細孔を有する多孔性の板を用い
ることもできる。
In each of the above-described embodiments, the separation means has been described as an example in which the pressure in the gas phase chamber is temporarily increased from the reduced pressure for ice making and separated by buoyancy. The vibration may be a vibration (eg, ultrasonic vibration), a sound vibration, an external force, or a mechanical peeling action. Further, instead of the hydrophobic porous membrane, a porous plate having a large number of fine pores having a pore diameter of several μm or less can be used.

【0026】[0026]

【発明の効果】請求項1記載の発明によれば、排気手段
によって気相室内を減圧するとともに水蒸気を排気さ
せ、気相室側への水蒸気の蒸発に伴って疎水性の膜又は
板の一面側から熱を奪い、該一面側に接触する水中に氷
を生成するようにしているので、疎水性の膜又は板の他
面側から氷を分離させることにより連続的な氷の製造が
可能な小型の膜式氷製造装置を提供することができる。
According to the first aspect of the present invention, the evacuation means reduces the pressure in the gas phase chamber and exhausts the water vapor, and the one side of the hydrophobic film or plate with the evaporation of the water vapor to the gas phase chamber side. Heat is taken from the side and ice is generated in the water in contact with the one side, so that ice can be continuously produced by separating ice from the other side of the hydrophobic membrane or plate. A small-sized film-type ice manufacturing device can be provided.

【0027】請求項2記載の発明によれば、気相室を疎
水性の膜又は板の一面側に接触する水の水面より下方に
配置しているので、疎水性の膜又は板の一面側に生成さ
れた氷を浮力によって浮上させることができ、氷の分離
および収集を容易化することができる。請求項3記載の
発明によれば、疎水性の膜又は板を用い、気相室内の圧
力を減圧状態から高めて該膜又は板に密着した氷を分離
させるので、その分離作業を容易に行なうことができ
る。
According to the second aspect of the present invention, since the gas phase chamber is disposed below the surface of the water in contact with one surface of the hydrophobic film or plate, one surface of the hydrophobic film or plate is disposed. The ice generated in the above can be floated by buoyancy, and the separation and collection of the ice can be facilitated. According to the third aspect of the present invention, since a hydrophobic film or plate is used, and the pressure in the gas phase chamber is increased from a reduced pressure to separate ice adhered to the film or plate, the separation operation is easily performed. be able to.

【0028】請求項4記載の発明によれば、製氷槽内の
水に疎水性の膜又は板の一面側を接触させた状態で該膜
又は板の一面側に氷を生成し、その氷を搬送手段によっ
て氷蓄熱手段に搬送し貯蔵するようにしているので、製
氷部から分離された氷によって効率的な冷熱蓄熱を行な
うことができ、蓄熱槽スペースの削減を図った氷蓄熱シ
ステムを提供することができる。
According to the fourth aspect of the present invention, ice is generated on one side of the membrane or plate while the one side of the hydrophobic film or plate is in contact with the water in the ice making tank, and the ice is generated. Since the ice is separated from the ice making unit by the transfer means and stored in the ice heat storage means, it is possible to perform efficient cold heat storage by using ice separated from the ice making unit, and to provide an ice heat storage system that reduces the space required for the heat storage tank. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る膜式氷製造装置の一実施例を示す
その正面断面図である。
FIG. 1 is a front sectional view showing an embodiment of a membrane type ice manufacturing apparatus according to the present invention.

【図2】一実施例の排気作業時における液相室側の温度
変化と気相室側の圧力変化とを示すグラフである。
FIG. 2 is a graph showing a temperature change on a liquid phase chamber side and a pressure change on a gas phase chamber side during an evacuation operation of one embodiment.

【図3】本発明に係る氷蓄熱システムの一実施例を示す
その構成図である。
FIG. 3 is a configuration diagram showing an embodiment of an ice heat storage system according to the present invention.

【符号の説明】[Explanation of symbols]

11 疎水性多孔膜(疎水性の膜) 13 液相室 14 気相室 17 圧力調整弁(分離手段) 21 蒸留水 22 氷 30 膜式氷製造装置 34 気相室容器(疎水性の膜) 41 水 42 氷 51 製氷槽 52 氷蓄熱槽 53 氷搬送ユニット(搬送手段) 54 自動解放弁(分離手段) 60 空調器 11 Hydrophobic porous membrane (hydrophobic membrane) 13 Liquid phase chamber 14 Gas phase chamber 17 Pressure regulating valve (separation means) 21 Distilled water 22 Ice 30 Membrane ice manufacturing equipment 34 Gas phase chamber container (hydrophobic membrane) 41 Water 42 Ice 51 Ice making tank 52 Ice storage tank 53 Ice transfer unit (transportation means) 54 Automatic release valve (separation means) 60 Air conditioner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本郷 賢 東京都中央区日本橋蛎殼町1丁目35番8 号 三建設備工業株式会社内 (56)参考文献 特開 平6−207726(JP,A) 特開 平6−74497(JP,A) 特開 平6−241628(JP,A) 特開 平4−350483(JP,A) 特開 昭63−243665(JP,A) 特開 昭60−34785(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25C 1/00 - 1/12 F25C 1/16 - 5/18 F24F 5/00 102 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Satoshi Hongo 1-35-8 Nihonbashi Kakigami-cho, Chuo-ku, Tokyo Sanken Equipment Co., Ltd. (56) References JP-A-6-207726 (JP, A JP-A-6-74497 (JP, A) JP-A-6-241628 (JP, A) JP-A-4-350483 (JP, A) JP-A-63-243665 (JP, A) JP-A-60-1984 34785 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F25C 1/00-1/12 F25C 1/16-5/18 F24F 5/00 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数の微細孔を有し一面側で水に接触する
疎水性の膜又は板と、 少なくとも一部が該疎水性の膜又は板の他面により形成
された気相室と、 該気相室内を減圧するとともに水蒸気を排気する排気手
段と、を備え、 前記排気手段の作動により前記疎水性の膜又は板の一面
側に氷を生成することを特徴とする膜式氷製造装置。
1. A hydrophobic film or plate having a large number of micropores and contacting water on one side, a gas phase chamber at least partially formed by the other surface of the hydrophobic film or plate, Exhaust means for depressurizing the gas phase chamber and exhausting water vapor, wherein ice is generated on one surface side of the hydrophobic film or plate by operation of the exhaust means. .
【請求項2】前記気相室が、前記疎水性の膜又は板の一
面側に接触する水の水面より下方に配置されたことを特
徴とする請求項1記載の膜式氷製造装置。
2. A film-type ice manufacturing apparatus according to claim 1, wherein said gas-phase chamber is disposed below a surface of water in contact with one surface of said hydrophobic film or plate.
【請求項3】前記気相室内の圧力を減圧状態から高める
ことにより疎水性の膜又は板に密着した氷を該膜又は板
から分離させる分離手段を設けたことを特徴とする請求
項1又は2記載の膜式氷製造装置。
3. A method according to claim 1, further comprising the step of increasing pressure in said gas phase chamber from a reduced pressure state to separate ice adhered to said hydrophobic film or plate from said film or plate. 3. The membrane ice manufacturing apparatus according to 2.
【請求項4】請求項1、2又は3記載の膜式氷製造装置
を用いた氷蓄熱システムであって、 前記疎水性の膜又は板の一面側に接触する水を収容する
製氷槽と、 前記疎水性の膜又は板の一面側で生成された氷を貯蔵し
冷熱蓄熱する氷蓄熱手段と、 前記疎水性の膜又は板の一面側で生成された氷を氷蓄熱
槽内に搬送する搬送手段と、を備えたことを特徴とする
氷蓄熱システム。
4. An ice heat storage system using the film-type ice manufacturing apparatus according to claim 1, 2, or 3, wherein: an ice-making tank for storing water in contact with one surface side of the hydrophobic film or plate; Ice storage means for storing ice generated on one surface side of the hydrophobic film or plate and storing the cold heat, and transporting the ice generated on one surface side of the hydrophobic film or plate into an ice storage tank Means, and an ice heat storage system comprising:
JP18656393A 1993-07-29 1993-07-29 Membrane ice manufacturing device and ice heat storage system using the device Expired - Fee Related JP3292408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18656393A JP3292408B2 (en) 1993-07-29 1993-07-29 Membrane ice manufacturing device and ice heat storage system using the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18656393A JP3292408B2 (en) 1993-07-29 1993-07-29 Membrane ice manufacturing device and ice heat storage system using the device

Publications (2)

Publication Number Publication Date
JPH0743055A JPH0743055A (en) 1995-02-10
JP3292408B2 true JP3292408B2 (en) 2002-06-17

Family

ID=16190722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18656393A Expired - Fee Related JP3292408B2 (en) 1993-07-29 1993-07-29 Membrane ice manufacturing device and ice heat storage system using the device

Country Status (1)

Country Link
JP (1) JP3292408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236639A (en) 2018-04-04 2021-01-15 活化能量系统公司 Heat exchange system and method for freezing phase-change material

Also Published As

Publication number Publication date
JPH0743055A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
JP2001074322A (en) Refrigerating system
KR20070051835A (en) Sorption cooling systems, their use in automotive cooling applications and methods relating to the same
US12054922B2 (en) Refrigerator integrated with an atmospheric water harvesting unit, and methods of using thereof
US5426865A (en) Vacuum creating method and apparatus
WO2006112833A1 (en) Retaining water in a fuel cell stack for cooling and humidification during frozen startup
JP3292408B2 (en) Membrane ice manufacturing device and ice heat storage system using the device
JP2009106893A (en) Adsorbing element, refrigerating cycle device, and method of manufacturing adsorbing element
US5092135A (en) Air conditioning system
US3116764A (en) High vacuum method and apparatus
CN114016570A (en) Adsorption-condensation type air water taking device
US3252291A (en) Cryo-pumps
JP3639426B2 (en) refrigerator
WO2007144024A1 (en) Thermal exchange device
JP4240150B1 (en) Hot water storage water heater
JP4750709B2 (en) Reduction of PEM fuel cell complete freezing cycle
US7232622B2 (en) Fuel cell system comprising an absorbent tank for removing residue therein
JP3200668B2 (en) Exhaust method in cryopump and micromachining equipment
KR100674734B1 (en) Tank for thermal storage air-conditioner
CN115371455B (en) Heat insulation structure and heat insulation method for liquid nitrogen heat exchange equipment
JP2521541B2 (en) Ice and animal heat type air conditioner
KR102118871B1 (en) Heat pump system by electro-osmosis
US20230011881A1 (en) Cooling apparatus of fuel cell vehicle
JPH0933073A (en) Vacuum vaporization type ice heat storage device
JP2004308642A (en) Cold trap and evacuation device
JP2008078046A (en) Vapor-liquid separation system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees