JP3289754B2 - Winding and rewinding control device by static tension of inverter driven motor - Google Patents
Winding and rewinding control device by static tension of inverter driven motorInfo
- Publication number
- JP3289754B2 JP3289754B2 JP19177294A JP19177294A JP3289754B2 JP 3289754 B2 JP3289754 B2 JP 3289754B2 JP 19177294 A JP19177294 A JP 19177294A JP 19177294 A JP19177294 A JP 19177294A JP 3289754 B2 JP3289754 B2 JP 3289754B2
- Authority
- JP
- Japan
- Prior art keywords
- tension
- current
- winding
- calculator
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
- Winding, Rewinding, Material Storage Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、誘導電動機で駆動され
る紙・金属・フィルム等の巻取り・巻戻し制御装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for winding and rewinding paper, metal, film and the like driven by an induction motor.
【0002】[0002]
【従来の技術】従来技術として見られるものに、特開平
1-113117, 特開平1-192658等と特に最近の文献・特開平
5-111287[以下、これを『従来例』という]がある。こ
の従来例は図4に表すように、[もっとも本発明に余り
関係の無い回路構成部分は省略して示す]ペーパーロー
ル402 及び巻取ドラムを介して巻戻し紙ロール401 の紙
を巻取り紙ロールへ巻取るときに、巻戻し紙ロール用電
動機422 の速度制御について、張力切換接点428,430 の
二者択一で正規張力設定器428 かストール張力設定器42
9 の何れかの電源電圧に巻戻されるラインの紙の張力検
出値相当電圧を負帰還して、その偏差電圧信号によりサ
イリスタ電源装置434 を制御し、巻戻し紙ロール用電動
機422 の発生トルクを調整している。界磁は速度設定電
圧から、紙のコイル幅と巻戻し紙ロール用電動機422 の
検出速度に基づき制御している。2. Description of the Related Art Japanese Unexamined Patent Publication No.
1-113117, JP-A-1-192658 etc. and especially recent literature
5-111287 [hereinafter referred to as “conventional example”]. In this prior art example, as shown in FIG. 4, [circuit components which are not relevant to the present invention are omitted.] The paper on the rewinding paper roll 401 is wound on the paper roll 402 via the paper roll 402 and the winding drum. When winding onto a roll, the speed control of the motor 422 for the rewinding paper roll is performed by selecting either the normal tension setting device 428 or the stall tension setting device 428 by selecting one of the tension switching contacts 428 and 430.
Negative feedback of the voltage corresponding to the paper tension detection value of the line that is rewound to any one of the power supply voltages of No. 9 controls the thyristor power supply 434 based on the deviation voltage signal, and reduces the torque generated by the motor 422 for the rewound paper roll. I am adjusting. The field is controlled from the speed setting voltage based on the paper coil width and the detection speed of the motor 422 for the rewinding paper roll.
【0003】[0003]
【発明が解決しようとする課題】ところが従来例におい
ては、先に掲記した文献共々いずれも直流電動機による
巻取り巻戻し電動機制御であり、電機子電流と界磁電流
はそれぞれ別々の電機子と界磁回路に適宜の電流を流す
ようにサイリスタでの電機子電流制御をし、励磁機から
の励磁電流制御するのであって、両者間の制御は別個自
由にされ得る。しかし、本発明の意図とする交流機であ
る誘導電動機による巻取り巻戻し電動機制御では、その
ような制御理論は適用できない。つまり、各文献の界磁
電流はそれが流れる界磁回路の電流調節に尽きるけれど
も、誘導電動機では、直流電動機のごとく界磁巻線と電
機子巻線の区分はなく1つの1次巻線であり、1次巻線
を流れる1次電流I1 は、励磁電流I0 と電気角で90°
位相差の2次電流I2 の合成ベクトルを表すことにな
る。従って1次電流I1 と2次電流I2 の位相差ψが励
磁電流I0 を制御する1つのパラメータであり、もう1
つのパラメータが1次電流I1 の振幅ということであ
る。そこで、この1次電流I1 と2次電流I2の位相差
ψ並びに1次電流I1 の振幅とで励磁電流I0 を制御し
ながら、すなわち3相1次交流電流から励磁電流I0 と
2次電流I2 とに分けるようにベクトル制御しながら、
静止張力を如何に調整するかが本発明の主題であり、強
いて言えば先行的技術は今のところ見い出せない。ここ
において本発明は、直流機のコスト高、メンテンナンス
の困難性,煩雑性の隘路を全て払拭するための、先駆的
なインバータ駆動の汎用の誘導電動機における静止張力
による巻取り巻戻し制御装置を提供するこを目的とす
る。However, in the prior art, both of the above-mentioned documents both control the winding and rewinding motor by the DC motor, and the armature current and the field current are respectively different armature and field currents. The armature current is controlled by the thyristor so that an appropriate current flows through the magnetic circuit, and the exciting current from the exciter is controlled. The control between the two can be made freely. However, such control theory cannot be applied to the winding / rewinding motor control by the induction motor, which is an AC machine, intended by the present invention. In other words, although the field current in each document is sufficient for adjusting the current in the field circuit through which the current flows, in an induction motor, there is no distinction between a field winding and an armature winding as in a DC motor, and a single primary winding is used. The primary current I 1 flowing through the primary winding is 90 ° in electrical angle with the exciting current I 0 .
It would represent a composite vector of the secondary current I 2 of the phase difference. Therefore, the phase difference の between the primary current I 1 and the secondary current I 2 is one parameter for controlling the exciting current I 0 ,
One of the parameters is that the amplitude of the primary current I 1. Therefore, while controlling the exciting current I 0 with the phase difference の between the primary current I 1 and the secondary current I 2 and the amplitude of the primary current I 1 , that is, changing the exciting current I 0 from the three-phase primary AC current While performing vector control so as to divide the current into the secondary current I 2 ,
How to adjust the static tension is the subject of the present invention, and if anything, prior art cannot be found at present. Here, the present invention provides a winding and rewinding control device using static tension in a pioneering inverter-driven general-purpose induction motor for eliminating all of the high costs of DC machines, difficulties in maintenance, and complicated bottlenecks. The purpose is to do this.
【0004】[0004]
【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、張力制御を行って製品を巻き取るワイ
ンダ装置および巻戻す装置において、ベクトル制御され
るインバータ駆動装置を介して駆動される誘導電動機に
連結されたワインダと、巻取り巻戻しされる線条または
帯状の巻取り巻戻し部材を走行させる搬送ロールと、ワ
インダと搬送ロールの巻取り巻戻し部材の張力を検出す
る張力検出器と、ワインダと搬送ロールの各速度から巻
取り巻戻し部材の径を演算する径演算器と、張力設定器
で設定された張力と張力検出器からの検出張力との偏差
で巻取り巻戻し部材の張力を制御する張力制御器と、こ
の張力制御器と径演算器とからの入力により巻取り巻戻
し部材の走行速度を零にしたまま張力を掛ける静止張力
制御のための電流を演算する静止張力電流演算器と、こ
の静止張力電流演算器の演算により算出された励磁電流
と2次電流によるベクトル制御がなされワインダを運転
するインバータ駆動装置とをそれぞれ備え、張力設定器
で設定された静止張力に対して誘導電動機の電動機1次
電流が最小になるように決定する制御機能を有するイン
バータ駆動電動機の静止張力による巻取り巻戻し制御装
置であり、また運転張力制御のときは、径演算器出力を
直接励磁電流演算器と2次電流演算器に与え、張力制御
器出力を直接2次電流演算器に与える回路構成とする切
り換え回路を具備する前項に記載のインバータ駆動電動
機の静止張力による巻取り巻戻し制御装置である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a winder and a rewinding device for winding a product under tension control, which are driven by a vector-controlled inverter driving device. Connected to an induction motor to be wound, a conveying roll for running a linear or belt-shaped winding and rewinding member to be wound and rewinded, and a tension for detecting a tension of a winding and rewinding member of the winder and the conveying roll. A detector, a diameter calculator for calculating the diameter of the winding and rewinding member from the respective speeds of the winder and the transport roll, and a winding winding based on a deviation between the tension set by the tension setting unit and the detected tension from the tension detector. A tension controller for controlling the tension of the return member, and a current for static tension control for applying tension while keeping the running speed of the winding / rewinding member at zero by input from the tension controller and the diameter calculator. A static tension current calculator for calculating, and an inverter drive device for operating a winder that performs vector control based on the exciting current and the secondary current calculated by the calculation of the static tension current calculator, and is set by a tension setting device. This is a winding and rewinding control device based on the static tension of the inverter-driven motor having a control function of determining the primary current of the induction motor to be minimized with respect to the static tension. The static tension of the inverter-driven motor according to the preceding paragraph, further comprising a switching circuit having a circuit configuration that directly supplies the output of the calculator to the excitation current calculator and the secondary current calculator and that directly outputs the output of the tension controller to the secondary current calculator. Is a winding and rewinding control device.
【0005】[0005]
【作用】本発明はこのような制御系を構成するから、励
磁電流と2次電流を制御が安定な範囲で1次電流が最小
となるなるように決定することができ、特に走行部材の
速度零付近におけるインバータを構成する、自己消弧型
トランジスタの1次電流多過に基づく破壊からの制御不
能を防ぎ、駆動装置の信頼性が向上する。Since the present invention constitutes such a control system, the exciting current and the secondary current can be determined so that the primary current is minimized in a range where the control is stable. The self-extinguishing transistor constituting the inverter near zero is prevented from being uncontrollable from being destroyed due to excessive primary current, and the reliability of the driving device is improved.
【0006】[0006]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は、本発明の一実施例の回路構成を示すブロ
ック図である。線条または帯状の走行部材120 が矢印方
向に巻き取られる場合を想定する。搬送ロール1はライ
ン速度設定器15でライン速度が設定され、速度制御装置
8にて検出速度との速度偏差が求められて、その速度偏
差で搬送ロール駆動装置10を介して搬送ロール電動機9
を駆動し、それに連結された搬送ロール1を設定速度で
走行させる。なお、11は搬送ロール電動機9の実速度を
検出し、速度制御装置8へ負帰還させると共に、径演算
器への1 つの情報入力信号を形成する。搬送ロール1に
より搬送され走行する走行部材120 はワインダ2により
巻取りが施行される。このとき、ワインダ2はワインダ
電動機16にて運転されて走行部材120 を設定された張力
となる回転速度で巻き取られる。そして、ワインダ2の
張力制御については、静止張力設定器13または運転張力
設定器14で設定された張力により、張力指令設定器5へ
張力設定値信号を与え、ここで張力設定値信号に対応す
る張力指令が発生し、次の張力制御器4へ一方の入力信
号として与えられ、他方の張力検出器3からの実張力と
の偏差が演算されて、演算器21へ送られる。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a circuit configuration of one embodiment of the present invention. It is assumed that the linear or belt-like traveling member 120 is wound in the direction of the arrow. The line speed of the conveying roll 1 is set by a line speed setting device 15, and a speed deviation from the detected speed is determined by a speed control device 8. The speed deviation is used to convey the conveying roll motor 9 via a conveying roll driving device 10.
, And the transport roll 1 connected thereto is caused to travel at a set speed. Numeral 11 detects the actual speed of the transport roll motor 9, feeds it back to the speed controller 8, and forms one information input signal to the diameter calculator. The traveling member 120 transported and transported by the transport roll 1 is wound by the winder 2. At this time, the winder 2 is driven by the winder motor 16 to wind the traveling member 120 at a rotation speed at which the tension is set. As for the tension control of the winder 2, a tension set value signal is given to the tension command setter 5 according to the tension set by the static tension setter 13 or the operation tension setter 14, where the tension set value signal is corresponded. A tension command is generated and given as one input signal to the next tension controller 4, a deviation from the actual tension from the other tension detector 3 is calculated, and sent to the calculator 21.
【0007】 さらに、ワインダ電動機16からの実ワイ
ンダ電動機速度がワインダ速度検出器18で検出されて、
径演算器12の一方の情報入力信号を形成し、他方の搬送
ロール1の走行速度と共に、径演算器12で両者の速度比
からワインダ2に形成されつつある部材120 の径が導出
される。このようにして、得られた張力制御値と径の値
は静止張力電流演算器21へ加えられる。静止張力電流演
算器21においては、先の2つの制御要素を基にして1次
電流の2次電流に対する電気的位相角並びにその振幅値
が演算され、かつ静止張力制御の信号において、制御の
安定を保ちつつ1次電流が最小となる[つまり、制御さ
れる誘導電動機の定格から一義的に決まる最小電流があ
り、それに最も近くそして力率の良い安定した1次電流
ということである]、1次電流の値と励磁電流の値が決
定され、前者は励磁電流演算器19で演算され、後者は2
次電流演算器20で演算されて、それぞれ次段での制御演
算に適した信号電圧に調整され、インバータ駆動装置17
に入力する。Further, the actual winder motor speed from the winder motor 16 is detected by the winder speed detector 18,
One of the information input signals of the diameter calculator 12 is formed, and the diameter of the member 120 being formed on the winder 2 is derived from the speed ratio of the two together with the traveling speed of the other transport roll 1 by the diameter calculator 12. The tension control value and the diameter value thus obtained are added to the static tension current calculator 21. The static tension current calculator 21 calculates the electrical phase angle of the primary current with respect to the secondary current and the amplitude value thereof based on the above two control elements, and based on the static tension control signal, stabilizes the control. While the primary current is minimized [that is, there is a minimum current that is uniquely determined by the rating of the induction motor to be controlled, and it is the closest primary current with a good power factor], 1 The value of the next current and the value of the exciting current are determined, and the former is calculated by the exciting current calculator 19, and the latter is calculated by 2
The current is calculated by the next current calculator 20 and adjusted to a signal voltage suitable for the control calculation in the next stage.
To enter.
【0008】 インバータ駆動装置17では入力している
2つの制御信号[励磁電流と2次電流の情報信号]に依
拠するように、誘導電動機から成るワインダ電動機16を
ベクトル制御する。このようにワインダ2を運転すれ
ば、所期の静止張力で走行部材120 を巻き取ることがで
きる。では、ここで少しく何故このようにすれば設定静
止張力制御が可能のか理論を展開してみる。制御の主流
を再挙しながら述べると、ワインダ電動機16はインバー
タ駆動装置17により駆動され、ワインダ2に動力を伝達
する。ワインダ電動機16は張力指令発生器5の指令に従
い、張力制御器4により張力制御される。このとき張力
は張力検出器3で測定され、フィードバック信号として
使用される。同様に、搬送ロール1は搬送ロール電動機
9、搬送ロール駆動装置10を持ち、ライン速度設定器15
の指令に従い速度制御器8により速度制御されている。
速度フィードバック信号は搬送ロール速度検出器11から
発信される。ワインダ2の径[すなわち、走行部材120
の径D]は径演算器12により演算されている。The inverter driving device 17 performs vector control of the winder motor 16 composed of an induction motor so as to depend on two input control signals [information signals of an excitation current and a secondary current]. By operating the winder 2 in this manner, the running member 120 can be wound with the desired static tension. Now, let's expand on the theory of why this configuration can control the set static tension a little more. To restate the mainstream of control, the winder motor 16 is driven by the inverter drive device 17 to transmit power to the winder 2. The tension of the winder motor 16 is controlled by the tension controller 4 in accordance with a command from the tension command generator 5. At this time, the tension is measured by the tension detector 3 and used as a feedback signal. Similarly, the transport roll 1 has a transport roll motor 9 and a transport roll driving device 10, and a line speed setting device 15.
The speed is controlled by the speed controller 8 in accordance with the above-mentioned command.
The speed feedback signal is transmitted from the transport roll speed detector 11. The diameter of the winder 2 [that is, the running member 120
Is calculated by the diameter calculator 12.
【0009】 このような構成において、インバータ駆
動装置17では材料の張力Fは比例定数k、ワインダ電動
機トルクT、走行部材120 の径Dとして、 F=k×T/D ……………………(1) =k1 ×φ×I/D ……………………(2) となるように制御されている。ここでワインダ電動機ト
ルクTは電動機の界磁φ、電動機電流Iに比例している
ので、(1)式は(2)式と書き変えることができる
[k1 は比例定数]。また、一般的に誘導電動機では、
1次電流I1 、励磁電流I0 、2次電流I2とすれば、 φ=k2 ×I0 ……………………(3) I=k3 ×I2 ……………………(4) (I1)2 = (I0)2 + (I2)2 ……………………(5) tan θ=I0 /I2 ……………………(6) とかける。ここで、k2 ,k3 は比例定数、θは力率角
を示し、0に近いほど力率がよいことになる。上記を整
理すれば、(1)式は F=k1 ×k2 ×I0 ×k3 ×I2 /D =k4 ×I0 ×I2 /D ……………………(7) となる。これまでの誘導電動機でのワインダ電動機のト
ルク制御の考え方は、(7)式に基づき径の変化が緩や
かであるということから、応答の遅い励磁電流I0 を径
Dに比例させ張力制御の補正を応答の遅い2次電流I2
で行っており、走行速度を零にしたまま張力をかける制
御、所謂、静止張力制御を行う際も上記の考え方であ
る。In such a configuration, in the inverter driving device 17, the tension F of the material is expressed as F = k × T / D as proportional constant k, winder motor torque T, and diameter D of the traveling member 120. .. (1) = k 1 × φ × I / D (2) Here, since the winder motor torque T is proportional to the field φ of the motor and the motor current I, the equation (1) can be rewritten as the equation (2) [k 1 is a proportional constant]. In general, in induction motors,
Assuming that the primary current I 1 , the excitation current I 0 , and the secondary current I 2 , φ = k 2 × I 0 ... (3) I = k 3 × I 2. (4) (I 1 ) 2 = (I 0 ) 2 + (I 2 ) 2 ... (5) tan θ = I 0 / I 2 …………………… (6) Here, k 2 and k 3 are proportional constants, θ is a power factor angle, and the closer to 0, the better the power factor. Summarizing the above, the equation (1) can be expressed as follows: F = k 1 × k 2 × I 0 × k 3 × I 2 / D = k 4 × I 0 × I 2 / D (7) ). Previously concept of torque control of the winder motor in an induction motor of the (7) from the fact that the change in diameter on the basis of the expression is moderate, in proportion slow excitation current I 0 responsive to diameter D correction tension control To the secondary current I 2
The above-mentioned concept is applied to the control for applying tension while keeping the traveling speed at zero, that is, the so-called static tension control.
【0010】 ところが、一般に巻取り・巻戻しを行う
電動機は径の制御範囲が1:4程度と大きく、界磁制御
を開始する回転数である基底回転数が低く、そのため誘
導電動機では極数が多い。従って励磁用コイルが多いた
め、必然的に励磁電流I0 も大きい。つまり力率θが悪
く、従来の制御方法ではたとえ静止張力が定格の1/3
となるように2次電流I2 を1/3としても、1次電流
I1は励磁電流I0 のために1/3にはならず、無駄な
電流を駆動装置が発生させることになる。そこで本発明
のインバータ駆動電動機の静止張力による巻取り巻戻し
制御装置は、静止張力制御を実施する際に、励磁電流I
0 と2次電流I2 を制御が安定な範囲で1次電流I1 が
最小となるように決定する機能を有している、すなわち
図1に示す一実施例のような回路構成によって所期の目
的が達成され得る。However, in general, a motor that performs winding and rewinding has a large diameter control range of about 1: 4, and has a low base rotation speed, which is the rotation speed at which field control is started, and therefore has a large number of poles in an induction motor. Thus for the excitation coil is large, inevitably excitation current I 0 is large. That is, the power factor θ is poor, and the static tension is 1/3 of the rated value in the conventional control method.
Thus, even if the secondary current I 2 is reduced to 1/3, the primary current I 1 is not reduced to 1/3 because of the exciting current I 0 , and the drive device generates useless current. Therefore, the winding and rewinding control device using the static tension of the inverter drive motor according to the present invention performs the exciting current I when performing the static tension control.
It has a function of determining the 0 and the secondary current I 2 so that the primary current I 1 is minimized in a range where the control is stable. That is, the function is intended by the circuit configuration as in the embodiment shown in FIG. Can be achieved.
【0011】 その静止張力演算の具体的手段[静止張
力コントロール法]を以下に詳細に説明する。初めに、 I0,100 は100 %張力のときの励磁電流 I2,100 は100 %張力のときの2次(トルク分)電流 I1,100 は100 %張力のときの1次電流 と定義すると、 I1,100 ={(I0,100 )2 +(I2,100 )2 }1/2 ………………(8) また、先の(7)式で示した力率角θはtan θ=I0 /
I2 である。ここで、誘導電動機の100 %張力のときの
モータトルクT100 は T100 =k4 ×I0,100 ×I2,100 ……………………(9) である。ただしk4 は定数を表す。The specific means of the static tension calculation [static tension control method] will be described in detail below. First , if I 0,100 is the excitation current at 100% tension, I 2,100 is the secondary (torque) current at 100% tension, and I 1,100 is the primary current at 100% tension, I 1,100 = { (I 0,100 ) 2 + (I 2,100 ) 2 } 1/2 (8) Further, the power factor angle θ shown in the above equation (7) is tan θ = I 0 /
It is I 2. Here, the motor torque T 100 when the 100% tension of the induction motor is T 100 = k 4 × I 0,100 × I 2,100 ........................ (9). However k 4 represents a constant.
【0012】 静止張力分の運転張力分に対する比率を
δ[ただし0≦δ≦1である]とすると、静止張力を実
現するトルクTS は TS =k4 ・δ×I0,100 ×I2,100 =k4 ×I0,100 ×(δ・I2,100 ) ……………………(10) このようにして、(10)式の2次電流コントロール方
式は従来手段である。静止張力を実現するトルクTS を
実現するための1次電流I1,S は I1,S ={(I0,100 )2 +(δ・I2,100 )2 }1/2 ………(11) であるが、しかし、これは最小値ではない。そこで、本
発明はこの静止張力を実現する1次電流I1,S を最小に
する方策を取る。トルクTS を実現するための1次電流
の最小値I1,Sminは次のようにして決める。 Assuming that the ratio of the static tension to the operating tension is δ (where 0 ≦ δ ≦ 1), the torque T S for realizing the static tension is T S = k 4 · δ × I 0,100 × I 2,100 = k 4 × I 0,100 × (δ · I 2,100 ) (10) In this way, the secondary current control system of the formula (10) is a conventional means. The primary current I 1, S for realizing the torque T S for realizing the static tension is I 1, S = {(I 0,100 ) 2 + (δ · I 2,100 ) 2 } 1/2 (11) However, this is not the minimum. Therefore, the present invention takes measures to minimize the primary current I1 , S for realizing this static tension. The minimum value I 1 of the primary current for realizing the torque T S, Smin is determined as follows.
【0013】 すなわち、トルクは励磁電流I0 ,2次
電流I2 の積で一定の条件下で、1次電流I1 は{(I
0 )2 +(I2 )2 }1/2 を最小とする励磁電流I0 ,
2次電流I2 は、I0 =I2 、従ってトルクTS を実現
するための励磁電流I0,S 、同様にそのときの2次電流
I2,S について I0,S =I2,S …………………………(12) のとき1次電流の最小値I1,Sminが実現される。このと
きの静止張力を実現するトルクTS は一定で、(10)
式で述べた通りTS =k1 ・δ×I0,100 ×I2,100 で
あるから、(11)式は(12)式より I0,S =I2,S =(δ×I0,100 ×I2,100 )1/2 …………………………(13) であり、これを計算するのが静止張力電流演算器21であ
り、このときのトルクTS を実現するための1次電流I
1,S は[tan θ=π/4であるから] I1,S ={(I0,S )2 +(I2,S )2 }1/2 = (2)1/2・δ×I0,100 ×I2,100 …………………(14) となる。That is, the torque is the product of the exciting current I 0 and the secondary current I 2 , and the primary current I 1 is {(I
0 ) 2 + (I 2 ) 2励1/2 , the excitation current I 0 ,
The secondary current I 2, I 0 = I 2, thus the exciting current I 0 for realizing torque T S, S, the secondary current likewise that time I 2, the S I 0, S = I 2 , In the case of S ... (12), the minimum value I1 , Smin of the primary current is realized. The torque T S for realizing the static tension at this time is constant, and (10)
Since T S = k 1 · δ × I 0,100 × I 2,100 as described in the equation, the equation (11) is obtained from the equation (12) as follows: I 0, S = I 2, S = (δ × I 0,100 × I 2,100 ) 1/2 ... (13), which is calculated by the static tension current calculator 21 and the primary current I for realizing the torque T S at this time.
1, S is [since tan θ = π / 4] I 1, S = {(I 0, S ) 2 + (I 2, S ) 2 } 1/2 = (2) 1/2 · δ × I 0,100 × I 2,100 (14)
【0014】 但し、励磁電流I0,S <I0,min [安定
制御の下限1次電流値]のときはI0,S はそのI0,min
に制限し、 I0,S =I0,min ……………………………(15) 2次電流I2,S は I2,S =(δ×I0,100 ×I2,100 )/I0,min …………(16) とする。また、2次電流I2,S ≧I2,100 のときは I2,S =I2,100 …………………………(17) に制限する。従って、このときは I0,S =δ×I0,100 …………………………(18) である。However, when the exciting current I 0, S <I 0, min [the lower limit primary current value of the stable control], I 0, S is the I 0, min
I 0, S = I 0, min ... (15) The secondary current I 2, S is I 2, S = (δ × I 0,100 × I 2,100 ) / I 0, min ... (16) Further, when the secondary current I 2, S ≧ I 2,100 , it is limited to I 2, S = I 2,100 (17). Therefore, at this time, I 0, S = δ × I 0,100 ... (18)
【0015】 図2は、上述の静止張力電流の演算の手
法を表すフローチャートである。これによって、静止張
力を実現するトルクTS を実現する2次電流I2,S と励
磁電流I0,S が決定される。ところで、図3は、静止張
力を適用せず運転張力制御のみときのこの実施例の回路
構成を示すブロック図である。つまり、ストール張力設
定の際はストール張力設定時に閉になる接点6をオンに
し、運転張力制御のときは運転張力制御時に閉になる接
点7をオンにして、両者を択一的に使用し、接点6がオ
ンすればその補助接点6a もまたオンなり、静止張力電
流演算器21がオンして先の静止張力での演算を行うけど
も、補助接点6a がオフのときは図2の制御系を形成す
るようにしている。FIG. 2 is a flowchart showing a method of calculating the above-described static tension current. Thus, the secondary current I 2 to achieve a torque T S to realize resting tension, S and exciting current I 0, S is determined. FIG. 3 is a block diagram showing the circuit configuration of this embodiment when only the operation tension control is performed without applying the static tension. That is, when the stall tension is set, the contact 6 that is closed when the stall tension is set is turned on, and when the operating tension is controlled, the contact 7 that is closed when the operating tension is controlled is turned on. When the contact 6 is turned on, the auxiliary contact 6a is also turned on, and the static tension current calculator 21 is turned on to perform the calculation with the previous static tension. However, when the auxiliary contact 6a is off, the control system of FIG. It is formed.
【0016】[0016]
【発明の効果】以上述べたように本発明によれば、静止
張力電流設定器などの配設に基づき、制御系の無駄な1
次電流の抑制と、インバータの寿命の伸延と、運転の安
定度の向上に著しく寄与するという特段の効果を奏する
ことができる。As described above, according to the present invention, the use of a static tension current setting device and the like makes it possible to use a wasteful control system.
It is possible to obtain a special effect of significantly contributing to suppression of the secondary current, extension of the life of the inverter, and improvement of operation stability.
【図1】本発明の一実施例における静止張力制御ときの
回路構成を示すブロック図FIG. 1 is a block diagram showing a circuit configuration during static tension control according to an embodiment of the present invention.
【図2】本発明の一実施例における静止張力が最小にな
るように決定する手順を表すフローチャートFIG. 2 is a flowchart illustrating a procedure for determining a static tension to be minimum in one embodiment of the present invention;
【図3】本発明の一実施例での運転張力制御ときの回路
構成を示すブロック図FIG. 3 is a block diagram showing a circuit configuration at the time of operating tension control in one embodiment of the present invention.
【図4】従来例の回路構成を表すブロック図FIG. 4 is a block diagram showing a circuit configuration of a conventional example.
1 搬送ロール 2 ワインダ 3 張力検出器 4 張力制御器 5 張力指令発生器 6 ストール張力制御時に閉になる接点 6a 接点6に連動する補助接点 7 運転張力制御時に閉になる接点 8 速度制御器 9 搬送ロール電動機 10 搬送ロール駆動装置 11 搬送ロール速度検出器 12 ワインダ径演算器 13 静止張力設定器 14 運転張力設定器 15 ライン速度設定器 16 ワインダ電動機 17 インバータ駆動装置 18 ワインダ速度検出器 19 励磁電流演算器 20 2次電流演算器 21 静止張力電流演算器 120 線条または帯状などのされる部材 DESCRIPTION OF SYMBOLS 1 Conveyance roll 2 Winder 3 Tension detector 4 Tension controller 5 Tension command generator 6 Contact closed at stall tension control 6a Auxiliary contact linked with contact 6 7 Contact closed at operation tension control 8 Speed controller 9 Transport Roll motor 10 Carrier roll drive device 11 Carrier roll speed detector 12 Winder diameter calculator 13 Static tension setter 14 Operating tension setter 15 Line speed setter 16 Winder motor 17 Inverter drive 18 Winder speed detector 19 Excitation current calculator 20 Secondary current calculator 21 Static tension current calculator 120 Members made of wire or belt
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B65H 23/192 B21C 47/00 B65H 23/198 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B65H 23/192 B21C 47/00 B65H 23/198
Claims (2)
ダ装置および巻戻す装置であって、ベクトル制御される
インバータ駆動装置を介して駆動される誘導電動機に連
結されたワインダと、巻取り巻戻しされる線条または帯
状の巻取り巻戻し部材を走行させる搬送ロールと、ワイ
ンダと搬送ロールの巻取り巻戻し部材の張力を検出する
張力検出器と、ワインダと搬送ロールの各速度から巻取
り巻戻し部材の径を演算する径演算器と、張力設定器で
設定された張力と張力検出器からの検出張力との偏差で
巻取り巻戻し部材の張力を制御する張力制御器とを設け
た装置において、 前記張力制御器と径演算器とからの入力により巻取り巻
戻し部材の走行速度を零にしたまま張力を掛ける静止張
力制御のための電流を演算する静止張力電流演算器と、 この静止張力電流演算器の演算により算出された励磁電
流と2次電流を、それぞれ励磁電流演算器と2次電流演
算器とを介して、ベクトル制御がなされワインダを運転
するインバータ駆動装置とをそれぞれ備え、 前記張力設定器で設定された静止張力に対して、前記誘
導電動機の電動機1次電流が最小になるように、励磁電
流I0 と2次電流I2 を等しく決定する制御機能を有す
ることを特徴とするインバータ駆動電動機の静止張力に
よる巻取り巻戻し制御装置。1. A winder and a rewinding device for winding a product under tension control, comprising: a winder connected to an induction motor driven via a vector-controlled inverter drive; And a tension detector for detecting the tension of the winding and rewinding member of the winder and the transporting roll, and a winding and winding device based on the respective speeds of the winder and the transporting roll. A device provided with a diameter calculator for calculating the diameter of the return member, and a tension controller for controlling the tension of the winding / rewinding member based on a deviation between the tension set by the tension setting device and the detected tension from the tension detector. A static tension current calculator for calculating a current for static tension control for applying tension while keeping the running speed of the winding and rewinding member at zero by an input from the tension controller and the diameter calculator; The excitation current and the secondary current calculated by the operation of the static tension current calculator of the present invention are respectively transmitted to the inverter drive device that performs vector control and operates the winder through the excitation current calculator and the secondary current calculator. Having a control function of equally determining the exciting current I 0 and the secondary current I 2 so that the primary motor current of the induction motor becomes minimum with respect to the static tension set by the tension setting device. A winding and rewinding control device using static tension of an inverter drive motor.
直接励磁電流演算器と2次電流演算器に与え、張力制御
器出力を直接2次電流演算器に与える回路構成とする切
り換え回路を切りかえれば、 径演算器の出力がダイレクトに励磁電流演算器と2次電
流演算器に入力され、 張力制御器の出力がダイレクトに2次電流演算器に入力
され、 静止張力制御をすることなく、運転張力制御をすること
ができる手段を具備することを特徴とする請求項1記載
のインバータ駆動電動機の静止張力による巻取り巻戻し
制御装置。2. A switching circuit having a circuit configuration in which the output of a diameter calculator is directly supplied to an exciting current calculator and a secondary current calculator during operation tension control, and the output of a tension controller is directly provided to a secondary current calculator. The output of the diameter calculator is directly input to the excitation current calculator and the secondary current calculator, and the output of the tension controller is directly input to the secondary current calculator to perform static tension control. 2. The winding and rewinding control device according to claim 1, further comprising means capable of controlling the operating tension.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19177294A JP3289754B2 (en) | 1994-07-21 | 1994-07-21 | Winding and rewinding control device by static tension of inverter driven motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19177294A JP3289754B2 (en) | 1994-07-21 | 1994-07-21 | Winding and rewinding control device by static tension of inverter driven motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0826548A JPH0826548A (en) | 1996-01-30 |
JP3289754B2 true JP3289754B2 (en) | 2002-06-10 |
Family
ID=16280275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19177294A Expired - Lifetime JP3289754B2 (en) | 1994-07-21 | 1994-07-21 | Winding and rewinding control device by static tension of inverter driven motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3289754B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009113911A (en) * | 2007-11-06 | 2009-05-28 | Yaskawa Electric Corp | Winding-rewinding device and its control method |
JP2012017191A (en) * | 2010-07-09 | 2012-01-26 | Fuji Electric Co Ltd | Method of estimating roll diameter |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5263832B2 (en) * | 2009-05-14 | 2013-08-14 | 株式会社日立製作所 | Rolling equipment control device and control method |
KR101037662B1 (en) * | 2011-02-17 | 2011-05-27 | 한국엠테크(주) | Tension control device for rolling apparatus |
-
1994
- 1994-07-21 JP JP19177294A patent/JP3289754B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009113911A (en) * | 2007-11-06 | 2009-05-28 | Yaskawa Electric Corp | Winding-rewinding device and its control method |
JP2012017191A (en) * | 2010-07-09 | 2012-01-26 | Fuji Electric Co Ltd | Method of estimating roll diameter |
Also Published As
Publication number | Publication date |
---|---|
JPH0826548A (en) | 1996-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950012303B1 (en) | Device for driving elevator at service interruption | |
US2432876A (en) | Control system | |
JP3289754B2 (en) | Winding and rewinding control device by static tension of inverter driven motor | |
US2661009A (en) | Strip pickling apparatus and saturable reactor control therefor | |
JP3266175B2 (en) | Method and apparatus for controlling an induction motor | |
US2451901A (en) | Control system for reel motors | |
US4720661A (en) | Method and apparatus for controlling reel tension | |
US2333978A (en) | Control system | |
US2444248A (en) | Control system | |
US2468557A (en) | Speed control system for dynamoelectric machines | |
JPH0648654A (en) | Winding tension control device by inverter driving | |
US2715701A (en) | Motor regulation for strip tension control | |
US2949249A (en) | Winding and unwinding controls | |
US4357560A (en) | Web transport control circuit | |
JPH0847106A (en) | Hybrid type driver | |
US1768939A (en) | Winder-motor drive-control system | |
US2594035A (en) | Reel control system | |
JPH0234869B2 (en) | IDOKIKAINOKEEBURURIIRUSEIGYOSOCHI | |
US2740078A (en) | Current limit and inertia compensation apparatus | |
JPS6082100A (en) | Exciter of self-excited ac generator | |
JP2839742B2 (en) | Speed controller with current correction for paper machine | |
JPS61178359A (en) | Tension control device | |
US2029164A (en) | Rolling mill drive | |
JPH058916A (en) | Rewinder control device | |
JPS5817052A (en) | Controller for reel-driving motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080322 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090322 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100322 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110322 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120322 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130322 Year of fee payment: 11 |