JPH0847106A - Hybrid type driver - Google Patents

Hybrid type driver

Info

Publication number
JPH0847106A
JPH0847106A JP17802594A JP17802594A JPH0847106A JP H0847106 A JPH0847106 A JP H0847106A JP 17802594 A JP17802594 A JP 17802594A JP 17802594 A JP17802594 A JP 17802594A JP H0847106 A JPH0847106 A JP H0847106A
Authority
JP
Japan
Prior art keywords
pole
chopper
permanent magnet
current
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17802594A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagayama
和俊 永山
Masato Mori
真人 森
Tadashi Ashikaga
正 足利
Takayuki Mizuno
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP17802594A priority Critical patent/JPH0847106A/en
Publication of JPH0847106A publication Critical patent/JPH0847106A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To simplify the structure of the field system of a hybrid type driver in which a prime mover, a generator and a motor are combined. CONSTITUTION:A hybrid exciting type permanent magnet generator (HPG) 51 to be rotted by a prime mover 52 regulates a current flowing to its exciting winding 51a thereby to regulate its field, thereby controlling an output voltage value. The output of the HPG 51 is rectified by a rectifier 52 to DC, which is converted to an AC and fed to a motor 56, which rotatably drives a motor 56. A chopper circuit 58 chopper-controls a DC rectified from the AC of the HPG 51 by a rectifier 57, and supplies it to the exciting winding 51a of the HPG 51. The chopper operation of the circuit 58 is controlled by a voltage controller of command unit 64, 66, etc., and the HPG 51 is field controlled to control its output voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はハイブリッド方式駆動装
置に関し、例えば電気自動車用の駆動装置として用いて
好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid drive unit, which is suitable for use as a drive unit for an electric vehicle, for example.

【0002】[0002]

【従来の技術】最近、電気自動車用の駆動装置として、
ハイブリッド方式駆動装置が開発された。図7は従来の
電気自動車用のハイブリッド方式駆動装置を示す。同図
に示すように、ガソリンエンジン等の原動機01と交流
発電機(誘導発電機や永久磁石式同期発電機)02とが
直結されており、原動機01の回転駆動により、交流発
電機02から交流電流が出力される。コンバータ03
は、交流発電機02から出力される交流電流を直流電流
に変換し、この直流電流を電池04及び駆動用インバー
タ05に送る。なおこの例では、コンバータ03はイン
バータ05と同じ回路構成としている。
2. Description of the Related Art Recently, as a drive unit for an electric vehicle,
A hybrid drive was developed. FIG. 7 shows a conventional hybrid drive device for an electric vehicle. As shown in the figure, a prime mover 01 such as a gasoline engine and an alternator (induction generator or permanent magnet synchronous generator) 02 are directly connected to each other. Current is output. Converter 03
Converts the alternating current output from the alternating current generator 02 into a direct current and sends the direct current to the battery 04 and the driving inverter 05. In this example, converter 03 has the same circuit configuration as inverter 05.

【0003】駆動用インバータ05での使用電力が少な
いときには、余剰電力が電池04にチャージされ、駆動
用インバータ05での使用電力が多いときには、コンバ
ータ03及び電池04の合成電力により、駆動用インバ
ータ05へ電力供給が行なわれる。
When the power consumption of the drive inverter 05 is low, the surplus power is charged in the battery 04, and when the power consumption of the drive inverter 05 is high, the combined power of the converter 03 and the battery 04 causes the drive inverter 05 to be charged. Power is supplied to.

【0004】駆動用インバータ05は、直流電流を交流
電流に変換して交流電流を交流モータ06に送る。これ
により交流モータ06が回転し、電気自動車が走行す
る。
The drive inverter 05 converts a DC current into an AC current and sends the AC current to the AC motor 06. As a result, AC motor 06 rotates and the electric vehicle runs.

【0005】この装置では、原動機01を効率を良く且
つ低公害な運転点で駆動させたいため、一般に原動機0
1を一定回転数で運転している。
In this device, since it is desired to drive the prime mover 01 efficiently and at a low-pollution operating point, the prime mover 0 is generally used.
1 is operating at a constant rotation speed.

【0006】交流発電機02として誘導発電機を用いる
場合には、周波数電流制御器07により、発電機02と
コンバータ03との間の電流を検出し、これに基づきコ
ンバータ03に送るゲート信号gを調整することによっ
て、コンバータ03から誘導発電機02へ供給する励磁
電流の値及び周波数を制御して、誘導発電機02の発電
電力を調整している。このようにして、車両駆動側の負
荷に応じて発電電力を調整している。
When an induction generator is used as the AC generator 02, the frequency current controller 07 detects the current between the generator 02 and the converter 03, and the gate signal g to be sent to the converter 03 based on this is detected. By adjusting, the value and frequency of the exciting current supplied from the converter 03 to the induction generator 02 are controlled to adjust the power generated by the induction generator 02. In this way, the generated power is adjusted according to the load on the vehicle drive side.

【0007】[0007]

【発明が解決しようとする課題】ところで図7に示す従
来技術において、交流発電機02として誘導発電機を採
用する場合には、コンバータ03には励磁電流を供給す
る機能が要求されるため、コンバータ03を単なる整流
回路とすることはできず駆動用インバータ05と同じ構
成のものを用いなければならず、複雑な制御回路とな
る。
In the prior art shown in FIG. 7, when an induction generator is used as the AC generator 02, the converter 03 is required to have a function of supplying an exciting current. 03 cannot be a simple rectifier circuit and must have the same configuration as the drive inverter 05, resulting in a complicated control circuit.

【0008】一方、交流発電機02として永久磁石式の
同期発電機を用いるならば、一般にエンジンの回転数は
一定であるため、幅広く発電機を運転させるには、やは
りインバータと制御回路を用いて励磁電流を制御して増
減磁を行うことになる。この結果、複雑な制御回路が必
要である。
On the other hand, if a permanent magnet type synchronous generator is used as the AC generator 02, the engine speed is generally constant, so in order to operate the generator widely, an inverter and a control circuit are also used. The excitation current is controlled to increase or decrease the magnetism. As a result, complex control circuits are required.

【0009】結局、交流発電機02として誘導発電機や
通常の同期発電機を用いたのでは、発電電圧を調整する
界磁制御系が複雑になってしまう。
After all, if an induction generator or an ordinary synchronous generator is used as the AC generator 02, the field control system for adjusting the generated voltage becomes complicated.

【0010】本発明は、上記従来技術に鑑み、発電電圧
を調整する界磁制御系の構成を簡単にしたハイブリッド
方式駆動装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned prior art, and an object of the present invention is to provide a hybrid drive apparatus having a simple structure of a field control system for adjusting a generated voltage.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する第1
の本発明の構成は、軸方向に並んで配置されたN極側電
機子鉄心及びS極側電機子鉄心と、N極側及びS極側の
電機子鉄心に亘り配設されたヨーク及び電機子巻線と、
N極側及びS極側の電機子鉄心の間の位置で周方向に沿
い配置された励磁巻線とでなる固定子と、回転子鉄心
と、前記N極側電機子鉄心に対面する回転子鉄心面に配
置され且つ周方向に関し間隔をあけて交互に備えられた
複数個のN極永久磁石及びN極側突極状部と、前記S極
側電機子鉄心に対面する回転子鉄心面に配置され且つ周
方向に関し間隔をあけると共に前記N極永久磁石の配置
ピッチからずれた配置ピッチで交互に備えられた複数個
のS極永久磁石及びS極側突極状部とでなる回転子とで
構成したハイブリッド励磁形永久磁石発電機と、このハ
イブリッド励磁形永久磁石発電機の回転子を回転させる
原動機と、前記ハイブリッド励磁形永久磁石発電機が発
電した交流電流を直流電流に整流する整流器と、この整
流器で整流された直流電流を交流電流に変換して交流モ
ータへ供給する駆動用インバータと、前記ハイブリッド
励磁形永久磁石発電機で発電した電流を整流し整流した
直流電流をチョッパ制御して、ハイブリッド励磁形永久
磁石発電機の励磁巻線に流すチョッパ形界磁部と、前記
整流器の直流出力電圧値が設定値と等しくなるように前
記チョッパ形界磁部でのチョッパ動作を制御する電圧制
御部と、を備えたことを特徴とする。
Means for Solving the Problems A first method for solving the above problems is described below.
In the configuration of the present invention, the N-pole side armature core and the S-pole side armature core are arranged side by side in the axial direction, and the yoke and the electric machine are arranged across the N-pole side and S-pole side armature cores. Child winding,
A stator composed of an excitation winding arranged circumferentially at a position between the N-pole side and S-pole side armature cores, a rotor core, and a rotor facing the N-pole side armature cores. A plurality of N-pole permanent magnets and N-pole salient pole portions arranged on the iron core surface and alternately arranged at intervals in the circumferential direction, and a rotor iron core surface facing the S-pole armature core. A rotor composed of a plurality of S-pole permanent magnets and S-pole salient pole-shaped portions which are arranged and spaced apart from each other in the circumferential direction and which are alternately provided at an arrangement pitch deviated from the arrangement pitch of the N-pole permanent magnets; A hybrid excitation type permanent magnet generator, a prime mover for rotating a rotor of the hybrid excitation type permanent magnet generator, and a rectifier for rectifying an alternating current generated by the hybrid excitation type permanent magnet generator into a direct current. , Straight rectified by this rectifier A drive inverter that converts an electric current into an alternating current and supplies it to an alternating current motor, and a hybrid excited permanent magnet generator by chopper controlling the rectified and rectified direct current generated by the hybrid excited permanent magnet generator. A chopper-type field part that flows in the exciting winding, and a voltage control part that controls the chopper operation in the chopper-type field part so that the DC output voltage value of the rectifier becomes equal to a set value. Is characterized by.

【0012】また第2の本発明の構成は、前記電圧制御
部には、前記整流器の直流出力電圧値が設定値以上にな
ったときに前記チョッパ形界磁部のチョッパ動作を作動
させ、前記整流器の直流出力電圧値が前記設定値よりも
小さくなったときに前記チョッパ形界磁部のチョッパ動
作を停止させるチョッパ作動・停止部が備えられている
ことを特徴とする。
According to a second aspect of the present invention, the voltage control section activates the chopper operation of the chopper type magnetic field section when the DC output voltage value of the rectifier exceeds a set value, A chopper actuating / stopping unit is provided for stopping the chopper operation of the chopper type field unit when the DC output voltage value of the rectifier becomes smaller than the set value.

【0013】また第3の本発明の構成は、前記電圧制御
部には、前記整流器の直流出力電流値が設定値以上にな
ったら、前記励磁巻線に流す電流値の上限を制限するよ
う制御をする電流リミット回路が備えられていることを
特徴とする。
According to a third aspect of the present invention, the voltage control section controls the upper limit of the value of the current flowing through the exciting winding when the DC output current value of the rectifier exceeds a set value. Is provided with a current limit circuit for

【0014】[0014]

【作用】本発明では、ハイブリッド方式駆動装置の発電
機として直流界磁巻線を有するハイブリッド励磁形永久
磁石発電機を用いる。この発電機は直流界磁巻線の電流
を制御することにより、増減磁が可能であるため、簡単
なチョッパ回路により界磁制御系を実現させることがで
きる。
In the present invention, a hybrid excitation type permanent magnet generator having a DC field winding is used as the generator of the hybrid drive device. This generator can increase / decrease the magnetic field by controlling the current in the DC field winding, so that the field control system can be realized by a simple chopper circuit.

【0015】[0015]

【実施例】以下に本発明の実施例を図面に基づき詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】<ハイブリッド励磁形永久磁石発電機の説
明>まずはじめに、本発明の実施例の発電機として採用
するハイブリッド励磁形永久磁石発電機(これは「HP
G」と略称される)について、図2〜図6を参照して説
明する。
<Description of Hybrid Excitation Type Permanent Magnet Generator> First, a hybrid excitation type permanent magnet generator (this is referred to as “HP
(Abbreviated as “G”) will be described with reference to FIGS.

【0017】図2において、1は固定子である電機子、
2はこの電機子の鉄心、3は電機子巻線、4は円筒形の
ヨークである。これらのうち、電機子鉄心2は、軸方向
に関し2分割された成層鉄心であり、片側の部分がN極
側鉄心2a、他の片側の部分がS極側鉄心2bとして構
成してあり、N極側鉄心2aとS極側鉄心2bとの間に
は、図5に示すリング状の直流の励磁巻線5が配設して
ある。
In FIG. 2, 1 is an armature as a stator,
Reference numeral 2 is an iron core of this armature, 3 is an armature winding, and 4 is a cylindrical yoke. Of these, the armature core 2 is a stratified core divided into two in the axial direction, one side portion is configured as an N pole side iron core 2a, and the other one side portion is configured as an S pole side iron core 2b. A ring-shaped DC excitation winding 5 shown in FIG. 5 is arranged between the pole-side iron core 2a and the S-pole side iron core 2b.

【0018】そして、N極側鉄心2aとS極側鉄心2b
とは、ヨーク4によって磁気的に結合し、かつ機械的に
支持するように構成してある。また、電機子巻線3は、
N極側鉄心2aとS極側鉄心2bとに亘って配設してあ
る。
The N pole side iron core 2a and the S pole side iron core 2b
Are configured to be magnetically coupled and mechanically supported by the yoke 4. Also, the armature winding 3 is
It is arranged over the N pole side iron core 2a and the S pole side iron core 2b.

【0019】励磁巻線5は、図5の如くリング状に巻回
された電線5aを絶縁処理したもので、電源容量や機械
寸法に合わせて必要な起磁力を生ずるように十分なター
ン数を巻回している。
The exciting winding 5 is obtained by insulating the electric wire 5a wound in a ring shape as shown in FIG. 5, and has a sufficient number of turns so as to generate a necessary magnetomotive force in accordance with the power source capacity and machine dimensions. It is wound.

【0020】他方、回転子11は、回転子鉄心12と永
久磁石13とを有し、これらのうち回転子鉄心12はシ
ャフト15に連結したヨーク14で支持固定している。
回転子鉄心12は、部分的に突き出た構造で突極状をな
し、永久磁石13を備える部分以外の個所が突極状部1
2aとなるように構成してある。この突極状部12a
は、固定子のN極側鉄心2aとS極側鉄心2bとに対応
して設けてあり、N極側突極状部12aNとS極側突極
状部12aSとに分けてある。
On the other hand, the rotor 11 has a rotor core 12 and a permanent magnet 13, of which the rotor core 12 is supported and fixed by a yoke 14 connected to a shaft 15.
The rotor core 12 has a salient pole shape with a partially protruding structure, and the salient pole portion 1 is provided at a portion other than the portion including the permanent magnet 13.
2a. This salient pole portion 12a
Are provided corresponding to the N pole side iron core 2a and the S pole side iron core 2b of the stator, and are divided into an N pole side salient pole-shaped portion 12aN and an S pole side salient pole-shaped portion 12aS.

【0021】すなわち、突極状部12aは、固定子のN
極側鉄心2aとS極側鉄心2bとの軸方向の長さに対応
して形成してあり、しかも周方向に一定幅を有してN極
側突極状部12aN及びS極側突極状部12aSとして
存在する。そして、N極側突極状部12aNには、周方
向に隣り合ってN極永久磁石13が、図3(a)に示す
ように配置してあり、またS極側突極状部12aSにも
周方向に隣り合ってS極永久磁石13が、図3(b)に
示すように配置してある。かくして、軸方向には、N極
側突極状部12aNとS極永久磁石13とが並び、また
N極永久磁石13とS極側突極状部12aSとが並ぶ構
造となっている。
That is, the salient pole-like portion 12a is the N of the stator.
The N pole side salient pole portions 12aN and the S pole side salient poles are formed so as to correspond to the axial lengths of the pole side iron core 2a and the S pole side iron core 2b and have a constant width in the circumferential direction. It exists as the shape portion 12aS. Then, in the N pole-side salient pole-shaped portion 12aN, the N pole permanent magnets 13 are arranged adjacent to each other in the circumferential direction as shown in FIG. 3A, and in the S pole-side salient pole-shaped portion 12aS. Also, the S-pole permanent magnets 13 are arranged adjacent to each other in the circumferential direction as shown in FIG. Thus, in the axial direction, the N pole side salient pole portions 12aN and the S pole permanent magnets 13 are arranged side by side, and the N pole permanent magnets 13 and the S pole side salient pole portions 12aS are arranged side by side.

【0022】この結果、回転子11は、図4に示すよう
に、N極側突極状部12aNとN極永久磁石13とを周
方向に交互に配置するとともに、軸方向に励磁巻線5の
幅の分だけ隔たってS極側突極状部12aSとS極永久
磁石13とを周方向に交互に配置し、しかも軸方向には
突極状部12aと永久磁石13とが並ぶ構造となってい
る。このとき、突極状部12aは、周方向に永久磁石1
3の極数と同じ数だけ形成してある。
As a result, in the rotor 11, as shown in FIG. 4, the N pole side salient pole portions 12aN and the N pole permanent magnets 13 are alternately arranged in the circumferential direction, and the excitation winding 5 is axially arranged. The salient pole-shaped portions 12aS and the S-pole permanent magnets 13 are alternately arranged in the circumferential direction with the width of the salient pole-shaped portions 12aS and the permanent magnets 13 arranged side by side in the axial direction. Has become. At this time, the salient pole-shaped portion 12a is formed in the circumferential direction by the permanent magnet 1
The same number as the number of poles of 3 is formed.

【0023】図3,図4に示す例は永久磁石13を6極
配置した例を示しているが、極数はこれに限らず8極等
種々の極数が考えられる。
The examples shown in FIGS. 3 and 4 show examples in which the permanent magnets 13 are arranged in six poles, but the number of poles is not limited to this, and various poles such as eight poles are conceivable.

【0024】また、図2,図3では回転子鉄心12の突
極状部12aの表面と永久磁石13の表面とが同一円周
面を形成するように構成されているが、ギャップを小さ
くして突極状部12aを通る有効磁束を多くするよう突
極状部12aの突き出し量を永久磁石13の厚さより大
きくできる。更に、図3,図4では永久磁石13と突極
状部12aの幅を同じ幅としたが、上述と同様磁束を多
くするため突極状部12aの幅を永久磁石13より広げ
るようにしてもよい。なお、回転子鉄心12は塊状鉄心
でもよい。
2 and 3, the surface of the salient pole portion 12a of the rotor core 12 and the surface of the permanent magnet 13 form the same circumferential surface, but the gap is reduced. The protrusion amount of the salient pole portion 12a can be made larger than the thickness of the permanent magnet 13 so that the effective magnetic flux passing through the salient pole portion 12a is increased. Further, in FIGS. 3 and 4, the widths of the permanent magnet 13 and the salient pole portion 12a are the same, but the width of the salient pole portion 12a is made wider than that of the permanent magnet 13 in order to increase the magnetic flux as described above. Good. The rotor core 12 may be a lump core.

【0025】図2において、永久磁石13は回転子鉄心
12の突極状部12a以外の所定個所に張り付けて固定
するとともに、回転子鉄心12は円筒形のヨーク14に
挿着して支持する。
In FIG. 2, the permanent magnet 13 is attached and fixed to a predetermined portion of the rotor iron core 12 other than the salient pole portions 12a, and the rotor iron core 12 is inserted into and supported by the cylindrical yoke 14.

【0026】HPGの構造は、図2〜図5の如くである
が、ここで、かかる構造を採用したことに伴なう磁束の
制御動作について述べる。
The structure of the HPG is as shown in FIGS. 2 to 5. Here, the control operation of the magnetic flux associated with the adoption of such a structure will be described.

【0027】図2に示す直流の励磁巻線5に直流電流を
流した場合、例えば図2中の実線のように、電機子のヨ
ーク4→S極側鉄心2b→ギャップ→S極側突極状部1
2aS→回転子鉄心12→回転子ヨーク14→回転子鉄
心12→N極側突極状部12aN→ギャップ→N極側鉄
心2a→ヨーク4という具合に閉磁路が形成される。こ
の場合、磁束の方向は、直流電流の向きにより制御で
き、大きさは電流の大きさにより制御できる。したがっ
て、励磁巻線5による直流磁束の発生を伴なう磁束の調
整は次のようになる。
When a DC current is applied to the DC excitation winding 5 shown in FIG. 2, the armature yoke 4 → S pole side iron core 2b → gap → S pole side salient pole, for example, as indicated by the solid line in FIG. Shape 1
A closed magnetic circuit is formed in the order of 2aS → rotor iron core 12 → rotor yoke 14 → rotor iron core 12 → N pole side salient pole portion 12aN → gap → N pole side iron core 2a → yoke 4. In this case, the direction of the magnetic flux can be controlled by the direction of the direct current, and the magnitude can be controlled by the magnitude of the current. Therefore, the adjustment of the magnetic flux accompanied by the generation of the DC magnetic flux by the excitation winding 5 is as follows.

【0028】<直流励磁電流0の場合>直流励磁電流に
よる磁束は存在せず、永久磁石13による磁束のみとな
る。つまり、N極永久磁石13からの磁束は、ギャップ
→N極側鉄心2a→電機子ヨーク4→S極側鉄心2b→
ギャップ→S極永久磁石13→回転子鉄心12→回転子
ヨーク14→回転子鉄心12→N極永久磁石13からな
る経路を辿る。この場合、ギャップ磁束は、永久磁石1
3の残留磁束密度(磁石の特性)と表面積で決まること
になる。
<When the DC exciting current is 0> There is no magnetic flux due to the DC exciting current, but only the magnetic flux from the permanent magnet 13. That is, the magnetic flux from the N-pole permanent magnet 13 has a gap → the N-pole side iron core 2a → the armature yoke 4 → the S-pole side iron core 2b →
A path formed by the gap, the S pole permanent magnet 13, the rotor core 12, the rotor yoke 14, the rotor core 12, and the N pole permanent magnet 13 is traced. In this case, the gap magnetic flux is the permanent magnet 1
It is determined by the residual magnetic flux density (characteristic of the magnet) of No. 3 and the surface area.

【0029】かかる状態を回転子表面での磁束としてみ
ると、図6(b)に示すようになり、N極永久磁石13
から電機子ヨーク4を通りS極永久磁石13に至り、S
極永久磁石13から回転子ヨーク14を通りN極永久磁
石13に至る。
When this state is viewed as the magnetic flux on the rotor surface, it becomes as shown in FIG. 6B, and the N-pole permanent magnet 13
From the armature yoke 4 to the S-pole permanent magnet 13,
The pole permanent magnet 13 passes through the rotor yoke 14 to reach the N pole permanent magnet 13.

【0030】したがって、回転子の回転によって電機子
巻線3を構成する各コイルは、N極またはS極の何れか
一方の極の磁束を切ることとなり、この結果電機子巻線
3には回転数と極数とによって定まる周波数の交流電圧
が誘起される。なお、IDCは直流励磁電流を示す。
Therefore, each coil constituting the armature winding 3 cuts the magnetic flux of either the N pole or the S pole by the rotation of the rotor, and as a result, the armature winding 3 rotates. An alternating voltage having a frequency determined by the number and the number of poles is induced. It should be noted that I DC represents a DC exciting current.

【0031】こうして、本例のIDC=0の場合には、永
久磁石13によって生ずる誘起電圧により決まる発電電
力が得られる。
In this way, when I DC = 0 in this example, the generated power determined by the induced voltage generated by the permanent magnet 13 can be obtained.

【0032】<直流励磁電流による磁束が永久磁石13
の磁束と同一方向となる場合、(I DC>0の場合)>永
久磁石13による磁束はN極永久磁石13とS極永久磁
石13とで発生することに変りはない。
<The magnetic flux generated by the DC excitation current is the permanent magnet 13
If it is in the same direction as the magnetic flux of DC> 0)> Permanent
The magnetic flux generated by the permanent magnet 13 is the N-pole permanent magnet 13 and the S-pole permanent magnet.
There is no change in the occurrence of stone 13.

【0033】一方、直流の励磁巻線5による磁束は、磁
気抵抗が小さな経路を通り、S極側鉄心2b→ギャップ
→S極側突極状部12aS→回転子鉄心12→回転子ヨ
ーク14→回転子鉄心12→N極側突極状部12aN→
ギャップ→N極側鉄心2a→電機子ヨーク4を通る。こ
の場合、永久磁石13による透磁率は空気に近く、磁気
抵抗が大きいため、直流磁束は突極状部12aを通る。
On the other hand, the magnetic flux generated by the DC excitation winding 5 passes through a path having a small magnetic resistance, and the S pole side iron core 2b → gap → S pole side salient pole portion 12aS → rotor iron core 12 → rotor yoke 14 → Rotor core 12 → N pole side salient pole portion 12aN →
It passes through the gap → the N pole side iron core 2a → the armature yoke 4. In this case, since the magnetic permeability of the permanent magnet 13 is close to that of air and the magnetic resistance is large, the DC magnetic flux passes through the salient pole portion 12a.

【0034】この結果、回転子表面での合成磁束数をみ
ると、図6(a)の如くN極側突極状部12aNから出
た磁束が軸方向に並んでいるS極永久磁石13へ至り、
N極永久磁石13から出た磁束が軸方向に並んでいるS
極側突極状部12aSへ至ることになる。
As a result, looking at the combined magnetic flux number on the rotor surface, the magnetic flux emitted from the N pole side salient pole portion 12aN is directed to the S pole permanent magnet 13 arranged in the axial direction as shown in FIG. 6 (a). Really
The magnetic flux from the N-pole permanent magnet 13 is aligned in the axial direction S
It will reach the pole-side salient pole-shaped portion 12aS.

【0035】したがって、電機子巻線3を構成する軸方
向に沿って配列された各コイルでは、N極側で切る磁束
の方向とS極側で切る磁束の方向が逆となり、互いに反
対方向の誘起電圧が生じ、全体として誘起電圧が減少す
る。
Therefore, in each coil arranged along the axial direction which constitutes the armature winding 3, the direction of the magnetic flux cut on the N-pole side is opposite to the direction of the magnetic flux cut on the S-pole side, and the directions are opposite to each other. An induced voltage is generated, and the induced voltage is reduced as a whole.

【0036】つまり、直流励磁電流の大きさによって、
誘起電圧が小さくでき、その大きさによっては誘起電圧
を0とすることができる。
That is, depending on the magnitude of the DC exciting current,
The induced voltage can be reduced, and the induced voltage can be set to 0 depending on its magnitude.

【0037】かくして、永久磁石13の磁束と同一方向
の磁束を作ることによって、等価的に界磁磁束を弱める
(減磁する)こととなる。
Thus, by creating a magnetic flux in the same direction as the magnetic flux of the permanent magnet 13, the field magnetic flux is equivalently weakened (demagnetized).

【0038】<直流励磁電流による磁束が永久磁石13
の磁束と異なる(反対)方向となる場合、(IDC<0の
場合)>この場合についても永久磁石13による磁束
は、N極永久磁石13とS極永久磁石13とで発生する
ことに変わりはない。
<The magnetic flux generated by the DC exciting current is the permanent magnet 13
If the direction is different (opposite) to the magnetic flux of (in the case of I DC <0)>, in this case as well, the magnetic flux generated by the permanent magnet 13 is generated by the N-pole permanent magnet 13 and the S-pole permanent magnet 13. There is no.

【0039】一方、直流の励磁巻線5による磁束は、や
はり磁気抵抗の小さな経路を通り、N極側鉄心2a→ギ
ャップ→N極側突極状部12aN→回転子鉄心12→回
転子ヨーク14→回転子鉄心12→S極側突極状部12
aS→ギャップ→S極側鉄心2b→電機子ヨーク4を通
る。
On the other hand, the magnetic flux generated by the DC excitation winding 5 also passes through a path having a small magnetic resistance, and the N pole side iron core 2a → gap → N pole side salient pole portion 12aN → rotor iron core 12 → rotor yoke 14 → Rotor core 12 → S pole side salient pole 12
aS → gap → S pole side iron core 2b → armature yoke 4.

【0040】この結果、回転子表面での合成磁束をみる
と、図6(c)の如くN極永久磁石13から出た磁束が
周方向に隣り合うN極側突極状部12aNへ至り、また
S極側突極状部12aSから出た磁束が周方向に隣り合
うS極永久磁石13へ至ることになる。
As a result, looking at the combined magnetic flux on the rotor surface, as shown in FIG. 6C, the magnetic flux emitted from the N-pole permanent magnet 13 reaches the N-pole side salient pole-shaped portion 12aN adjacent in the circumferential direction, Further, the magnetic flux emitted from the S pole side salient pole-shaped portion 12aS reaches the S pole permanent magnets 13 that are adjacent in the circumferential direction.

【0041】したがって、電機子巻線3を構成する軸方
向に沿ってスロット内を通る各コイルでは、N極側で切
る磁束の方向とS極側で切る磁束の方向とが同方向とな
り、同一方向の誘起電圧が生じ、全体として誘起電圧が
増加する。すなわち、直流励磁電流の大きさによって誘
起電圧を調整し、この結果、直流界磁磁束を制御してハ
イブリッド励磁形永久磁石発電機の発電制御に資するこ
とができる。
Therefore, in each coil passing through the slot along the axial direction which constitutes the armature winding 3, the direction of the magnetic flux cut on the N pole side and the direction of the magnetic flux cut on the S pole side are the same, and the same. A directional induced voltage is generated, and the induced voltage is increased as a whole. That is, the induced voltage is adjusted according to the magnitude of the DC exciting current, and as a result, the DC field magnetic flux can be controlled to contribute to the power generation control of the hybrid excitation type permanent magnet generator.

【0042】<HPGを用いた実施例の説明>次に前述
したHPGを用いた、本発明の実施例である電気自動車
用のハイブリッド方式駆動装置を、図1を参照して説明
する。
<Description of Embodiment Using HPG> Next, a hybrid drive apparatus for an electric vehicle, which is an embodiment of the present invention, using the above-mentioned HPG will be described with reference to FIG.

【0043】図1においてハイブリッド励磁形永久磁石
発電機(HPG)51は、図2〜図6を参照して説明し
たのと同じ構成及び機能を備えたHPGであり、直流励
磁電流が流される励磁巻線51aを有している。このH
PG51の回転子は、一定速度で回転駆動する原動機5
2により回転させられる。
In FIG. 1, a hybrid excitation type permanent magnet generator (HPG) 51 is an HPG having the same structure and function as described with reference to FIGS. It has a winding 51a. This H
The rotor of PG51 is a prime mover 5 that is rotationally driven at a constant speed.
It is rotated by 2.

【0044】HPG51には三相ブリッジ整流器53が
接続され、この三相ブリッジ整流器53には電池54及
び駆動用インバータ55が並列に接続されている。この
ため、HPG51で発電された三相交流電流は、整流器
53で直流電流に整流され、直流電流が電池54及び駆
動用インバータ55に供給される。駆動用インバータ5
5は直流電流を最適な三相交流電流に変換して交流モー
タ56へ送り、交流モータ56が回転駆動して電気自動
車が走行する。
A three-phase bridge rectifier 53 is connected to the HPG 51, and a battery 54 and a driving inverter 55 are connected in parallel to the three-phase bridge rectifier 53. Therefore, the three-phase alternating current generated by the HPG 51 is rectified into a direct current by the rectifier 53, and the direct current is supplied to the battery 54 and the driving inverter 55. Drive inverter 5
5 converts the DC current into an optimum three-phase AC current and sends it to the AC motor 56, and the AC motor 56 is rotationally driven to drive the electric vehicle.

【0045】HPG51は更に励磁電源用補助整流器5
7にも三相交流電流を供給する。この整流器57は三相
交流電流を直流電流に整流してチョッパ回路58へ送
り、チョッパ回路58は直流電流をチョッパ制御した電
流を励磁巻線51aに流す。つまりHPG51自身で発
電した電流を励磁巻線51aに流すようにしている。そ
して励磁巻線51aに流す励磁電流値を小さくすると減
磁作用が生じ励磁電流値を大きくすると増磁作用が生じ
てHPG51の発電電圧を調整することができる向き
に、励磁巻線51aを巻回している。
The HPG 51 is further an auxiliary rectifier 5 for the excitation power supply.
7 is also supplied with a three-phase alternating current. The rectifier 57 rectifies the three-phase alternating current into a direct current and sends it to the chopper circuit 58, and the chopper circuit 58 causes a current obtained by chopper controlling the direct current to flow through the exciting winding 51a. That is, the current generated by the HPG 51 itself is passed through the exciting winding 51a. When the value of the exciting current flowing through the exciting winding 51a is reduced, the demagnetizing action is generated, and when the exciting current value is increased, the increasing magnetizing action is generated, and the exciting winding 51a is wound in a direction in which the generated voltage of the HPG 51 can be adjusted. ing.

【0046】一方、直流電圧検出器59は、三相ブリッ
ジ整流器53から出力される直流電圧を検出し、検出値
である検出直流電圧Vdcを出力する。電流検出器60は
三相ブリッジ整流器53から出力される直流電流を検出
し、検出値である検出直流電流Idcを出力する。電流検
出器61は励磁巻線51aに流れるチョッパ電流を検出
し、検出値である検出界磁電流Ifdを出力する。
On the other hand, the DC voltage detector 59 detects the DC voltage output from the three-phase bridge rectifier 53, and outputs the detected DC voltage V dc which is the detected value. The current detector 60 detects the direct current output from the three-phase bridge rectifier 53 and outputs the detected direct current I dc , which is the detected value. Current detector 61 detects the chopper current flowing to the excitation winding 51a, and outputs the detected field current I fd is detected values.

【0047】チョッパ作動・停止部62は、検出直流電
圧Vdcを監視しており、この検出直流電圧Vdcがあらか
じめ設定した電圧Vf よりも大きくなったらチョッパ回
路58のチョッパ動作を開始させ、検出直流電圧Vdc
設定電圧Vf よりも小さいときにはチョッパ回路58の
チョッパ動作を停止させる。かかる開始・停止制御は、
前記設定電圧Vf 以上になると励磁巻線51aに界磁電
流を流すことができる電力が発生することを考慮して、
実行しているものである。
The chopper actuating / stopping section 62 monitors the detected DC voltage V dc , and when the detected DC voltage V dc becomes larger than a preset voltage V f , the chopper operation of the chopper circuit 58 is started, When the detected DC voltage V dc is smaller than the set voltage V f , the chopper operation of the chopper circuit 58 is stopped. Such start / stop control is
Considering that when the voltage becomes equal to or higher than the set voltage V f , electric power capable of flowing a field current in the excitation winding 51 a is generated,
What is running.

【0048】比較器63は設定直流電圧Vs と検出直流
電圧Vdcとの差を求めて誤差電圧ΔVを出力する。界磁
電流指令部64は誤差電圧ΔVをPI(比例・積分)演
算制御して界磁電流指令Ifsを出力する。比較器65は
界磁電流指令Ifsと検出界磁電流Ifdとの差を求めて誤
差信号ΔIf を出力する。チョッパ指令部66は誤差信
号ΔIf をPI演算制御してチョッパ指令CHを出力す
る。チョッパ回路58は、チョッパ作動・停止部62に
より作動指令を受けているときに、チョッパ指令CHに
応じたON・OFF割合でチョッパ動作(ON,OFF
動作)をして、励磁巻線51aに流す励磁電流の値を調
整する。
The comparator 63 calculates the difference between the set DC voltage V s and the detected DC voltage V dc and outputs the error voltage ΔV. The field current command unit 64 controls the error voltage ΔV by PI (proportional / integral) calculation and outputs a field current command Ifs . Comparator 65 outputs an error signal [Delta] I f and obtains the difference between the detected field current I fd and the field current command I fs. The chopper command unit 66 controls the error signal ΔI f by PI calculation and outputs a chopper command CH. When the chopper circuit 58 receives an operation command from the chopper operation / stop unit 62, the chopper circuit 58 performs a chopper operation (ON / OFF) at an ON / OFF ratio according to the chopper command CH.
Operation) to adjust the value of the exciting current flowing through the exciting winding 51a.

【0049】上述したフィードバック制御系を構成する
ことにより、三相ブリッジ整流器53の出力電圧(検出
直流電圧Vdc)が設定直流電圧Vs に等しくなるよう
に、励磁巻線51aに流す励磁電流が調整される。
By constructing the above feedback control system, the exciting current flowing through the exciting winding 51a is adjusted so that the output voltage (detected DC voltage V dc ) of the three-phase bridge rectifier 53 becomes equal to the set DC voltage V s. Adjusted.

【0050】このようにHPG51の励磁巻線51aに
流す励磁電流をチョッパ回路58で調整し、HPG51
の三相出力を三相ブリッジ整流回路53で整流して電池
54やインバータ55へ給電するようにしたので、イン
バータと同構成となっている従来用いていた複雑なコン
バータが不要になり、励磁回路系が簡単になる。
In this way, the exciting current flowing through the exciting winding 51a of the HPG 51 is adjusted by the chopper circuit 58, and the HPG 51
Since the three-phase output of the above is rectified by the three-phase bridge rectifier circuit 53 and supplied to the battery 54 and the inverter 55, the complicated converter which has been used conventionally and has the same configuration as the inverter is not required, and the excitation circuit The system becomes simple.

【0051】一方、電流リミット回路67は検出直流電
流Idcを監視しており、電気自動車が急加速したり急勾
配を登ったりして交流モータ56が大電流を要求して検
出直流電流Idcが増大した場合には、界磁電流指令部6
4にリミットをかけ界磁電流指令Ifsの上限値を制限
(小さく)する。これによりHPG51ひいては整流器
53の出力電圧が低下する。よってHPG51の出力電
流が増大しても界磁電流の最大値を制御することによ
り、出力電圧が下がり、等価的に定出力運転ができる。
HPG51は最大定格以内で運転しなければならないの
で、このように定出力運転をすれば無理がかからず安定
した運転ができる。
On the other hand, the current limit circuit 67 monitors the detected DC current I dc , and when the electric vehicle rapidly accelerates or climbs a steep slope, the AC motor 56 requests a large current and the detected DC current I dc is detected. Is increased, the field current command unit 6
4 is limited to limit (decrease) the upper limit value of the field current command Ifs . As a result, the output voltage of the HPG 51 and thus the rectifier 53 decreases. Therefore, even if the output current of the HPG 51 increases, the output voltage decreases by controlling the maximum value of the field current, and constant output operation can be equivalently performed.
Since the HPG 51 has to be operated within the maximum rating, stable operation can be performed without difficulty if the constant output operation is performed in this way.

【0052】上述したように本実施側では、駆動例の電
力消費に合わせて励磁巻線51aに流す励磁電流を制御
するだけでHPG51の発電制御ができ、電気自動車用
のハイブリッド方式駆動装置が実現できた。
As described above, on the side of the present embodiment, the power generation control of the HPG 51 can be performed only by controlling the exciting current flowing through the exciting winding 51a in accordance with the power consumption of the driving example, and the hybrid drive device for the electric vehicle is realized. did it.

【0053】なお本発明は電気自動車に限らず、各種駆
動装置に適応することができる。
The present invention can be applied not only to electric vehicles but also to various drive devices.

【0054】[0054]

【発明の効果】以上実施例と共に具体的に説明したよう
に本発明によれば、ハイブリッド方式駆動装置の発電機
としてハイブリッド励磁形永久磁石発電機(HPG)を
用いたので、このHPGの界磁巻線に流す電流を制御す
るだけで簡単に界磁制御をして出力電圧の調整ができ
る。しかも界磁制御系はチョッパ回路を用いて簡単に構
成できる。更にHPGの交流出力は、整流機能のみを持
つ整流器で整流するだけでよい。この結果、界磁系にイ
ンバータなどの複雑な回路が不要となり回路構成が簡単
になる。
As described above in detail with reference to the embodiments, according to the present invention, since the hybrid excitation type permanent magnet generator (HPG) is used as the generator of the hybrid drive unit, the field of this HPG is used. The output voltage can be adjusted by simply controlling the field by simply controlling the current flowing through the winding. Moreover, the field control system can be easily constructed by using a chopper circuit. Further, the AC output of HPG may be rectified by a rectifier having only a rectifying function. As a result, the field system does not require a complicated circuit such as an inverter, and the circuit configuration is simplified.

【0055】また、整流器の直流出力電圧が設定値以上
になってからチョッパ形界磁部でのチョッパ動作を開始
するため、安定して界磁電流制御ができる。
Further, since the chopper operation in the chopper type magnetic field portion is started after the DC output voltage of the rectifier exceeds the set value, it is possible to stably control the field current.

【0056】更に、整流器の直流出力電流が設定値以上
になったら、HPGの出力電圧を制限して定出力運転に
移り、HPGを安全範囲内で運転することができる。
Further, when the DC output current of the rectifier exceeds the set value, the output voltage of the HPG is limited and the constant output operation is started so that the HPG can be operated within the safe range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る電気自動車用のハイブリ
ッド方式駆動装置を示すブロック構成図。
FIG. 1 is a block diagram showing a hybrid drive system for an electric vehicle according to an embodiment of the present invention.

【図2】実施例で用いるハイブリッド励磁形永久磁石発
電機を示す構成図。
FIG. 2 is a configuration diagram showing a hybrid excitation type permanent magnet generator used in an embodiment.

【図3】ハイブリッド励磁形永久磁石発電機を示す側面
図。
FIG. 3 is a side view showing a hybrid excitation type permanent magnet generator.

【図4】ハイブリッド励磁形永久磁石発電機の回転子を
示す斜視図。
FIG. 4 is a perspective view showing a rotor of a hybrid excitation type permanent magnet generator.

【図5】ハイブリッド励磁形永久磁石発電機の励磁巻線
51aを示す構成図。
FIG. 5 is a configuration diagram showing an excitation winding 51a of a hybrid excitation type permanent magnet generator.

【図6】ハイブリッド励磁形永久磁石発電機での磁束状
態を示す説明図。
FIG. 6 is an explanatory diagram showing a magnetic flux state in a hybrid excitation type permanent magnet generator.

【図7】電気自動車用の従来のハイブリッド方式駆動装
置を示すブロック構成図。
FIG. 7 is a block diagram showing a conventional hybrid drive device for an electric vehicle.

【符号の説明】 51 ハイブリッド励磁形永久磁石発電機(HPG) 51a 励磁巻線 52 原動機 53 三相ブリッジ整流器 54 電池 55 駆動用インバータ 56 交流モータ 57 励磁電源用補助整流器 58 チョッパ回路 59 直流電圧検出器 60,61 電流検出器 62 チョッパ作動・停止部 63,65 比較器 64 界磁電流指令部 66 チョッパ指令部 67 電流リミット回路[Description of Reference Signs] 51 hybrid excitation type permanent magnet generator (HPG) 51a excitation winding 52 prime mover 53 three-phase bridge rectifier 54 battery 55 drive inverter 56 AC motor 57 auxiliary rectifier for excitation power supply 58 chopper circuit 59 DC voltage detector 60, 61 Current detector 62 Chopper actuating / stopping unit 63, 65 Comparator 64 Field current commanding unit 66 Chopper commanding unit 67 Current limit circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02P 9/14 G (72)発明者 水野 孝行 東京都品川区大崎二丁目1番17号 株式会 社明電舎内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H02P 9/14 G (72) Inventor Takayuki Mizuno 2-1-1 Osaki, Shinagawa-ku, Tokyo Stockholders Association Shameidensha

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に並んで配置されたN極側電機子
鉄心及びS極側電機子鉄心と、N極側及びS極側の電機
子鉄心に亘り配設されたヨーク及び電機子巻線と、N極
側及びS極側の電機子鉄心の間の位置で周方向に沿い配
置された励磁巻線とでなる固定子と、回転子鉄心と、前
記N極側電機子鉄心に対面する回転子鉄心面に配置され
且つ周方向に関し間隔をあけて交互に備えられた複数個
のN極永久磁石及びN極側突極状部と、前記S極側電機
子鉄心に対面する回転子鉄心面に配置され且つ周方向に
関し間隔をあけると共に前記N極永久磁石の配置ピッチ
からずれた配置ピッチで交互に備えられた複数個のS極
永久磁石及びS極側突極状部とでなる回転子とで構成し
たハイブリッド励磁形永久磁石発電機と、 このハイブリッド励磁形永久磁石発電機の回転子を回転
させる原動機と、 前記ハイブリッド励磁形永久磁石発電機が発電した交流
電流を直流電流に整流する整流器と、 この整流器で整流された直流電流を交流電流に変換して
交流モータへ供給する駆動用インバータと、 前記ハイブリッド励磁形永久磁石発電機で発電した電流
を整流し整流した直流電流をチョッパ制御して、ハイブ
リッド励磁形永久磁石発電機の励磁巻線に流すチョッパ
形界磁部と、 前記整流器の直流出力電圧値が設定値と等しくなるよう
に前記チョッパ形界磁部でのチョッパ動作を制御する電
圧制御部と、を備えたことを特徴とするハイブリッド方
式駆動装置。
1. An N-pole side armature core and an S-pole side armature core arranged side by side in the axial direction, and a yoke and an armature winding arranged over the N-pole side and S-pole side armature cores. A stator composed of a wire and an excitation winding arranged along the circumferential direction at a position between the N-pole side and the S-pole side armature core, a rotor core, and the N-pole side armature core facing each other. A plurality of N-pole permanent magnets and N-pole salient pole portions arranged alternately on the rotor core surface at intervals in the circumferential direction, and a rotor facing the S-pole armature core. A plurality of S-pole permanent magnets and S-pole salient pole-shaped portions which are arranged on the iron core surface and are spaced apart in the circumferential direction and are alternately provided at an arrangement pitch deviating from the arrangement pitch of the N-pole permanent magnets. A hybrid excitation type permanent magnet generator composed of a rotor and this hybrid excitation type permanent magnet generator. A prime mover that rotates a rotor of a generator, a rectifier that rectifies the alternating current generated by the hybrid excitation type permanent magnet generator into a direct current, and an alternating current motor that converts the direct current rectified by the rectifier into an alternating current. And a chopper-type magnetic field that is fed to the excitation winding of the hybrid excitation-type permanent magnet generator by controlling the current generated by the hybrid excitation-type permanent magnet generator and chopper-controlling the rectified direct current. And a voltage control unit that controls a chopper operation in the chopper type field unit so that a DC output voltage value of the rectifier becomes equal to a set value.
【請求項2】 前記電圧制御部には、前記整流器の直流
出力電圧値が設定値以上になったときに前記チョッパ形
界磁部のチョッパ動作を作動させ、前記整流器の直流出
力電圧値が前記設定値よりも小さくなったときに前記チ
ョッパ形界磁部のチョッパ動作を停止させるチョッパ作
動・停止部が備えられていることを特徴とするハイブリ
ッド方式駆動装置。
2. The voltage control unit operates the chopper operation of the chopper type field unit when the DC output voltage value of the rectifier exceeds a set value, and the DC output voltage value of the rectifier is A hybrid-type drive device comprising a chopper actuating / stopping unit for stopping the chopper operation of the chopper type magnetic field unit when the value becomes smaller than a set value.
【請求項3】 前記電圧制御部には、前記整流器の直流
出力電流値が設定値以上になったら、前記励磁巻線に流
す電流値の上限を制限するよう制御をする電流リミット
回路が備えられていることを特徴とするハイブリッド方
式駆動装置。
3. The voltage control unit is provided with a current limit circuit for controlling the upper limit of the current value flowing in the exciting winding when the DC output current value of the rectifier becomes a set value or more. The hybrid drive device is characterized in that
JP17802594A 1994-07-29 1994-07-29 Hybrid type driver Pending JPH0847106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17802594A JPH0847106A (en) 1994-07-29 1994-07-29 Hybrid type driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17802594A JPH0847106A (en) 1994-07-29 1994-07-29 Hybrid type driver

Publications (1)

Publication Number Publication Date
JPH0847106A true JPH0847106A (en) 1996-02-16

Family

ID=16041273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17802594A Pending JPH0847106A (en) 1994-07-29 1994-07-29 Hybrid type driver

Country Status (1)

Country Link
JP (1) JPH0847106A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075128A (en) * 2011-01-21 2011-05-25 南京航空航天大学 Rotor magnetic shunt mixed excitation synchronous motor driving system and current control method thereof
CN102223085A (en) * 2011-06-17 2011-10-19 南京航空航天大学 Power system special for aircraft engine formed by combining hybrid excitation generator and direct-current (DC) converter
CN102291077A (en) * 2011-08-16 2011-12-21 中国地质科学院地球物理地球化学勘查研究所 High-voltage excitation constant-current power supply system
WO2012062018A1 (en) * 2010-11-08 2012-05-18 华北电力大学 Hybrid excitation synchronous generator with coordinate structure and ac excitation control system thereof
CN104300834A (en) * 2014-09-25 2015-01-21 陈新培 Novel magnetic energy electric generator
CN110556941A (en) * 2019-08-30 2019-12-10 北京动力源新能源科技有限责任公司 Range extending system and electric automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012062018A1 (en) * 2010-11-08 2012-05-18 华北电力大学 Hybrid excitation synchronous generator with coordinate structure and ac excitation control system thereof
CN102075128A (en) * 2011-01-21 2011-05-25 南京航空航天大学 Rotor magnetic shunt mixed excitation synchronous motor driving system and current control method thereof
CN102223085A (en) * 2011-06-17 2011-10-19 南京航空航天大学 Power system special for aircraft engine formed by combining hybrid excitation generator and direct-current (DC) converter
CN102291077A (en) * 2011-08-16 2011-12-21 中国地质科学院地球物理地球化学勘查研究所 High-voltage excitation constant-current power supply system
CN104300834A (en) * 2014-09-25 2015-01-21 陈新培 Novel magnetic energy electric generator
CN110556941A (en) * 2019-08-30 2019-12-10 北京动力源新能源科技有限责任公司 Range extending system and electric automobile

Similar Documents

Publication Publication Date Title
EP3376650A1 (en) Permanent magnet starter-generator with magnetic flux regulation
US6057622A (en) Direct control of air gap flux in permanent magnet machines
US20040150233A1 (en) Vehicle motor-generator apparatus utilizing synchronous machine having field winding
JP5216686B2 (en) Permanent magnet generator
JPS62210873A (en) Starter/generator
US20180198395A1 (en) Double stator permanent magnet machine with magnetic flux regulation
JPH02193598A (en) Hybrid generator
JP2010022185A (en) Synchronous machine
US12003144B2 (en) Power distribution within an electric machine with rectified rotor windings
CN110739891A (en) electro-magnetic synchronous reluctance brushless power generation system
JP2738605B2 (en) Magnet generator
US6903477B2 (en) Induction machine with motor and generator operation modes
JPH0847106A (en) Hybrid type driver
JPH08140214A (en) Hybrid drive system
US20030080643A1 (en) Brushless rotating electric machine
JPH0879912A (en) Hybrid driver
JPH0879909A (en) Hybrid driver
JPH09219905A (en) Hybrid drive device
JP2004320972A (en) Permanent magnet rotating electric machine and its controlling method, vehicle, wind power generator system, and engine generator
JP3351108B2 (en) Drive mechanism using hybrid excitation type permanent magnet rotating machine
JPH0516867Y2 (en)
JPH03245755A (en) Brushless self-excitation synchronous electric motor
JP2522914Y2 (en) Rotating field type alternator
JPH06237561A (en) Device for weak magnetic field operation of permanent magnet type rotating electric machine
JPH0815379B2 (en) 2-output inductor brushless generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105