JP3289646B2 - Manufacturing method of multilayer ceramic capacitor - Google Patents

Manufacturing method of multilayer ceramic capacitor

Info

Publication number
JP3289646B2
JP3289646B2 JP12925497A JP12925497A JP3289646B2 JP 3289646 B2 JP3289646 B2 JP 3289646B2 JP 12925497 A JP12925497 A JP 12925497A JP 12925497 A JP12925497 A JP 12925497A JP 3289646 B2 JP3289646 B2 JP 3289646B2
Authority
JP
Japan
Prior art keywords
raw material
calcined
green sheet
particle size
multilayer ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12925497A
Other languages
Japanese (ja)
Other versions
JPH10321456A (en
Inventor
渡 倉橋
和博 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12925497A priority Critical patent/JP3289646B2/en
Publication of JPH10321456A publication Critical patent/JPH10321456A/en
Application granted granted Critical
Publication of JP3289646B2 publication Critical patent/JP3289646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層セラミックコン
デンサの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】以下に積層セラミックコンデンサ(以
下、チップコンと称する)の製造方法を説明する。
2. Description of the Related Art A method of manufacturing a multilayer ceramic capacitor (hereinafter referred to as a chip capacitor) will be described below.

【0003】図4に示すごとくグリーンシート3にはパ
ラジュウムを主成分とする内部電極4が設けられ、5が
切断位置となっている。
As shown in FIG. 4, an internal electrode 4 containing palladium as a main component is provided on a green sheet 3, and 5 is a cutting position.

【0004】図5はチップコンの長さ方向断面図で、誘
電体セラミック6とパラジュウムを主成分とする内部電
極7が交互に積層されその外層部に無効層8を設け、更
にその両端部に外部電極9が形成されている。
FIG. 5 is a longitudinal sectional view of a chip capacitor, in which dielectric ceramics 6 and internal electrodes 7 containing palladium as a main component are alternately laminated, an ineffective layer 8 is provided on an outer layer thereof, and external electrodes are provided on both ends thereof. An electrode 9 is formed.

【0005】チップコンは、混合済みセラミック原料を
1050〜1150℃程度の温度で仮焼し、ボールミル
等で1〜2μmの粒径に粉砕後、乾燥を行う。次に仮焼
済み原料にバインダー、溶剤及び可塑剤を加えてスラリ
ーとし、100μm以下のグリーンシート3を作成す
る。前記グリーンシート3面に内部電極4を印刷する。
内部電極4が印刷されたグリーンシート3を複数層積層
する、チップコン形状に切断位置5で裁断したとき、内
部電極7が異なる端面に交互に露出するようにずらして
所定枚数積層した後、400kg/cm2以上の圧力で加圧
圧着してグリーン積層体とする。次いでグリーン積層体
を所定のチップコン寸法に裁断し、1300℃以上の温
度で焼成を行う。その後焼結体端面の研磨を行い内部電
極7を露出させ、その端面に外部電極9を形成して完成
品としていた。
[0005] The chip condenser is obtained by calcining the mixed ceramic raw material at a temperature of about 1050 to 1150 ° C, pulverizing the mixed ceramic raw material to a particle size of 1 to 2 µm by a ball mill or the like, and then drying. Next, a binder, a solvent and a plasticizer are added to the calcined raw material to form a slurry, and a green sheet 3 of 100 μm or less is formed. An internal electrode 4 is printed on the surface of the green sheet 3.
When a plurality of green sheets 3 on which the internal electrodes 4 are printed are laminated, and cut at a cutting position 5 in a chip-con shape, a predetermined number of the internal electrodes 7 are displaced so as to be alternately exposed to different end faces, and then laminated at 400 kg / A green laminate is formed by pressure bonding at a pressure of not less than cm 2 . Next, the green laminate is cut into a predetermined chip size and fired at a temperature of 1300 ° C. or more. Thereafter, the end face of the sintered body was polished to expose the internal electrode 7, and an external electrode 9 was formed on the end face to obtain a finished product.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の製造方法では、グリーンシート3の積層数が多い場合
や、薄い場合に、チップコンの焼成過程で内部電極7の
熱膨脹収縮挙動により、焼結後のチップコンの内部電極
7と誘電体セラミック6の間に内部構造欠陥である層間
剥離(以下、デラミネーションと称する)が発生すると
いう問題を有していた。
However, in the above-mentioned conventional manufacturing method, when the number of laminated green sheets 3 is large or thin, the thermal expansion and contraction behavior of the internal electrodes 7 in the firing process of the chip capacitor causes the after-sintering. There was a problem that delamination (hereinafter referred to as delamination), which is an internal structural defect, occurs between the internal electrode 7 of the chip capacitor and the dielectric ceramic 6.

【0007】本発明は、前記従来の問題点を解決するも
ので、焼成過程における内部電極7の熱膨脹収縮挙動を
緩和させるチップコンの製造方法を提供することを目的
とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing a chip-con which alleviates the thermal expansion and contraction behavior of the internal electrode 7 during the firing process.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明は、グリーンシート層を形成するためのセラミ
ック原料は、仮焼済み原料が90〜50%と、残り10
〜50%が未仮焼の原料(以下、生原料と称する)とか
らなりかつ平均粒径が0.9〜2.0μmの範囲である
混合原料としたものを用いることにより、チップコンの
焼結過程における内部電極の熱膨脹収縮挙動をグリーン
シート層の焼成収縮挙動で緩和させるものである。
According to the present invention, there is provided a ceramic material for forming a green sheet layer comprising 90 to 50% of calcined material and 10% remaining.
50% is not yet calcination of raw materials (hereinafter referred to as raw materials) Toka
And the average particle size is in the range of 0.9 to 2.0 μm
By using the mixed raw material , the thermal expansion and contraction behavior of the internal electrode during the sintering process of the chipcon is reduced by the firing and contraction behavior of the green sheet layer.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、グリーンシートと内部電極を複数層交互に積層した
チップコンの製造方法において、内部電極層はパラジュ
ウムを主成分とする材料を用いて形成し、グリーンシー
ト層はセラミック原料として90〜50%の仮焼原料と
残り10〜50%の未仮焼の原料とからなりかつ平均粒
径が0.9〜2.0μmの範囲である混合原料を用いて
形成することを特徴とする。グリーンシート層を形成す
るためのセラミック原料を仮焼原料90〜50%と、残
り10〜50%の生原料とによりなる混合原料を用いる
ことにより、添加した生原料がチップコンの焼結初期の
過程において発生する内部電極の熱膨脹挙動を吸収し、
焼結後期の過程での内部電極の収縮と、ほぼ同時期に生
原料の焼結収縮が始まり、内部電極と同じように収縮す
るため、これら内部電極の熱膨脹収縮挙動を吸収緩和し
デラミネーションの発生を防止できるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a method for manufacturing a chip capacitor in which a plurality of green sheets and internal electrodes are alternately laminated, wherein the internal electrode
Green material.
The layer is composed of 90-50% calcined raw material as ceramic raw material.
The remaining 10-50% of uncalcined raw materials and average grain
Using a mixed raw material having a diameter in the range of 0.9 to 2.0 μm
It is characterized by forming. As a ceramic raw material for forming a green sheet layer, a mixed raw material including a calcined raw material of 90 to 50% and a raw material of the remaining 10 to 50% is used.
By doing so , the added raw material absorbs the thermal expansion behavior of the internal electrode generated in the early stage of sintering of the chip con,
The sintering shrinkage of the raw material starts almost at the same time as the shrinkage of the internal electrodes in the later stage of sintering, and shrinks in the same way as the internal electrodes. The occurrence can be prevented.

【0010】また、混合原料の平均粒径を0.9〜2.
0μmの範囲とすることにより、デラミネーション及び
短絡不良の発生を防止することができる。これは内部電
極材料として用いるパラジュウムの焼結過程の熱膨脹収
縮とグリーンシート層の焼結収縮の大きさを、ほぼ同じ
大きさにするための必要な粒径を定めたものである。
体的には、混合原料の平均粒径が0.9μmより小さい
場合は、グリーンシートの密度が大きくグリーンシート
の焼結収縮が小さいため内部電極のパラジュウムとの焼
結収縮率の差違が大きくなり、その結果デラミネーショ
ンを発生させる。また混合原料の平均粒径が2.0μm
より大きい場合は、グリーンシートの密度が小さく不均
一でグリーンシートの焼結収縮が大きくなるとともに焼
結収縮が不均一となるため内部電極のパラジュウムとの
焼結収縮率の差違が大きくなり、その結果誘電体セラミ
ック内部に亀裂が生じデラミネーション、特に短絡不良
が発生しやすくなる。
The mixed raw material has an average particle size of 0.9 to 2.0.
By setting the range to 0 μm , delamination and
The occurrence of short-circuit failure can be prevented . This defines the particle size required to make the thermal expansion and contraction of the palladium used as the internal electrode material in the sintering process and the sintering and contraction of the green sheet layer substantially the same. Ingredient
Physically, the average particle size of the mixed raw material is smaller than 0.9 μm
If the green sheet density is large, the green sheet
Of the internal electrode with palladium
The difference in the shrinkage rate increases, and as a result
Generate The average particle size of the mixed raw material is 2.0 μm
If it is larger, the density of the green sheet is small and uneven.
First, the sintering shrinkage of the green sheet increases and
Since the contraction and shrinkage become non-uniform,
The difference in the sintering shrinkage ratio increases, and as a result, the dielectric ceramic
Cracks inside the rack and delamination, especially short-circuit failure
Is more likely to occur.

【0011】以下、本発明の一実施形態について説明す
る。 (実施の形態1)図1はグリーンシート層を形成するた
めの原料として仮焼原料と生原料とを混合した粉体の分
散状態を示すモデル図、図2は仮焼原料のみを使用した
粉体の分散状態を示すモデル図、図3は生原料のみを使
用した粉体の分散状態を示すモデル図である。図1〜図
3において、1は仮焼原料、2は生原料である。
An embodiment of the present invention will be described below. (Embodiment 1) FIG. 1 is a model diagram showing a dispersion state of a powder obtained by mixing a calcined raw material and a raw material as raw materials for forming a green sheet layer, and FIG. 2 is a powder diagram using only a calcined raw material. FIG. 3 is a model diagram showing a dispersion state of powder using only raw materials. 1 to 3, 1 is a calcined raw material and 2 is a raw material.

【0012】出発原料として、炭酸バリウム、酸化チタ
ン、酸化ネオジウム及び酸化サマリウムを各々所定量秤
量、混合、乾燥を行い生原料2とした。次に生原料2を
1100℃の温度で2時間仮焼を行った。その後この仮
焼原料1に生原料2を0〜70%の範囲で所定量添加、
混合し、仮焼原料1と生原料2とを均一に混合するとと
もに、粒径の大きな仮焼原料1の粉砕を行う。この時仮
焼原料1の平均粒径は4.5μmであり、生原料2の平
均粒径は0.7μmであった。これを平均粒径が1.0
〜1.3μmの範囲になるように混合粉砕時間を調整し
た。前記混合原料を脱水、乾燥した後、バインダーとし
てポリビニルブチラール樹脂、溶剤として酢酸ブチル
を、可塑剤としてジブチルフタレートを添加して、ボー
ルミルで湿式混合してスラリーを作成する。前記スラリ
ーをロールコーター工法を用い、厚さ25μmのグリー
ンシート3を作成した後、160×140mmの寸法に切
断する。次にグリーンシート3面に図4に示すパターン
の幅0.55mm、長さ3.2mm、隣合う内部電極4との
間隔、幅方向0.38mm、長さ方向0.52mmの内部電
極4を印刷する。次にグリーンシート3を一枚重ね圧着
し、前記印刷用のパターンを幅方向に0.93mmずらし
てパラジュウムを主成分とする内部電極4を印刷する。
この操作を40回繰返した後、さらにその上、下にグリ
ーンシート3を10枚無効層8として重ね400kg/cm
2の圧力で、加圧圧着して積層体を形成した。次に前記
積層体を切断位置5で、長さ1.86mm、幅0.93mm
のチップコン形状に裁断後、ジルコニア粉を散布した高
純度アルミナサヤに入れ、空気中において1300℃の
温度で2時間焼成した。得られたチップコン焼結体を各
々50個エポキシ樹脂で固め研磨し、チップコンの内部
構造欠陥の発生数を調査し、その結果を(表1)に示し
た。更にチップコン焼結体各1000個の両端面を研磨
し、その両端面に銀ペーストを塗布した後、800℃の
温度で焼付けて静電容量を測定し、内部電極7間の短絡
不良の発生数も併せて(表1)に示した。
As starting materials, barium carbonate, titanium oxide, neodymium oxide, and samarium oxide were each weighed, mixed, and dried to obtain raw material 2. Next, the raw material 2 was calcined at a temperature of 1100 ° C. for 2 hours. Thereafter, a predetermined amount of raw material 2 is added to the calcined raw material 1 in a range of 0 to 70%.
While mixing, the calcined raw material 1 and the raw material 2 are uniformly mixed, and the calcined raw material 1 having a large particle size is ground. At this time, the average particle size of the calcined raw material 1 was 4.5 μm, and the average particle size of the raw material 2 was 0.7 μm. The average particle size is 1.0
The mixing and pulverization time was adjusted so as to be in the range of ~ 1.3 µm. After dewatering and drying the mixed raw material, polyvinyl butyral resin as a binder, butyl acetate as a solvent, and dibutyl phthalate as a plasticizer are added, and wet-mixed with a ball mill to prepare a slurry. The slurry is formed into a green sheet 3 having a thickness of 25 μm by a roll coater method, and then cut into a size of 160 × 140 mm. Next, an internal electrode 4 having a width of 0.55 mm, a length of 3.2 mm, an interval between adjacent internal electrodes 4, a width of 0.38 mm and a length of 0.52 mm in the pattern shown in FIG. Print. Next, one green sheet 3 is stacked and pressed, and the printing pattern is shifted by 0.93 mm in the width direction to print the internal electrode 4 mainly containing palladium.
After this operation was repeated 40 times, 10 green sheets 3 were further stacked as an invalid layer 8 on and under the green sheets 3 to 400 kg / cm.
The laminate was formed by pressure bonding under a pressure of 2 . Next, the laminate was cut at a cutting position 5 at a length of 1.86 mm and a width of 0.93 mm.
After cutting into a chip-con shape, it was put into a high-purity alumina sheath to which zirconia powder was sprayed, and calcined in air at a temperature of 1300 ° C. for 2 hours. Each of the 50 chip-con sintered bodies was hardened and polished with an epoxy resin, and the number of occurrences of internal structural defects of the chip-con was investigated. The results are shown in (Table 1). Further, both ends of each 1000 chip-con sinters were polished, silver paste was applied to the both ends, and baked at a temperature of 800 ° C. to measure the capacitance. The results are also shown in (Table 1).

【0013】[0013]

【表1】 [Table 1]

【0014】(表1)から明らかなように、仮焼原料1
を90〜50%と、残り10〜50%を生原料2を添加
混合した原料を使用したチップコンの焼結体は、内部構
造欠陥であるデラミネーションの発生と、内部電極7間
の短絡不良の発生もなかった。これに対し、仮焼原料1
が95%より多い場合、または40%より少ない場合は
デラミネーション、および短絡不良が発生していること
が分かる。これは仮焼原料1と生原料2を適正量比率混
ぜ合わせた原料から得られたグリーンシート3を用いた
誘電体セラミック6の焼結収縮挙動が、内部電極7とし
て使用したパラジュウムの焼成過程の熱膨脹収縮挙動を
吸収緩和させた結果デラミネーションの発生を防止した
ものと思われる。これに対し仮焼原料が90%より多い
場合、誘電体セラミック6が内部電極7のパラジュウム
の焼結初期過程の膨脹を吸収することができず、誘電体
セラミック6面から剥離し、焼結後期過程の内部電極7
の収縮でデラミネーションが発生したものと思われる。
また生原料2が50%より多い場合、焼結後期過程の内
部電極7のパラジュウムの収縮より誘電体セラミック6
の焼結収縮が大きいためデラミネーションおよび短絡不
良が発生したものと思われる。
As is clear from Table 1, calcined raw material 1
Of a chip-con using a raw material obtained by adding and mixing the raw material 2 with the remaining raw material 2 of 90 to 50%, the occurrence of delamination, which is an internal structural defect, and the short-circuit failure between the internal electrodes 7 There was no outbreak. In contrast, the calcined raw material 1
Is greater than 95% or less than 40%, it can be seen that delamination and short-circuit failure have occurred. This is because the sintering shrinkage behavior of the dielectric ceramic 6 using the green sheet 3 obtained from the raw material obtained by mixing the calcined raw material 1 and the raw raw material 2 in an appropriate amount ratio depends on the firing process of the palladium used as the internal electrode 7. It is considered that the occurrence of delamination was prevented by absorbing and relaxing the thermal expansion and contraction behavior. On the other hand, when the calcined raw material is more than 90%, the dielectric ceramic 6 cannot absorb the expansion of the internal electrode 7 in the initial sintering process of the palladium, and peels off from the surface of the dielectric ceramic 6 to cause the latter stage of sintering. Process internal electrode 7
It is considered that delamination occurred due to the shrinkage of.
When the raw material 2 is more than 50%, the dielectric ceramic 6
It is presumed that delamination and short-circuit failure occurred due to large sintering shrinkage.

【0015】(実施の形態2)実施の形態1と同様に、
仮焼原料1に対し生原料2を0〜70%の範囲で所定量
秤量、添加した後、粉砕混合して、セラミック原料の平
均粒径が0.8〜2.2μmの大きさになるように粉砕
時間を各々調整して得た誘電体セラミック材料を、夫々
実施形態1と同様に処理してチップコンの焼結体及び完
成品を作製した。その焼結体及び完成品を、実施形態1
と同様に評価し、その結果を(表2)に示した。
(Embodiment 2) As in Embodiment 1,
After weighing and adding a predetermined amount of the raw material 2 to the calcined raw material 1 in a range of 0 to 70%, the raw material 2 is pulverized and mixed so that the average particle diameter of the ceramic raw material becomes 0.8 to 2.2 μm. The dielectric ceramic materials obtained by adjusting the pulverization times were processed in the same manner as in the first embodiment to produce a sintered body of a chip capacitor and a finished product. The sintered body and the finished product are described in Embodiment 1.
Was evaluated in the same manner as described above, and the results are shown in (Table 2).

【0016】[0016]

【表2】 [Table 2]

【0017】(表2)から明らかなように、仮焼原料1
が50〜90%の範囲では何れも、混合原料の平均粒径
が0.9〜2.0μmの大きさにおいてデラミネーショ
ン及び短絡不良の発生はない。これに対し仮焼原料1が
90%より多い場合、または50%より少ない場合は
原料の平均粒径に関係なく何れもデラミネーションま
たは短絡不良が発生している。また仮焼原料1が50〜
90%の範囲でも平均粒径が0.9μmより小さい場
合、または2.0μmより大きい場合はデラミネーショ
ン及び短絡不良が発生していることが分かる。これは
原料の平均粒径が0.9μmより小さい場合は仮焼
原料1の粉砕後の粒径と生原料2の粒径がほぼ等しく小
さいため、グリーンシートの密度が大きくグリーンシー
トの焼結収縮が小さくなり、内部電極7のパラジュウム
との焼結収縮率の差違が大きくなり、その結果誘電体セ
ラミック6と内部電極7との間でデラミネーションを発
生させるものと思われる。また混合原料の平均粒径が
2.0μmより大きい場合は、仮焼原料1と生原料2の
粒径差が大きく仮焼原料1の粉砕後の粒径が大きいた
め、グリーンシートの密度が小さくグリーンシートの焼
結収縮が大きくなるとともに誘電体セラミック6内部で
焼結収縮が不均一となり、その結果誘電体セラミック6
内部に亀裂が生じデラミネーション、特に短絡不良が発
生しやすくなるものと思われる。以上のことから仮焼原
料1と生原料2を混合粉砕後の平均粒径を0.9〜2.
0μmの範囲に制御することでデラミネーション及び短
絡不良の発生を防止することができるものである。
As is clear from (Table 2), the calcined raw material 1
In the range of 50 to 90%, there is no occurrence of delamination and short-circuit failure when the mixed raw material has an average particle size of 0.9 to 2.0 μm. If contrast calcined material 1 is more than 90%, or less than 50% mixed
Regardless of the average particle size of the mixed raw material, delamination or short-circuit failure has occurred in any case. The calcined raw material 1 is 50 ~
If the average particle size is smaller than 0.9 μm or larger than 2.0 μm even in the range of 90%, it can be seen that delamination and short-circuit failure have occurred. This is mixed
When the average particle size of the interleaf material is 0.9μm less than the calcined material 1 after milling of grain size and the raw material 2 particle size is substantially equal ku Small
Therefore , the green sheet density is
DOO sintering shrinkage is reduced, palladium internal electrodes 7
It is considered that the difference in the sintering shrinkage ratio between the dielectric ceramic 6 and the internal electrode 7 is large , resulting in delamination between the dielectric ceramic 6 and the internal electrode 7. When the average particle size of the mixed raw material is larger than 2.0 μm, the particle size difference between the calcined raw material 1 and the raw raw material 2 is large , and the particle size of the calcined raw material 1 after pulverization is large.
The green sheet density is low
As the shrinkage increases , the sintering shrinkage becomes uneven inside the dielectric ceramic 6, and as a result, the dielectric ceramic 6
It is thought that cracks occur inside and delamination, particularly short-circuit failure, is likely to occur. From the above, the average particle size after mixing and grinding the calcined raw material 1 and the raw material 2 is 0.9 to 2.
By controlling the thickness within the range of 0 μm, occurrence of delamination and short-circuit failure can be prevented.

【0018】[0018]

【発明の効果】以上のように、本発明の仮焼原料と生原
料を適正量混合し、粉砕粒径を制御した原料を用いた積
層セラミックコンデンサは、デラミネーション及び短絡
不良の発生が抑制されることとなる。
As described above, the multilayer ceramic capacitor of the present invention in which the calcined raw material and the raw material are mixed in an appropriate amount and the pulverized particle size is controlled, the occurrence of delamination and short circuit is suppressed. The Rukoto.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における仮焼原料と生原料
とを混合させた状態を示すモデル図
FIG. 1 is a model diagram showing a state in which a calcined raw material and a raw material are mixed according to an embodiment of the present invention.

【図2】仮焼原料のみを使用したモデル図FIG. 2 is a model diagram using only calcined raw materials.

【図3】生原料のみを使用したモデル図FIG. 3 is a model diagram using only raw materials.

【図4】内部電極の印刷状態を示す平面図FIG. 4 is a plan view showing a printed state of an internal electrode.

【図5】積層セラミックコンデンサの縦断面図FIG. 5 is a longitudinal sectional view of the multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 仮焼原料 2 生原料 3 グリーンシート 4 内部電極 5 切断位置 6 誘電体セラミック 7 内部電極 8 無効層 9 外部電極 Reference Signs List 1 Calcination raw material 2 Raw material 3 Green sheet 4 Internal electrode 5 Cutting position 6 Dielectric ceramic 7 Internal electrode 8 Invalid layer 9 External electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01G 4/00 - 4/42 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01G 4/00-4/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 グリーンシート層と内部電極層を複数層
交互に積層してなる積層体を高温で焼成し、その端部へ
外部電極を形成する積層セラミックコンデンサの製造方
法において、前記内部電極層はパラジュウムを主成分と
する材料を用いて形成し、前記グリーンシート層はセラ
ミック原料として90〜50%の仮焼原料と残り10〜
50%の未仮焼の原料とからなりかつ平均粒径が0.9
〜2.0μmの範囲である混合原料を用いて形成するこ
とを特徴とする積層セラミックコンデンサの製造方法。
1. A method for manufacturing a multilayer ceramic capacitor, comprising : sintering a laminate formed by alternately laminating a plurality of green sheet layers and internal electrode layers at a high temperature to form an external electrode at an end thereof; Is mainly composed of palladium
Material is formed by using a for the green sheet layer Sera
90-50% of the calcined raw material and the remaining 10-
50% uncalcined raw material having an average particle size of 0.9
A method for manufacturing a multilayer ceramic capacitor, wherein the multilayer ceramic capacitor is formed by using a mixed raw material having a range of about 2.0 μm .
JP12925497A 1997-05-20 1997-05-20 Manufacturing method of multilayer ceramic capacitor Expired - Lifetime JP3289646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12925497A JP3289646B2 (en) 1997-05-20 1997-05-20 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12925497A JP3289646B2 (en) 1997-05-20 1997-05-20 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH10321456A JPH10321456A (en) 1998-12-04
JP3289646B2 true JP3289646B2 (en) 2002-06-10

Family

ID=15005031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12925497A Expired - Lifetime JP3289646B2 (en) 1997-05-20 1997-05-20 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3289646B2 (en)

Also Published As

Publication number Publication date
JPH10321456A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
US10636568B2 (en) Multilayer ceramic electronic device with dielectric layers and internal electrode layers
US4735666A (en) Method of producing ceramics
JP7241472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US6074970A (en) Dielectric ceramic composition, multilayer ceramic capacitor and process of producing same
JP2005174974A (en) Manufacturing method for laminated piezoelectric body
EP1415960B1 (en) Method for making raw dielectric ceramic powder, dielectric ceramic and monolithic ceramic capacitor
JP7197985B2 (en) Ceramic capacitor and manufacturing method thereof
JPH0529771A (en) Ceramic circuit substrate and its manufacture
JP3289646B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3241054B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JP3302594B2 (en) Multilayer electronic component and method of manufacturing the same
JP2003133164A (en) Laminated ceramic capacitor and its manufacturing method
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JP4385726B2 (en) Conductive paste and method for producing multilayer ceramic capacitor using the same
JP4601438B2 (en) Green sheet manufacturing method
JP2000277368A (en) Multilayer ceramic capacitor
KR100951317B1 (en) Manufacturing method of dielectric material and Multi Layered ceramic condenser comprising dielectric material manufactured thereby
JP2007053287A (en) Laminated ceramic capacitor and its manufacturing method
JP2000216042A (en) Manufacture of laminated ceramic capacitor
JP2000277367A (en) Multilayer ceramic capacitor
JP2019067827A (en) Laminate electronic component
JPH04300159A (en) Manufacture of laminated ceramic electronic part
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JPH05243081A (en) Manufacture of laminated ceramic capacitor
JPS622612A (en) Laminate type ceramic capacitor element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

EXPY Cancellation because of completion of term