JP3287684B2 - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JP3287684B2
JP3287684B2 JP00194894A JP194894A JP3287684B2 JP 3287684 B2 JP3287684 B2 JP 3287684B2 JP 00194894 A JP00194894 A JP 00194894A JP 194894 A JP194894 A JP 194894A JP 3287684 B2 JP3287684 B2 JP 3287684B2
Authority
JP
Japan
Prior art keywords
solvent
coal
catalyst
iron ore
coal liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00194894A
Other languages
Japanese (ja)
Other versions
JPH07207274A (en
Inventor
隆雄 兼子
小山  徹
和治 田沢
英一郎 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Original Assignee
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Mitsubishi Chemical Corp, Idemitsu Kosan Co Ltd, Kobe Steel Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP00194894A priority Critical patent/JP3287684B2/en
Priority to AU81710/94A priority patent/AU673784B2/en
Publication of JPH07207274A publication Critical patent/JPH07207274A/en
Priority to AU45803/96A priority patent/AU681983B2/en
Priority to AU45804/96A priority patent/AU4580496A/en
Priority to AU58383/96A priority patent/AU690029B2/en
Application granted granted Critical
Publication of JP3287684B2 publication Critical patent/JP3287684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石炭の液化方法に関
し、詳細には、触媒の存在下で石炭を効率良く水添し、
水添生成物から蒸留等の分離操作により軽質油、中質
油、重質油等の如き油分を分離して得る石炭の液化方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for liquefying coal, and more particularly to a method for efficiently hydrogenating coal in the presence of a catalyst.
The present invention relates to a method for liquefying coal obtained by separating oil components such as light oil, medium oil, and heavy oil from a hydrogenated product by a separation operation such as distillation.

【0002】[0002]

【従来の技術】近年の資源エネルギー事情から石油に替
わる液体燃料の開発が強く望まれている。特に、石炭は
その埋蔵量が豊富なことから、石炭を効率良く液化し液
体燃料を得る技術の確立が重要な課題となっている。こ
のため従来より石炭の液化方法が種々提案されている
が、代表的な石炭の液化方法としては、乾燥及び粉砕さ
れた石炭を溶剤と混合してスラリー状混合体とし、高温
高圧下で水素ガスを添加して水添反応を起こさせ、液化
させるものである。
2. Description of the Related Art In recent years, there has been a strong demand for the development of liquid fuels that can replace petroleum due to resource and energy situations. In particular, since coal has abundant reserves, it is an important issue to establish a technology to efficiently liquefy coal and obtain liquid fuel. For this reason, various coal liquefaction methods have been proposed in the past, but a typical coal liquefaction method is to mix dried and pulverized coal with a solvent to form a slurry-like mixture, and to form a hydrogen gas under high temperature and pressure. Is added to cause a hydrogenation reaction to liquefy.

【0003】かかる石炭の水添反応(液化反応)を起こ
させる際、原料石炭の種類によっては触媒を添加するこ
となく、石炭中に含有される触媒成分を利用することも
あるが、一般には水添反応の効率を高めるために前記ス
ラリー状混合体に触媒が添加され、そして水添反応に供
され、触媒及び溶剤の共存下で石炭を水添する方法が採
用される。
[0003] When a hydrogenation reaction (liquefaction reaction) of such coal is caused, a catalyst component contained in coal may be used without adding a catalyst depending on the kind of raw material coal. In order to increase the efficiency of the addition reaction, a method is used in which a catalyst is added to the slurry-like mixture and the mixture is subjected to a hydrogenation reaction, and the coal is hydrogenated in the presence of the catalyst and the solvent.

【0004】この水添反応の効率を高めるための触媒、
即ち、石炭液化反応促進用触媒(以降、石炭液化用触媒
という)としては、従来から種々のモリブデン系の触媒
あるいは塩化亜鉛、塩化錫もしくは硫化鉄、硫酸鉄、酸
化鉄、赤泥、鉄鉱石等の触媒が知られている。しかしな
がら、これら従来の触媒はいづれも、石炭液化用触媒と
して必要な経済性及び活性に優れる等の条件を充たし得
ず、経済性又は活性が充分でない等の欠点がある。即
ち、石炭液化用触媒としては、活性である(水添反応の
効率を高める)ことが必要である他、石炭液化の経済上
の観点から安価で入手し易いこと、又、石炭液化運転に
トラブルを生じさせないこと等が必要であるが、上記従
来の触媒は高価であったり、活性が充分でなかったり、
或いは石炭液化装置に腐食損傷を生じさせる等の問題点
がある。
A catalyst for improving the efficiency of this hydrogenation reaction,
That is, as a catalyst for accelerating coal liquefaction (hereinafter referred to as a catalyst for coal liquefaction), conventionally, various molybdenum-based catalysts, zinc chloride, tin chloride or iron sulfide, iron sulfate, iron oxide, red mud, iron ore, etc. Are known. However, none of these conventional catalysts can satisfy the conditions such as excellent economy and activity required as a catalyst for coal liquefaction, and have disadvantages such as insufficient economy or activity. In other words, the catalyst for coal liquefaction needs to be active (enhancing the efficiency of the hydrogenation reaction), be cheap and easy to obtain from the economical point of view of coal liquefaction, and have problems in coal liquefaction operation. It is necessary that the above-mentioned conventional catalysts are expensive, have insufficient activity,
Alternatively, there are problems such as causing corrosion damage to the coal liquefaction apparatus.

【0005】かかる問題点を触媒別に挙げると、モリブ
デン系の触媒では高価であると共に資源的な問題を有し
ており、塩化亜鉛等の塩化物系の触媒では装置の腐食が
起こり易いという問題点があり、又、赤泥、鉄鉱石等の
触媒では安価であるが、活性が充分でないという問題点
がある。
[0005] When these problems are classified by catalyst, molybdenum-based catalysts are expensive and have resource problems, and chloride-based catalysts such as zinc chloride are liable to cause corrosion of the apparatus. In addition, catalysts such as red mud and iron ore are inexpensive, but have a problem of insufficient activity.

【0006】これら触媒の中、鉄鉱石は活性が充分でな
いものの、特に安価で入手し易いという利点があること
から、石炭液化用触媒として用いられる場合が多い。こ
の場合、触媒の活性を高めるために鉄鉱石を機械的に粉
砕して粒子径を小さくしたもの(粉砕鉄鉱石触媒)が石
炭液化用触媒として前記スラリー状混合体に添加され、
そして水添反応に供され、粉砕鉄鉱石触媒及び溶剤の共
存下で石炭を水添する方法が採用される。これは、粒子
径の小さい粉砕鉄鉱石触媒を用いることにより、前記ス
ラリー状混合体中において共存する溶剤中での粉砕鉄鉱
石触媒の分散性を高めて石炭との接触効率を高め、それ
により粉砕鉄鉱石触媒の活性を高めようとすることに狙
いがある。
[0006] Among these catalysts, iron ore has insufficient activity, but has an advantage that it is particularly inexpensive and easily available, so that it is often used as a catalyst for coal liquefaction. In this case, iron ore mechanically pulverized to reduce the particle size in order to enhance the activity of the catalyst (crushed iron ore catalyst) is added to the slurry-like mixture as a coal liquefaction catalyst,
Then, it is subjected to a hydrogenation reaction, and a method of hydrogenating coal in the presence of a crushed iron ore catalyst and a solvent is employed. This is because, by using a pulverized iron ore catalyst having a small particle size, the dispersibility of the pulverized iron ore catalyst in a solvent coexisting in the slurry-like mixture is increased, thereby increasing the contact efficiency with coal, and thereby the pulverization. The aim is to increase the activity of iron ore catalysts.

【0007】ここで、鉄鉱石の機械的粉砕は、ボールミ
ルやタワーミル等の粉砕機を用いて空気中或いは不活性
ガス中で粉砕する乾式粉砕法、又は、アルコールや石油
系の一般溶剤の存在下で粉砕する湿式粉砕法により行わ
れる。
The iron ore is mechanically pulverized by a dry pulverization method of pulverizing in an air or an inert gas using a pulverizer such as a ball mill or a tower mill, or in the presence of an alcohol or a petroleum-based general solvent. This is performed by a wet pulverization method in which pulverization is performed.

【0008】[0008]

【発明が解決しようとする課題】ところが、石炭液化用
触媒として前記従来の粉砕鉄鉱石触媒を用いる石炭の液
化方法においては、溶剤中で粉砕鉄鉱石触媒の著しい凝
集が起こり、分散が不充分となって石炭との接触効率が
低下するため、粉砕鉄鉱石触媒の活性が低下し、その触
媒効果が充分に発揮されず、従って液化反応効率が低下
し、引いては油分の収率が低くて不充分であるという問
題点がある。
However, in the coal liquefaction method using the above-mentioned conventional pulverized iron ore catalyst as a coal liquefaction catalyst, remarkable agglomeration of the pulverized iron ore catalyst occurs in a solvent, and the dispersion is insufficient. As the contact efficiency with coal decreases, the activity of the crushed iron ore catalyst decreases, and its catalytic effect is not sufficiently exhibited. Therefore, the liquefaction reaction efficiency decreases, and the yield of oil component is low. There is a problem that it is insufficient.

【0009】本発明はこの様な事情に着目してなされた
ものであって、その目的は、石炭液化用触媒として前記
従来の粉砕鉄鉱石触媒を用いる石炭の液化方法が有する
問題点を解決し、溶剤中での触媒の分散性に優れ、触媒
と石炭との接触効率を高めることができ、それにより触
媒活性が高められて触媒効果が充分に発揮され、従って
液化反応効率を向上し得、引いては油分の収率を向上し
得る石炭の液化方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and has as its object to solve the problems of the conventional coal liquefaction method using the above-mentioned crushed iron ore catalyst as a coal liquefaction catalyst. Excellent in the dispersibility of the catalyst in the solvent, the contact efficiency between the catalyst and the coal can be increased, whereby the catalytic activity is enhanced and the catalytic effect is sufficiently exhibited, and therefore the liquefaction reaction efficiency can be improved, It is an object of the present invention to provide a coal liquefaction method which can improve the yield of oil.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る石炭の液化方法は次のような構成と
している。即ち、請求項1記載の石炭の液化方法は、粉
砕された石炭を溶剤及び触媒の共存下で水添する水添工
程を含む石炭の液化方法において、前記触媒として石炭
液化循環溶剤中で機械的に粉砕された平均粒子径:10μ
m 以下の粉砕鉄鉱石を用いることを特徴とする石炭の液
化方法である。
In order to achieve the above object, a method for liquefying coal according to the present invention has the following configuration. That is, the method for liquefying coal according to claim 1 is a method for liquefying coal including a hydrogenation step of hydrogenating pulverized coal in the presence of a solvent and a catalyst. Average particle size: 10μ
A coal liquefaction method characterized by using ground iron ore of m or less.

【0011】請求項2記載の石炭の液化方法は、粉砕さ
れた石炭を溶剤及び触媒の共存下で水添する水添工程、
該水添工程により得られる水添生成物から分離操作によ
り溶剤を分離して得る溶剤分離工程、該溶剤分離工程に
より得られる溶剤の一部を粉砕機に導入し、該溶剤中で
鉄鉱石を機械的に粉砕して平均粒子径:10μm 以下の粉
砕鉄鉱石にする鉄鉱石粉砕工程を含み、この粉砕鉄鉱石
を前記触媒として用いることを特徴とする石炭の液化方
法である。
The method for liquefying coal according to claim 2 comprises a hydrogenation step of hydrogenating the pulverized coal in the presence of a solvent and a catalyst.
A solvent separation step in which a solvent is separated by a separation operation from a hydrogenation product obtained in the hydrogenation step, a part of the solvent obtained in the solvent separation step is introduced into a grinder, and iron ore is removed in the solvent. An coal ore liquefaction method comprising mechanically pulverizing an iron ore into a pulverized iron ore having an average particle diameter of 10 μm or less, and using the pulverized iron ore as the catalyst.

【0012】請求項3記載の石炭の液化方法は、石炭、
溶剤及び触媒が共存するスラリー状混合体を得るスラリ
ー調製工程、該スラリー状混合体を加熱し石炭を水添す
る水添工程、該水添工程により得られる水添生成物から
分離操作により油分を分離して得る油分分離工程、該油
分分離工程により得られる油分の一部である溶剤の一部
を前記スラリー調製工程に循環供給する溶剤循環供給工
程、該油分分離工程により得られる溶剤の一部を粉砕機
に導入し、該溶剤中で鉄鉱石を機械的に粉砕して平均粒
子径:10μm 以下の粉砕鉄鉱石にする鉄鉱石粉砕工程を
含み、この粉砕鉄鉱石を前記触媒として用いることを特
徴とする石炭の液化方法である。
[0012] The method for liquefying coal according to claim 3 is characterized in that:
A slurry preparation step of obtaining a slurry mixture in which a solvent and a catalyst coexist, a hydrogenation step of heating the slurry mixture and hydrogenating coal, and separating an oil component from a hydrogenation product obtained in the hydrogenation step by a separation operation. An oil separation step obtained by separation, a solvent circulating supply step of circulating and supplying a part of the solvent that is a part of the oil obtained by the oil separation step to the slurry preparation step, and a part of the solvent obtained by the oil separation step Is introduced into a pulverizer, and the iron ore is mechanically pulverized in the solvent to obtain a pulverized iron ore having an average particle diameter of 10 μm or less. This is a characteristic coal liquefaction method.

【0013】又、請求項4記載の石炭の液化方法は、前
記触媒の量が、無水無灰分換算の石炭重量に対し、0.1
〜10wt%である請求項1、2又は3記載の石炭の液化方
法である。請求項5記載の石炭の液化方法は、前記粉砕
鉄鉱石の原料鉄鉱石が天然パイライト鉱石である請求項
1、2、3又は4記載の石炭の液化方法である。
Further, in the method for liquefying coal according to claim 4, the amount of the catalyst is 0.1% to the weight of coal in terms of anhydrous ashless content.
The method for liquefying coal according to claim 1, wherein the amount is from 10 to 10% by weight. The method for liquefying coal according to claim 5 is the method for liquefying coal according to claims 1, 2, 3 or 4, wherein the raw iron ore of the pulverized iron ore is a natural pyrite ore.

【0014】[0014]

【作用】本発明は、油分の収率を向上し得る石炭液化用
触媒を探索すべく研究をした結果、鉄鉱石を石炭液化循
環溶剤中で機械的に粉砕したものは溶剤中での分散性に
優れ、そのため触媒効果を充分に発揮し得、引いては油
分の収率を向上し得るという新規知見を得、この知見に
基づき完成されたものである。
The present invention has been studied to find a catalyst for coal liquefaction that can improve the yield of oil. As a result, iron ore that has been mechanically pulverized in a liquefied coal liquefaction solvent has low dispersibility in the solvent. The present invention has been newly completed based on this finding, which is excellent in that the catalyst effect can be sufficiently exhibited, and therefore, the yield of oil can be improved.

【0015】即ち、鉄鉱石を乾式粉砕法又はアルコール
や石油系の一般溶剤の存在下で粉砕する湿式粉砕法によ
って機械的に粉砕したもの(前記従来の粉砕鉄鉱石触
媒)を石炭液化用触媒として用いると、前述の如く、溶
剤中で触媒の著しい凝集が起こり、触媒の分散が不充分
となるため、石炭との接触効率が低下し、従って触媒効
果が充分に発揮されないが、これに対し、鉄鉱石を石炭
液化循環溶剤中で機械的に粉砕したもの(即ち、石炭液
化循環溶剤中で機械的に粉砕された粉砕鉄鉱石)を石炭
液化用触媒として用いると、溶剤中での触媒の凝集が起
こり難く、触媒の分散性に優れており、そのため触媒と
石炭との接触効率を高めることができ、従って触媒活性
が高められて触媒効果が充分に発揮され、その結果、液
化反応効率を向上し得、引いては油分の収率を向上し得
るという新規知見が得られた。
That is, iron ore mechanically pulverized by a dry pulverization method or a wet pulverization method in which pulverization is performed in the presence of an alcohol or a petroleum-based general solvent (the conventional pulverized iron ore catalyst) is used as a catalyst for coal liquefaction. When used, as described above, remarkable agglomeration of the catalyst occurs in the solvent, and the dispersion of the catalyst becomes insufficient, so that the contact efficiency with coal is reduced, and thus the catalytic effect is not sufficiently exhibited. When iron ore is mechanically pulverized in a coal liquefaction circulation solvent (that is, ground iron ore mechanically pulverized in a coal liquefaction circulation solvent) as a catalyst for coal liquefaction, coagulation of the catalyst in the solvent is caused. Is less likely to occur, and the catalyst dispersibility is excellent, so that the contact efficiency between the catalyst and the coal can be increased, and therefore the catalytic activity is enhanced and the catalytic effect is sufficiently exhibited, and as a result, the liquefaction reaction efficiency is improved. I , The pulling was obtained new findings that can improve the oil yield.

【0016】本発明に係る石炭の液化方法は、かかる知
見に基づきなされたものであり、粉砕された石炭を溶剤
及び触媒の共存下で水添する水添工程を含む石炭の液化
方法において、前記触媒として石炭液化循環溶剤中で機
械的に粉砕された平均粒子径:10μm 以下の粉砕鉄鉱石
を用いるようにしている(請求項1記載の石炭の液化方
法)。従って、溶剤中での触媒(粉砕鉄鉱石触媒)の分
散性に優れ、触媒と石炭との接触効率を高めることがで
き、それにより触媒活性が高められて触媒効果が充分に
発揮され、その結果、液化反応効率を向上し得、引いて
は油分の収率を向上し得るようになる。
The method for liquefying coal according to the present invention is based on the above findings. The method for liquefying coal includes the step of hydrogenating pulverized coal in the presence of a solvent and a catalyst. As the catalyst, a pulverized iron ore having an average particle size of 10 μm or less mechanically pulverized in a coal liquefaction circulation solvent is used (the method of liquefying coal according to claim 1). Therefore, the catalyst (pulverized iron ore catalyst) in the solvent is excellent in dispersibility, and the contact efficiency between the catalyst and the coal can be increased, whereby the catalytic activity is enhanced and the catalytic effect is sufficiently exerted. Thus, the liquefaction reaction efficiency can be improved, and the yield of oil can be improved.

【0017】このとき、石炭液化循環溶剤中で機械的に
粉砕された粉砕鉄鉱石(粉砕鉄鉱石触媒)の平均粒子径
を10μm 以下としているのは、10μm 超にすると、石炭
液化用触媒として用いたときに、分散性に優れていて
も、触媒の実効表面積(触媒重量当りの触媒粒子の外表
面積)が小さいために触媒と石炭との接触効率が低く、
触媒活性が不充分となるからである。このような触媒の
実効表面積を増大させ、触媒活性を高めるためには、平
均粒子径は10μm 以下で小さいほどよく、このような点
から5μm 以下にすることが望ましく、特には1μm 以
下にすることが望ましい。
At this time, the reason why the average particle diameter of the pulverized iron ore (pulverized iron ore catalyst) mechanically pulverized in the coal liquefaction circulation solvent is not more than 10 μm is that if it exceeds 10 μm, it is used as a catalyst for coal liquefaction. However, even if the dispersibility is excellent, the contact efficiency between the catalyst and the coal is low because the effective surface area of the catalyst (the outer surface area of the catalyst particles per catalyst weight) is small,
This is because the catalyst activity becomes insufficient. In order to increase the effective surface area of such a catalyst and to increase the catalytic activity, the average particle diameter is preferably as small as 10 μm or less, and from such a point, it is desirable that the average particle diameter be 5 μm or less, particularly 1 μm or less. Is desirable.

【0018】このような粉砕鉄鉱石は、ボールミルやタ
ワーミル等の粉砕機に鉄鉱石を供給すると共に石炭液化
プロセスで使用される石炭液化循環溶剤の一部を導入
し、この石炭液化循環溶剤に鉄鉱石を浸した状態で鉄鉱
石を粉砕する方法により得ることができる。
Such crushed iron ore supplies iron ore to a crusher such as a ball mill or a tower mill and introduces a part of a liquefied coal liquefaction solvent used in a coal liquefaction process. It can be obtained by a method in which iron ore is pulverized while the stone is immersed.

【0019】ここで、石炭液化循環溶剤とは、スラリー
調製工程(石炭、溶剤及び触媒が共存するスラリー状混
合体を得る工程)の溶剤として使用され、そして石炭の
水添工程(水添反応を起こさせて石炭を液化させる工
程)での生成物(水添生成物)から溶剤分離工程又は油
分分離工程(水添生成物から蒸留等の分離操作により、
溶剤を分離して得る工程又は油分を分離して得る工程)
で溶剤として分離された後、スラリー調製工程に循環供
給され溶剤として使用され、以降、これが繰り返され、
スラリー調製工程と溶剤分離工程又は油分分離工程との
間を循環する溶剤(第1石炭液化循環溶剤)、及び、上
記溶剤分離工程又は油分分離工程で溶剤として分離さ
れ、必要に応じてスラリー調整工程以外の工程に循環供
給される溶剤(第2石炭液化循環溶剤)をいう。
Here, the coal liquefaction circulation solvent is used as a solvent in a slurry preparation step (a step of obtaining a slurry-like mixture in which coal, a solvent and a catalyst coexist), and a coal hydrogenation step (hydrogenation reaction is carried out). In the step of raising and liquefying the coal), the product (hydrogenated product) is separated from the product (hydrogenated product) by a solvent separation step or an oil separation step (separation operation such as distillation from the hydrogenated product).
Step of separating solvent or step of separating oil)
After being separated as a solvent in, is circulated and supplied to the slurry preparation process and used as a solvent, and thereafter, this is repeated,
A solvent circulating between the slurry preparation step and the solvent separation step or the oil separation step (first coal liquefaction circulation solvent), and separated as a solvent in the solvent separation step or the oil separation step, and, if necessary, a slurry adjustment step Refers to a solvent (second coal liquefaction circulating solvent) that is circulated and supplied to other processes.

【0020】従って、石炭液化循環溶剤の殆どはスラリ
ー調製工程に循環供給され溶剤として使用されるもので
あるが、本発明においては、この石炭液化循環溶剤の一
部を粉砕機に導入し、前記石炭液化循環溶剤中での鉄鉱
石の粉砕に利用するものである。即ち、前記溶剤分離工
程又は油分分離工程で分離されて得られる溶剤を、石炭
液化循環溶剤としてスラリー調製工程に循環供給する一
方、その溶剤の一部を石炭液化循環溶剤中での鉄鉱石の
粉砕用粉砕機に供給するものである。
Therefore, most of the coal liquefaction circulating solvent is circulated and supplied to the slurry preparation step and used as a solvent. In the present invention, a part of the coal liquefaction circulating solvent is introduced into a pulverizer. It is used for grinding iron ore in a coal liquefaction circulation solvent. That is, while the solvent obtained by the separation in the solvent separation step or the oil separation step is circulated and supplied to the slurry preparation step as a coal liquefaction circulation solvent, a part of the solvent is pulverized into iron ore in the coal liquefaction circulation solvent. To be supplied to a crusher for use.

【0021】尚、石炭液化運転開始の際の最初のスラリ
ー調製工程(水添工程開始前のスラリー調製工程)に供
給される石炭液化循環溶剤としては、石炭液化プロセス
や反応条件によっても異なるが、一般的には 180〜450
℃の沸点範囲の留分から選ばれた石炭系溶剤が使用され
る。そして、この溶剤は石炭液化循環溶剤としてスラリ
ー調製工程と溶剤分離工程(又は油分分離工程)との間
を循環するが、石炭液化運転時間に伴って性状が変化
し、通常数十時間でほぼ一定の性状を示すようになる。
The coal liquefaction circulating solvent supplied to the first slurry preparation step at the start of the coal liquefaction operation (the slurry preparation step before the start of the hydrogenation step) varies depending on the coal liquefaction process and reaction conditions. Generally 180-450
A coal-based solvent selected from fractions in the boiling range of ° C is used. This solvent circulates between the slurry preparation step and the solvent separation step (or oil separation step) as a coal liquefaction circulating solvent, but its properties change with the coal liquefaction operation time, and generally remain constant for several tens of hours. To show the properties.

【0022】石炭液化循環溶剤の使用量については、供
給される石炭に対して通常1〜3倍量が添加されて用い
られるので、その溶剤使用量は莫大なものとなる。その
ため、前記溶剤分離工程、油分分離工程の中、油分分離
工程を採用し、この油分分離工程において油分(軽質
油、中質油、重質油)を製品として得る石炭の液化方法
においては、この油分の一部が石炭液化循環溶剤として
使用され、中でも中質油及び/又は重質油の一部が石炭
液化循環溶剤として使用される場合が多い。
The amount of the liquefied coal circulating solvent is usually 1 to 3 times the amount of the supplied coal, and thus the amount of the solvent used is enormous. Therefore, among the solvent separation step and the oil separation step, an oil separation step is adopted, and in the oil liquefaction method of obtaining oil (light oil, medium oil, heavy oil) as a product in the oil separation step, Part of the oil component is used as a coal liquefaction circulation solvent, and in particular, part of the medium oil and / or heavy oil is often used as the coal liquefaction circulation solvent.

【0023】ところで、従来の粉砕鉄鉱石触媒は溶剤中
で著しい凝集が起こるが、石炭液化循環溶剤中で機械的
に粉砕された粉砕鉄鉱石(本発明に係る粉砕鉄鉱石触
媒)は溶剤中での凝集が起こり難い理由については、次
のように考えられる。
By the way, the conventional pulverized iron ore catalyst causes remarkable agglomeration in a solvent, but pulverized iron ore mechanically pulverized in a liquefied coal circulating solvent (pulverized iron ore catalyst according to the present invention) is dissolved in a solvent. The reason why the aggregation is unlikely to occur is considered as follows.

【0024】即ち、従来の粉砕鉄鉱石触媒においては、
その表面(機械的粉砕により新たに生成した破断面)が
極めて不安定であると共に粒子径が小さくて粒子同士が
極めて凝集し易い状態にあるため、溶剤中では著しい凝
集を起こす。これに対し、本発明に係る粉砕鉄鉱石触媒
においては、従来の粉砕鉄鉱石触媒と同様もしくはそれ
以上に粒子径が小さいが、その粒子表面(機械的粉砕に
より新たに生成した破断面)に、石炭液化循環溶剤が付
着しており、石炭液化循環溶剤中には多くの極性成分が
含まれていることから、粉砕直後の新鮮な粒子表面に多
くの極性成分が吸着し、それが粒子同士の凝集を妨げ、
そのため溶剤中でも凝集が起こり難くなるものと考えら
れる。
That is, in the conventional crushed iron ore catalyst,
Since its surface (fracture surface newly generated by mechanical pulverization) is extremely unstable, and has a small particle size and is in a state where particles are easily aggregated, remarkable aggregation occurs in a solvent. On the other hand, in the crushed iron ore catalyst according to the present invention, although the particle diameter is smaller than or equal to that of the conventional crushed iron ore catalyst, the particle surface (fracture surface newly generated by mechanical pulverization) has Since the coal liquefaction circulation solvent is attached and the coal liquefaction circulation solvent contains many polar components, many polar components are adsorbed on the surface of fresh particles immediately after pulverization, Prevent aggregation,
Therefore, it is considered that aggregation does not easily occur even in a solvent.

【0025】本発明に係る粉砕鉄鉱石触媒は、このよう
に溶剤中での凝集が起こり難く、分散性に優れ、そのた
め触媒活性が高められるが、更には、石炭との親和性に
優れているために触媒の利用効率が飛躍的に向上し、そ
れによっても触媒活性が高められるという利点がある。
ここで、石炭との親和性に優れている理由は、次のよう
に考えられる。
The crushed iron ore catalyst according to the present invention hardly causes agglomeration in a solvent and is excellent in dispersibility, so that the catalytic activity is enhanced. However, the crushed iron ore catalyst is also excellent in affinity for coal. Therefore, there is an advantage that the utilization efficiency of the catalyst is remarkably improved, and thereby the catalyst activity is enhanced.
Here, the reason for the excellent affinity with coal is considered as follows.

【0026】即ち、石炭液化循環溶剤は、前記の如く循
環の繰り返しが進むとほぼ一定の性状を示すようになる
ので、この一定性状の石炭液化循環溶剤は石炭液化反応
によって生成した溶剤(石炭から生まれた溶剤)と成分
が近似したものとなり、そのため石炭との親和性に優れ
ている。本発明に係る粉砕鉄鉱石触媒は、かかる石炭液
化循環溶剤が表面に付着しており、従って、石炭との親
和性に優れているものと考えられる。
That is, since the coal liquefaction circulating solvent exhibits almost constant properties as the repetition of circulation proceeds as described above, the coal liquefaction circulating solvent having this constant property is the solvent (coal liquefaction) generated by the coal liquefaction reaction. Solvent) and the components are close to each other, and therefore have excellent affinity with coal. It is considered that the crushed iron ore catalyst according to the present invention has such a coal liquefaction circulating solvent adhered to its surface, and therefore has excellent affinity with coal.

【0027】次に、本発明に係る石炭の液化方法の中、
請求項2及び3記載の石炭の液化方法について以下説明
する。
Next, in the coal liquefaction method according to the present invention,
The method for liquefying coal according to claims 2 and 3 will be described below.

【0028】請求項2記載の石炭の液化方法は、粉砕さ
れた石炭を溶剤及び触媒の共存下で水添する水添工程、
該水添工程により得られる水添生成物から分離操作によ
り溶剤を分離して得る溶剤分離工程、該溶剤分離工程に
より得られる溶剤の一部を粉砕機に導入し、該溶剤中で
鉄鉱石を機械的に粉砕して平均粒子径:10μm 以下の粉
砕鉄鉱石にする鉄鉱石粉砕工程を含み、この粉砕鉄鉱石
を前記触媒として用いることを特徴とするものである。
[0028] In the method for liquefying coal according to claim 2, a hydrogenation step of hydrogenating the pulverized coal in the presence of a solvent and a catalyst,
A solvent separation step in which a solvent is separated by a separation operation from a hydrogenation product obtained in the hydrogenation step, a part of the solvent obtained in the solvent separation step is introduced into a grinder, and iron ore is removed in the solvent. An iron ore pulverizing step of mechanically pulverizing the iron ore into an average particle diameter of 10 μm or less into an iron ore is used, and the pulverized iron ore is used as the catalyst.

【0029】この請求項2記載の石炭の液化方法は、水
添生成物の分離工程としては溶剤分離工程を採用する場
合に適用されるものであり、この溶剤分離工程により得
られる溶剤の一部を粉砕機に導入し、該溶剤中で鉄鉱石
を機械的に粉砕して平均粒子径:10μm 以下の粉砕鉄鉱
石にし、これを触媒として用いるようにしている。ここ
で、粉砕機に導入される溶剤は石炭液化循環溶剤(第2
石炭液化循環溶剤)に該当する。故に、石炭液化循環溶
剤中で機械的に粉砕された平均粒子径:10μm以下の粉
砕鉄鉱石を触媒として用いることになる。従って、前記
請求項1記載の石炭の液化方法と同様の作用効果を奏す
ることになる。
The coal liquefaction method according to the present invention is applied to a case where a solvent separation step is adopted as a separation step of a hydrogenated product, and a part of the solvent obtained by the solvent separation step is used. Is introduced into a pulverizer, and iron ore is mechanically pulverized in the solvent to obtain pulverized iron ore having an average particle diameter of 10 μm or less, and this is used as a catalyst. Here, the solvent introduced into the pulverizer is a coal liquefaction circulation solvent (second
(Coal liquefaction circulation solvent). Therefore, a mechanically pulverized iron ore having an average particle size of 10 μm or less in a coal liquefaction circulation solvent is used as a catalyst. Therefore, the same operation and effects as those of the coal liquefaction method according to claim 1 can be obtained.

【0030】請求項3記載の石炭の液化方法は、石炭、
溶剤及び触媒が共存するスラリー状混合体を得るスラリ
ー調製工程、該スラリー状混合体を加熱し石炭を水添す
る水添工程、該水添工程により得られる水添生成物から
分離操作により油分を分離して得る油分分離工程、該油
分分離工程により得られる油分の一部である溶剤の一部
を前記スラリー調製工程に循環供給する溶剤循環供給工
程、該油分分離工程により得られる溶剤の一部を粉砕機
に導入し、該溶剤中で鉄鉱石を機械的に粉砕して平均粒
子径:10μm 以下の粉砕鉄鉱石にする鉄鉱石粉砕工程を
含み、この粉砕鉄鉱石を前記触媒として用いることを特
徴とするものである。
[0030] The method for liquefying coal according to claim 3 comprises:
A slurry preparation step of obtaining a slurry mixture in which a solvent and a catalyst coexist, a hydrogenation step of heating the slurry mixture and hydrogenating coal, and separating an oil component from a hydrogenation product obtained in the hydrogenation step by a separation operation. An oil separation step obtained by separation, a solvent circulating supply step of circulating and supplying a part of the solvent that is a part of the oil obtained by the oil separation step to the slurry preparation step, and a part of the solvent obtained by the oil separation step Is introduced into a pulverizer, and the iron ore is mechanically pulverized in the solvent to obtain a pulverized iron ore having an average particle diameter of 10 μm or less. It is a feature.

【0031】この請求項3記載の石炭の液化方法は、水
添生成物の分離工程としては油分分離工程を採用し、製
品として油分(軽質油、中質油、重質油)を得る場合に
適用されるものであり、この油分の一部である溶剤(中
質油及び/又は重質油)の一部をスラリー調製工程に循
環供給し、石炭液化循環溶剤として使用する一方、この
溶剤の一部を粉砕機に導入し、該溶剤中で鉄鉱石を機械
的に粉砕して平均粒子径:10μm 以下の粉砕鉄鉱石に
し、これを触媒として用いるようにしている。ここで、
粉砕機に導入される溶剤は石炭液化循環溶剤(第2石炭
液化循環溶剤)に該当する。故に、石炭液化循環溶剤中
で機械的に粉砕された平均粒子径:10μm以下の粉砕鉄
鉱石を触媒として用いることになる。従って、前記請求
項1記載の石炭の液化方法と同様の作用効果を奏するこ
とになる。
In the method for liquefying coal according to the third aspect, an oil separation step is employed as a separation step of a hydrogenated product to obtain an oil (light oil, medium oil, or heavy oil) as a product. It is applied, and a part of the solvent (medium oil and / or heavy oil) which is a part of this oil is circulated and supplied to the slurry preparation step, and is used as a coal liquefaction circulation solvent. A part is introduced into a pulverizer, and iron ore is mechanically pulverized in the solvent to obtain pulverized iron ore having an average particle diameter of 10 μm or less, which is used as a catalyst. here,
The solvent introduced into the pulverizer corresponds to a coal liquefaction circulation solvent (second coal liquefaction circulation solvent). Therefore, a mechanically pulverized iron ore having an average particle size of 10 μm or less in a coal liquefaction circulation solvent is used as a catalyst. Therefore, the same operation and effects as those of the coal liquefaction method according to claim 1 can be obtained.

【0032】本発明に係る石炭の液化方法において、使
用する触媒の量としては、無水無灰分換算の石炭重量に
対し、0.1 〜10wt%にすることが望ましい。0.1 wt%未
満にすると油分の収率が低下する傾向にあり、10wt%超
にすると触媒の使用量が莫大なものとなるばかりでな
く、装置部分の摩耗損傷が起こり易くなる傾向がある。
更には、粉砕を含めた触媒費用と油分収率向上への効果
の点から、0.5 〜8wt%にすることが望ましい。
In the coal liquefaction method according to the present invention, the amount of the catalyst used is desirably 0.1 to 10% by weight based on the weight of coal in terms of anhydrous ashless content. If the amount is less than 0.1 wt%, the yield of oil tends to decrease. If the amount exceeds 10 wt%, not only the amount of the catalyst used becomes enormous, but also the wear and tear of the device tends to occur easily.
Further, from the viewpoint of the cost of the catalyst including pulverization and the effect of improving the oil yield, it is desirable to set the amount to 0.5 to 8% by weight.

【0033】触媒として用いる粉砕鉄鉱石の原料鉄鉱石
としては、石炭液化触媒機能を有するものであればよ
く、限定されるものではなく、例えば天然パイライト鉱
石(黄鉄鉱)、褐鉄鉱、赤鉄鉱、磁鉄鉱等を挙げること
ができる。この中で天然パイライト鉱石は資源的に豊富
である、助触媒の硫黄を必要としない等の特徴や利点が
ある。
The raw iron ore of the pulverized iron ore used as a catalyst is not limited as long as it has a coal liquefaction catalytic function, and examples thereof include natural pyrite ore (pyrite), limonite, hematite, magnetite and the like. Can be mentioned. Among them, natural pyrite ore has features and advantages such as being rich in resources and not requiring sulfur as a promoter.

【0034】石炭としては、褐炭等の低炭化度炭(炭化
度の低い石炭)の他、亜瀝青炭や瀝青炭を使用すること
ができる。これらは通常、水分:15%以下に乾燥された
後、約60メッシュより細かい粒度に粉砕されたものが使
用され、これによれば有利に石炭液化を行うことができ
る。
As the coal, subbituminous coal or bituminous coal can be used in addition to low-carbonized coal such as lignite (low-carbonized coal). These are usually used after being dried to a water content of 15% or less, and then pulverized to a particle size smaller than about 60 mesh, whereby coal liquefaction can be advantageously performed.

【0035】溶剤分離工程、油分分離工程での溶剤又は
油分の分離操作としては、限定されず、蒸留や濾過等の
手段を採用できる。蒸留による場合は、所望の目的物に
適した蒸留を適宜選択すればよい。
The operation of separating the solvent or oil in the solvent separation step and the oil separation step is not limited, and means such as distillation and filtration can be employed. In the case of distillation, distillation suitable for a desired object may be appropriately selected.

【0036】本発明に係る粉砕鉄鉱石触媒に加えて、助
触媒として単体硫黄又は硫化水素等の硫黄化合物を添加
することができ、これらの添加によって石炭液化反応を
より促進し得るようになる。この場合、添加量として
は、硫黄量として粉砕鉄鉱石触媒中の鉄重量の0.1 〜3
倍に相当する量にするのが好ましいが、石炭中の硫黄化
合物含有量が多いときには少量でもよい。
In addition to the pulverized iron ore catalyst according to the present invention, a sulfur compound such as elemental sulfur or hydrogen sulfide can be added as a co-catalyst, and the addition thereof can further promote the coal liquefaction reaction. In this case, the addition amount is 0.1 to 3 times the weight of iron in the crushed iron ore catalyst as the amount of sulfur.
The amount is preferably doubled, but may be small when the sulfur compound content in the coal is large.

【0037】[0037]

【実施例】【Example】

(実施例1)実施例1に係る石炭の液化方法のフローシ
ートを図1に示す。この図1に基づき実施例1を以下説
明する。石炭スラリー調製槽1に、乾燥、粉砕された石
炭と、蒸留塔6から回収される石炭液化循環溶剤と、こ
の石炭液化循環溶剤の一部を粉砕機に導入し、該溶剤中
で鉄鉱石を機械的に粉砕して平均粒子径:10μm 以下に
したもの(粉砕鉄鉱石触媒)と、脱硫装置5から回収さ
れた硫黄(助触媒)とを供給し、そして混合してスラリ
ー状混合体を得る。
Example 1 FIG. 1 shows a flow sheet of a coal liquefaction method according to Example 1. Embodiment 1 will be described below with reference to FIG. In the coal slurry preparation tank 1, the dried and pulverized coal, the coal liquefaction circulating solvent recovered from the distillation tower 6, and a part of the coal liquefaction circulating solvent are introduced into a pulverizer, and iron ore is removed in the solvent. A mechanically pulverized product having an average particle size of 10 μm or less (crushed iron ore catalyst) and sulfur (promoter) recovered from the desulfurization unit 5 are supplied and mixed to obtain a slurry-like mixture. .

【0038】このスラリー状混合体をスラリーポンプに
より予熱器2に輸送する。この間に水素ガスが添加され
る。次いで、これを連続攪拌槽型或いは流通式管型又は
気泡塔型等の如き反応器3に導入し、温度380 〜480
℃、水素圧力6〜25MPa で、10〜60分程度液化反応を行
わせる。ここまでの間に、原料炭は、石炭液化循環溶剤
による抽出、溶解、触媒による水素化、水素化分解反応
等を受けて次第に軽質化され、所望の目的物に変化す
る。
The slurry mixture is transported to the preheater 2 by a slurry pump. During this time, hydrogen gas is added. Then, the mixture is introduced into a reactor 3 of a continuous stirring tank type, a flow tube type, a bubble column type, or the like, and the temperature is 380 to 480.
The liquefaction reaction is carried out at a temperature of 6 ° C. and a hydrogen pressure of 6 to 25 MPa for about 10 to 60 minutes. In the meantime, the raw coal is gradually lightened by being subjected to extraction and dissolution by a coal liquefaction circulating solvent, hydrogenation by a catalyst, hydrocracking reaction, and the like, and changes to a desired product.

【0039】上記液化反応の完了後、得られた反応混合
物を気液分離器4に導入し、気体成分を分離して脱硫装
置5へ送る。ここで硫黄を回収し、この硫黄を再び石炭
スラリー調製槽1に送給すると共に、他の気体成分をオ
フガスとして回収する。
After the completion of the liquefaction reaction, the obtained reaction mixture is introduced into the gas-liquid separator 4, where the gas components are separated and sent to the desulfurizer 5. Here, the sulfur is recovered, and the sulfur is fed back to the coal slurry preparation tank 1 and the other gas components are recovered as off-gas.

【0040】気液分離器4に残った液体及び固体成分は
蒸留塔6に送給し、ここで軽質油、中質油、重質油を製
品として分離して得、この中質油及び重質油の一部を石
炭液化循環溶剤として回収し、石炭スラリー調製槽1に
循環供給する。一方、中質油及び重質油の一部(石炭液
化循環溶剤)を粉砕機に導入し、該溶剤中での鉄鉱石の
機械的粉砕を行った後、得られた粉砕鉄鉱石触媒を石炭
スラリー調製槽1に供給すると共に、乾燥、粉砕された
石炭を石炭スラリー調製槽1に供給する。
The liquid and solid components remaining in the gas-liquid separator 4 are sent to a distillation column 6, where light oil, medium oil and heavy oil are separated as products to obtain the medium oil and heavy oil. A part of the high quality oil is recovered as a coal liquefaction circulation solvent and circulated and supplied to the coal slurry preparation tank 1. On the other hand, a part of the medium oil and heavy oil (coal liquefaction circulation solvent) is introduced into a pulverizer, and iron ore is mechanically pulverized in the solvent. The coal is supplied to the slurry preparation tank 1 and the dried and pulverized coal is supplied to the coal slurry preparation tank 1.

【0041】以上の操作を繰り返して行った。その結
果、スラリー状混合体中の溶剤中において粉砕鉄鉱石触
媒は、凝集を起こさず、高度に分散しており、そのため
触媒活性が高く、触媒効果を充分に発揮し得ることが確
認された。
The above operation was repeated. As a result, it was confirmed that the pulverized iron ore catalyst did not cause aggregation and was highly dispersed in the solvent in the slurry-like mixture. Therefore, it was confirmed that the catalyst activity was high and the catalyst effect was sufficiently exhibited.

【0042】(実施例2)粉砕機としてウルトラファイ
ンミル(三菱重工業社製)を用い、この粉砕機にパイラ
イト鉱石(タスマニア産)10kgと、沸点180 〜420 ℃の
褐炭液化循環溶剤(石炭として褐炭を用いた場合の石炭
液化循環溶剤)6kgを供給し、褐炭液化循環溶剤中での
パイライト鉱石の粉砕を6時間行い、平均粒子径:0.5μ
m の粉砕鉄鉱石(パイライト鉱石)を得た。
(Example 2) An ultrafine mill (manufactured by Mitsubishi Heavy Industries, Ltd.) was used as a pulverizer, and 10 kg of pyrite ore (produced by Tasmania) was used in the pulverizer. 6 kg of coal liquefaction circulating solvent) is used, and pirite ore is pulverized in a brown coal liquefaction circulating solvent for 6 hours, average particle diameter: 0.5 μm
m of crushed iron ore (pyrite ore) was obtained.

【0043】次に、豪州ヤルーン褐炭に上記粉砕鉄鉱石
を触媒として添加し、更に褐炭液化循環溶剤を添加し、
スラリー状混合体を得た。このとき、粉砕鉄鉱石の添加
量は、無水無灰分換算の褐炭重量に対し、鉄原子として
3.0wt %となる量にした。
Next, the above-mentioned crushed iron ore was added as a catalyst to Yaloon lignite, Australia, and a lignite liquefaction circulation solvent was further added.
A slurry-like mixture was obtained. At this time, the added amount of the crushed iron ore is expressed as iron atoms based on the weight of lignite in terms of anhydrous ashless content.
The amount was 3.0 wt%.

【0044】上記スラリー状混合体をオートクレーブ
(内容積5リットル)中に導入し、水素初圧:9.0MPa 、
反応温度:450℃、反応時間:60分の反応条件で水添反応
(液化反応)を行わせた。しかる後、得られた反応生成
物(水添生成物)を分離し、それを蒸留し、油分を沸点
範囲別に分離して得た。その結果、C5 〜沸点:420℃以
下の液体留分(油分)の収率は、無水無灰分基準(無水
無灰分換算の石炭重量に対する割合)で44wt%であっ
た。
The above slurry-like mixture was introduced into an autoclave (internal volume: 5 liters), and hydrogen initial pressure: 9.0 MPa,
A hydrogenation reaction (liquefaction reaction) was performed under a reaction temperature of 450 ° C. and a reaction time of 60 minutes. Thereafter, the obtained reaction product (hydrogenated product) was separated, distilled, and oil was separated by boiling range to obtain. As a result, the yield of a liquid fraction (oil component) having a C 5 to boiling point of 420 ° C. or lower was 44% by weight based on anhydrous ashless content (ratio to the weight of coal in terms of anhydrous ashless content).

【0045】比較のため、パイライト鉱石10kgをウルト
ラファインミルにて約3時間窒素気流中で乾式粉砕し、
平均粒子径:0.5μm の粉砕鉄鉱石を得、これを触媒とし
て用い、上記と同様の工程により石炭液化そして蒸留を
行った。その結果、C5 〜沸点:420℃以下の液体留分の
収率は、無水無灰分基準で39wt%であった。
For comparison, 10 kg of pyrite ore was dry-pulverized in an ultrafine mill for about 3 hours in a nitrogen stream,
Pulverized iron ore having an average particle diameter of 0.5 μm was obtained, and using this as a catalyst, coal liquefaction and distillation were carried out in the same steps as described above. As a result, the yield of the liquid fraction having a C 5 to boiling point of 420 ° C. or less was 39 wt% based on anhydrous ashless content.

【0046】[0046]

【発明の効果】本発明に係る石炭の液化方法によれば、
溶剤中での触媒(粉砕鉄鉱石触媒)の分散性に優れ、触
媒と石炭との接触効率を高めることができ、それにより
触媒活性が高められて触媒効果が充分に発揮され、その
結果、液化反応効率を向上し得、引いては油分の収率を
向上し得るようになる。
According to the coal liquefaction method of the present invention,
Excellent dispersibility of the catalyst (crushed iron ore catalyst) in the solvent, and can increase the contact efficiency between the catalyst and the coal, thereby enhancing the catalytic activity and fully exerting the catalytic effect, and as a result, liquefaction The reaction efficiency can be improved, and thus the oil yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係る石炭の液化方法の概要を示す図
である。
FIG. 1 is a diagram illustrating an outline of a coal liquefaction method according to a first embodiment.

【符号の説明】[Explanation of symbols]

1--石炭スラリー調製槽、2--予熱器、3--反応器、4
--気液分離器、5--脱硫装置、6--蒸留塔。
1-coal slurry preparation tank, 2-preheater, 3-reactor, 4
--Gas-liquid separator, 5--desulfurizer, 6--distillation tower.

───────────────────────────────────────────────────── フロントページの続き (73)特許権者 000105567 コスモ石油株式会社 東京都港区芝浦1丁目1番1号 (72)発明者 兼子 隆雄 神奈川県厚木市毛利台2丁目26−12 (72)発明者 小山 徹 兵庫県加古川市加古川町美乃利124−1 −101 (72)発明者 田沢 和治 兵庫県加古川市別府町新野辺385 (72)発明者 牧野 英一郎 兵庫県神戸市垂水区五色山3丁目1−35 −518 (56)参考文献 特開 平6−100868(JP,A) 特開 平6−99071(JP,A) 特開 昭60−88089(JP,A) 特開 昭61−86937(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 1/06 C10G 1/08 ──────────────────────────────────────────────────続 き Continuing from the front page (73) Patent holder 000105567 Cosmo Oil Co., Ltd. 1-1-1, Shibaura, Minato-ku, Tokyo (72) Inventor Takao Kaneko 2-2-12, Moridai, Atsugi-shi, Kanagawa (72) Inventor Toru Koyama 124-1-101 Minori, Kakogawa-cho, Kakogawa City, Hyogo Prefecture 1-35 -518 (56) References JP-A-6-100868 (JP, A) JP-A-6-99071 (JP, A) JP-A-60-88089 (JP, A) JP-A-61-86937 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C10G 1/06 C10G 1/08

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉砕された石炭を溶剤及び触媒の共存下
で水添する水添工程を含む石炭の液化方法において、前
記触媒として石炭液化循環溶剤中で機械的に粉砕された
平均粒子径:10μm 以下の粉砕鉄鉱石を用いることを特
徴とする石炭の液化方法。
1. A coal liquefaction method comprising a hydrogenation step of hydrogenating pulverized coal in the presence of a solvent and a catalyst, wherein the catalyst has an average particle size mechanically pulverized in a coal liquefaction circulation solvent: A coal liquefaction method using crushed iron ore of 10 μm or less.
【請求項2】 粉砕された石炭を溶剤及び触媒の共存下
で水添する水添工程、該水添工程により得られる水添生
成物から分離操作により溶剤を分離して得る溶剤分離工
程、該溶剤分離工程により得られる溶剤の一部を粉砕機
に導入し、該溶剤中で鉄鉱石を機械的に粉砕して平均粒
子径:10μm 以下の粉砕鉄鉱石にする鉄鉱石粉砕工程を
含み、この粉砕鉄鉱石を前記触媒として用いることを特
徴とする石炭の液化方法。
2. A hydrogenation step of hydrogenating pulverized coal in the presence of a solvent and a catalyst, a solvent separation step of separating a solvent from a hydrogenation product obtained in the hydrogenation step by a separation operation, Introducing a part of the solvent obtained in the solvent separation step into a pulverizer, and mechanically pulverizing the iron ore in the solvent to obtain a pulverized iron ore having an average particle diameter of 10 μm or less; A coal liquefaction method comprising using crushed iron ore as the catalyst.
【請求項3】 石炭、溶剤及び触媒が共存するスラリー
状混合体を得るスラリー調製工程、該スラリー状混合体
を加熱し石炭を水添する水添工程、該水添工程により得
られる水添生成物から分離操作により油分を分離して得
る油分分離工程、該油分分離工程により得られる油分の
一部である溶剤の一部を前記スラリー調製工程に循環供
給する溶剤循環供給工程、該油分分離工程により得られ
る溶剤の一部を粉砕機に導入し、該溶剤中で鉄鉱石を機
械的に粉砕して平均粒子径:10μm 以下の粉砕鉄鉱石に
する鉄鉱石粉砕工程を含み、この粉砕鉄鉱石を前記触媒
として用いることを特徴とする石炭の液化方法。
3. A slurry preparation step for obtaining a slurry-like mixture in which coal, a solvent and a catalyst coexist, a hydrogenation step of heating the slurry-like mixture and hydrogenating coal, and a hydrogenation production obtained by the hydrogenation step Oil separating step obtained by separating oil from the product by a separating operation, a solvent circulating supply step of circulating and supplying a part of a solvent that is a part of the oil obtained by the oil separating step to the slurry preparation step, the oil separating step Introducing a part of the solvent obtained by the method into a pulverizer, and mechanically pulverizing the iron ore in the solvent to obtain a pulverized iron ore having an average particle diameter of 10 μm or less. Is used as the catalyst.
【請求項4】 前記触媒の量が、無水無灰分換算の石炭
重量に対し、0.1 〜10wt%である請求項1、2又は3記
載の石炭の液化方法。
4. The coal liquefaction method according to claim 1, wherein the amount of the catalyst is 0.1 to 10% by weight based on the weight of the coal in terms of anhydrous ashless content.
【請求項5】 前記粉砕鉄鉱石の原料鉄鉱石が天然パイ
ライト鉱石である請求項1、2、3又は4記載の石炭の
液化方法。
5. The coal liquefaction method according to claim 1, wherein the raw iron ore of the ground iron ore is a natural pyrite ore.
JP00194894A 1994-01-13 1994-01-13 Coal liquefaction method Expired - Fee Related JP3287684B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00194894A JP3287684B2 (en) 1994-01-13 1994-01-13 Coal liquefaction method
AU81710/94A AU673784B2 (en) 1994-01-13 1994-12-22 Process of coal liquefaction
AU45803/96A AU681983B2 (en) 1994-01-13 1996-02-28 Process of coal liquefaction
AU45804/96A AU4580496A (en) 1994-01-13 1996-02-28 Process of coal liquefaction
AU58383/96A AU690029B2 (en) 1994-01-13 1996-07-08 Process for coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00194894A JP3287684B2 (en) 1994-01-13 1994-01-13 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPH07207274A JPH07207274A (en) 1995-08-08
JP3287684B2 true JP3287684B2 (en) 2002-06-04

Family

ID=11515836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00194894A Expired - Fee Related JP3287684B2 (en) 1994-01-13 1994-01-13 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JP3287684B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123934B2 (en) * 2008-06-18 2012-02-28 Chevron U.S.A., Inc. System and method for pretreatment of solid carbonaceous material
US8206577B2 (en) * 2008-06-18 2012-06-26 Kuperman Alexander E System and method for pretreatment of solid carbonaceous material

Also Published As

Publication number Publication date
JPH07207274A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
US4484928A (en) Methods for processing coal
US4133742A (en) Separation of hydrocarbons from oil shales and tar sands
CA2961020C (en) Method for hydrocracking, method for producing hydrocracked oil, hydrocracking device, and device for producing hydrocracked oil
JP3287684B2 (en) Coal liquefaction method
US4541914A (en) Process for converting coal
JP2001164263A (en) Method for liquefying coal
JP3484041B2 (en) Coal liquefaction method
AU673784B2 (en) Process of coal liquefaction
JP3227312B2 (en) Coal liquefaction method
JP3277202B2 (en) Coal liquefaction method
JP2001026785A (en) Method for coal liquefaction
JP3476358B2 (en) Coal liquefaction method
JP2000051702A (en) Catalyst for liquefaction of coal and its preparation
JP2004261635A (en) Method for manufacturing high-activity coal liquefying catalyst
JPH0718277A (en) Composition containing coal liquefaction residue
JPH08173813A (en) Production of catalyst for coal liquefaction
JP3227298B2 (en) Coal liquefaction method
JPH06100868A (en) Liquefaction of coal through its hydrogenation
JPH06287571A (en) Preparation of coal slurry in coal liquefaction process
JPH11315285A (en) Preparation of coal slurry
AU696287B2 (en) Process of coal liquefaction
JPS60212483A (en) Pretreatment of coal for liquefaction
JPH02175788A (en) Coal liquefaction process
JPH0598265A (en) Liquefaction of coal by using coal impregnated with catalyst
JPS60212484A (en) Pretreatment of coal for liquefaction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees