JP3227298B2 - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JP3227298B2
JP3227298B2 JP01840494A JP1840494A JP3227298B2 JP 3227298 B2 JP3227298 B2 JP 3227298B2 JP 01840494 A JP01840494 A JP 01840494A JP 1840494 A JP1840494 A JP 1840494A JP 3227298 B2 JP3227298 B2 JP 3227298B2
Authority
JP
Japan
Prior art keywords
catalyst
coal
iron
manganese
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01840494A
Other languages
Japanese (ja)
Other versions
JPH07224283A (en
Inventor
隆雄 兼子
小山  徹
和治 田沢
潤 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Original Assignee
Cosmo Oil Co Ltd
Mitsubishi Chemical Corp
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Mitsubishi Chemical Corp, Idemitsu Kosan Co Ltd, Kobe Steel Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP01840494A priority Critical patent/JP3227298B2/en
Priority to AU81710/94A priority patent/AU673784B2/en
Publication of JPH07224283A publication Critical patent/JPH07224283A/en
Priority to AU45803/96A priority patent/AU681983B2/en
Priority to AU45804/96A priority patent/AU4580496A/en
Priority to AU58383/96A priority patent/AU690029B2/en
Application granted granted Critical
Publication of JP3227298B2 publication Critical patent/JP3227298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、石炭の液化方法に関
し、詳細には、触媒の存在下で石炭を水添する水添工程
を含む石炭の液化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for liquefying coal, and more particularly to a method for liquefying coal including a hydrogenation step of hydrogenating coal in the presence of a catalyst.

【0002】[0002]

【従来の技術】近年の資源エネルギー事情から石油に替
わる液体燃料の開発が強く望まれている。特に、石炭は
その埋蔵量が豊富なことから、石炭を効率良く液化し液
体燃料を得る技術の確立が重要な課題となっている。こ
のため従来より石炭の液化方法が種々提案されている
が、代表的な石炭の液化方法としては、乾燥及び粉砕さ
れた石炭を溶剤と混合してスラリー状混合体とし、高温
高圧下で水素ガスを添加して水添反応を起こさせ、液化
させるものである。
2. Description of the Related Art In recent years, there has been a strong demand for the development of liquid fuels that can replace petroleum due to resource and energy situations. In particular, since coal has abundant reserves, it is an important issue to establish a technology to efficiently liquefy coal and obtain liquid fuel. For this reason, various coal liquefaction methods have been proposed in the past, but a typical coal liquefaction method is to mix dried and pulverized coal with a solvent to form a slurry-like mixture, and to form a hydrogen gas under high temperature and pressure. Is added to cause a hydrogenation reaction to liquefy.

【0003】かかる石炭の水添反応(液化反応)を起こ
させる際、原料石炭の種類によっては触媒を添加するこ
となく、石炭中に含有される触媒成分を利用することも
あるが、一般には水添反応の効率を高めるために前記ス
ラリー状混合体に触媒が添加され、そして水添反応に供
され、触媒及び溶剤の共存下で石炭を水添する方法が採
用される。
[0003] When a hydrogenation reaction (liquefaction reaction) of such coal is caused, a catalyst component contained in coal may be used without adding a catalyst depending on the kind of raw material coal. In order to increase the efficiency of the addition reaction, a method is used in which a catalyst is added to the slurry-like mixture and the mixture is subjected to a hydrogenation reaction, and the coal is hydrogenated in the presence of the catalyst and the solvent.

【0004】この水添反応の効率を高めるための触媒、
即ち、石炭液化反応促進用触媒(以降、石炭液化用触媒
という)としては、従来から種々のモリブデン系の触媒
あるいは塩化亜鉛、塩化錫もしくは硫化鉄、硫酸鉄、酸
化鉄、赤泥、鉄鉱石等の触媒が知られているが、これら
の触媒はいづれも石炭液化用触媒として充分なものでは
なく、各々問題点を有している。
A catalyst for improving the efficiency of this hydrogenation reaction,
That is, as a catalyst for accelerating coal liquefaction (hereinafter referred to as a catalyst for coal liquefaction), conventionally, various molybdenum-based catalysts, zinc chloride, tin chloride or iron sulfide, iron sulfate, iron oxide, red mud, iron ore, etc. However, none of these catalysts is sufficient as a catalyst for coal liquefaction, and each of them has problems.

【0005】即ち、石炭液化用触媒としては、基本的に
触媒として活性であること(即ち、触媒として水添反応
効率を高めるという触媒機能に優れていること)が必要
である他、石炭液化の経済上の観点から安価で入手し易
いこと、又、石炭液化運転にトラブルを生じさせないこ
と等が必要であるが、前記触媒の中、モリブデン系の触
媒では極めて高価であると共に資源的な問題を有してお
り、塩化亜鉛等の塩化物系の触媒では装置の腐食が起こ
り易いという問題点があり、又、硫化鉄、硫酸鉄、酸化
鉄、赤泥、鉄鉱石等の触媒では安価であるが、触媒とし
ての活性(以降、触媒活性という)が充分でないという
問題点がある。
That is, the catalyst for coal liquefaction basically needs to be active as a catalyst (that is, excellent in catalytic function of increasing the hydrogenation reaction efficiency as a catalyst). It is necessary to be inexpensive and easy to obtain from an economic point of view, and it is necessary not to cause trouble in the coal liquefaction operation, etc. Among the above-mentioned catalysts, molybdenum-based catalysts are extremely expensive and have resource problems. It has a problem that corrosion of the equipment is apt to occur with a chloride catalyst such as zinc chloride, and it is inexpensive with a catalyst such as iron sulfide, iron sulfate, iron oxide, red mud, iron ore, etc. However, there is a problem that the activity as a catalyst (hereinafter referred to as catalyst activity) is not sufficient.

【0006】これら触媒の中、鉄鉱石は触媒活性が充分
でないものの、特に安価で入手し易いという利点がある
ことから、現時点では他の触媒に比して実用性が高く、
石炭液化用触媒として用いられる場合が多い。この場
合、触媒活性を高めるために鉄鉱石を機械的に粉砕して
粒子径を小さくしたもの(粉砕鉄鉱石触媒)が石炭液化
用触媒として前記スラリー状混合体に添加され、そして
水添反応に供され、粉砕鉄鉱石触媒及び溶剤の共存下で
石炭を水添する方法が採用される。これは、粒子径の小
さい粉砕鉄鉱石触媒を用いることにより、前記スラリー
状混合体中において共存する溶剤中での粉砕鉄鉱石触媒
の分散性を高めて石炭との接触効率を高め、それにより
粉砕鉄鉱石触媒の触媒活性を高めようとすることに狙い
がある。
[0006] Among these catalysts, iron ore has insufficient catalytic activity, but has the advantage of being particularly inexpensive and easily available.
Often used as a catalyst for coal liquefaction. In this case, iron ore mechanically pulverized to reduce the particle size by mechanically pulverizing the iron ore (pulverized iron ore catalyst) is added to the slurry-like mixture as a coal liquefaction catalyst, and the hydrogenation reaction is carried out. And a method of hydrogenating coal in the presence of a crushed iron ore catalyst and a solvent. This is because, by using a pulverized iron ore catalyst having a small particle diameter, the dispersibility of the pulverized iron ore catalyst in a solvent coexisting in the slurry-like mixture is increased, and the contact efficiency with coal is increased, whereby the pulverization is performed. The aim is to increase the catalytic activity of iron ore catalysts.

【0007】[0007]

【発明が解決しようとする課題】ところが、このような
粉砕鉄鉱石触媒を石炭液化用触媒として用いる石炭の液
化方法(以降、従来法という)においては、鉄鉱石は元
来触媒活性が前記の如く充分でないので、粉砕鉄鉱石触
媒を前記スラリー状混合体に多量に添加する必要があ
り、例えば鉄鉱石触媒の中で比較的触媒活性が高く、よ
く使用されているパイライト鉱石触媒の場合では無水無
灰炭基準(無水無灰分換算の石炭重量に対する割合)で
5〜10wt%となる量を添加する必要がある。従って、ス
ラリー状混合体中での粉砕鉄鉱石触媒の含有量が多く、
そのため、流動するスラリー状混合体と接触する装置、
配管部においてエロージョンが発生し易く、特にスラリ
ーポンプや液化反応系の減圧弁においてエロージョンに
よる損傷が生じ易いという問題点がある。更には、粉砕
鉄鉱石触媒を得るのに必要な鉄鉱石粉砕処理の際の処理
量が多く、粉砕処理費が高くなる等の問題点もある。
However, in a coal liquefaction method using such a crushed iron ore catalyst as a catalyst for coal liquefaction (hereinafter referred to as a conventional method), iron ore originally has a catalytic activity as described above. Since it is not enough, it is necessary to add a large amount of the pulverized iron ore catalyst to the slurry-like mixture. For example, in the case of the pyrite ore catalyst which is relatively high in the iron ore catalyst and is widely used, it is anhydrous. It is necessary to add an amount of 5 to 10% by weight based on ash coal (ratio to coal weight in terms of anhydrous ashless content). Therefore, the content of the crushed iron ore catalyst in the slurry-like mixture is large,
Therefore, a device that comes into contact with the flowing slurry-like mixture,
There is a problem that erosion is easily generated in the pipe portion, and particularly, damage due to erosion is easily generated in a slurry pump or a pressure reducing valve of a liquefaction reaction system. Furthermore, there is also a problem that the amount of iron ore pulverization required for obtaining a pulverized iron ore catalyst is large and the pulverization processing cost is high.

【0008】ここで、これら問題点を解決し得る程度に
粉砕鉄鉱石触媒の添加量を減少すれば、触媒活性が不充
分となり、そのため液化反応効率が低下し、引いては油
分の収率が低くて不充分となるという問題点が出てく
る。従って、これら問題点を解決し得る技術、即ち、前
記エロージョン等の問題点を生じない程度の少量の触媒
添加量であっても油分収率の低下がなく、充分な油分収
率を確保し得る石炭の液化方法の開発が望まれるところ
である。
Here, if the addition amount of the pulverized iron ore catalyst is reduced to such an extent that these problems can be solved, the catalytic activity becomes insufficient, so that the efficiency of the liquefaction reaction is reduced and the yield of the oil component is reduced. There is a problem that it is low and insufficient. Therefore, a technique capable of solving these problems, that is, even if the catalyst addition amount is small enough not to cause the problems such as the erosion, the oil yield is not reduced, and a sufficient oil yield can be secured. The development of a coal liquefaction method is desired.

【0009】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記従来法(石炭液化用触
媒として粉砕鉄鉱石触媒を用いる石炭の液化方法)が有
する問題点を解決し、この従来法に比し、少量の触媒添
加量であっても同等の油分収率を確保し得る石炭の液化
方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and an object of the present invention is to solve the problems of the conventional method (a method for liquefying coal using a pulverized iron ore catalyst as a coal liquefaction catalyst). It is an object of the present invention to provide a coal liquefaction method capable of securing the same oil content yield even with a small amount of catalyst as compared with the conventional method.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る石炭の液化方法は次のような構成と
している。即ち、請求項1記載の石炭の液化方法は、石
炭を溶剤及び触媒の共存下で水添する水添工程を含む石
炭の液化方法において、前記触媒として鉄マンガン重石
を用いることを特徴とする石炭の液化方法である。
In order to achieve the above object, a method for liquefying coal according to the present invention has the following configuration. That is, the method for liquefying coal according to claim 1 is a method for liquefying coal including a hydrogenation step of hydrogenating coal in the coexistence of a solvent and a catalyst, wherein coal is used as the catalyst. Liquefaction method.

【0011】請求項2記載の石炭の液化方法は、前記石
炭、溶剤及び触媒と共に単体硫黄又は硫黄化合物が存在
する請求項1記載の石炭の液化方法である。
The coal liquefaction method according to the second aspect is the coal liquefaction method according to the first aspect, wherein elemental sulfur or a sulfur compound is present together with the coal, the solvent, and the catalyst.

【0012】請求項3記載の石炭の液化方法は、前記鉄
マンガン重石が硫化処理された後、触媒として用いられ
る請求項1記載の石炭の液化方法である。
[0013] The coal liquefaction method according to claim 3 is the coal liquefaction method according to claim 1, which is used as a catalyst after the iron-manganese heavy stone is subjected to sulfidation treatment.

【0013】[0013]

【作用】本発明は、粉砕鉄鉱石触媒に比して触媒活性の
高い石炭液化用触媒を探索すべく研究をした結果、鉄マ
ンガン重石は粉砕鉄鉱石触媒に比して触媒活性が高く、
少量の触媒添加量の場合であっても同等の油分収率を確
保し得るという新規知見を得、この知見に基づき完成さ
れたものである。
The present invention has been studied to find a catalyst for coal liquefaction having a higher catalytic activity than a crushed iron ore catalyst. As a result, iron manganese heavy stone has a higher catalytic activity than a crushed iron ore catalyst.
The present inventors have obtained a new finding that an equivalent oil yield can be secured even with a small amount of catalyst added, and have been completed based on this finding.

【0014】即ち、鉄マンガン重石を粉砕したもの(粉
砕鉄マンガン重石)を石炭液化用触媒として用いたとこ
ろ、鉄マンガン重石は石炭液化用触媒として作用し得、
その触媒活性は粉砕鉄鉱石触媒の場合に比して著しく高
く、そのため粉砕鉄鉱石触媒の場合に比して少量の触媒
添加量の場合であっても同等の油分収率を確保し得ると
いう新規知見が得られた。ここで、鉄マンガン重石と
は、タングステン鉱石の一種であり、鉄重石(FeWO4)と
マンガン重石(MnWO4)とが固溶体をなしているものをい
う。
That is, when crushed iron manganese spar (pulverized manganese spar) is used as a coal liquefaction catalyst, the manganese spar can act as a coal liquefaction catalyst.
Its catalytic activity is significantly higher than that of crushed iron ore catalysts, and therefore it is possible to obtain the same oil content yield even with a small amount of catalyst compared to crushed iron ore catalysts. Findings were obtained. Here, the iron-manganese heavy stone is a kind of tungsten ore, and refers to one in which iron heavy stone (FeWO 4 ) and manganese heavy stone (MnWO 4 ) form a solid solution.

【0015】本発明に係る石炭の液化方法は、かかる知
見に基づきなされたものであり、石炭を溶剤及び触媒の
共存下で水添する水添工程を含む石炭の液化方法におい
て、前記触媒として鉄マンガン重石を用いるようにして
いる(請求項1記載の石炭の液化方法)。即ち、石炭液
化用触媒として鉄マンガン重石を用いるようにしてい
る。従って、この鉄マンガン重石の触媒活性は粉砕鉄鉱
石触媒の場合に比して著しく高く、そのため前記従来法
(石炭液化用触媒として粉砕鉄鉱石触媒を用いる石炭の
液化方法)に比し、少量の触媒添加量であっても同等の
油分収率を確保し得るようになる。
The method for liquefying coal according to the present invention has been made based on such findings. In the method for liquefying coal including a hydrogenation step of hydrogenating coal in the coexistence of a solvent and a catalyst, in the method for liquefying coal, iron is used as the catalyst. Manganese heavy stone is used (the method for liquefying coal according to claim 1). That is, iron-manganese heavy stone is used as a coal liquefaction catalyst. Therefore, the catalytic activity of this iron manganese heavy stone is remarkably higher than that of the pulverized iron ore catalyst. Even if the amount of the catalyst is added, the same oil yield can be secured.

【0016】このとき、鉄マンガン重石としては、通
常、鉄鉱石触媒の場合と同様、粉砕したもの(粉砕鉄マ
ンガン重石触媒)を石炭液化用触媒として使用する。こ
れは、スラリー状混合体中において共存する溶剤中での
粉砕鉄マンガン重石触媒の分散性を高めることにより石
炭との接触効率を高めて使用する方が、粉砕鉄鉱石触媒
の触媒活性が高められて良いからである。
At this time, as the iron manganese heavy stone, as in the case of the iron ore catalyst, a pulverized one (crushed iron manganese heavy stone catalyst) is usually used as a coal liquefaction catalyst. This is because the catalytic activity of the crushed iron ore catalyst is enhanced when the catalyst is used by increasing the contact efficiency with the coal by increasing the dispersibility of the crushed iron manganese heavy stone catalyst in the solvent coexisting in the slurry mixture. Because it is good.

【0017】かかる粉砕鉄マンガン重石触媒を使用する
場合、その平均粒子径は、10μm 以下にすることが望ま
しく、それは、10μm 超にすると、触媒の実効表面積
(触媒重量当りの触媒粒子の外表面積)が小さいために
触媒と石炭との接触効率が低く、触媒活性が低下する傾
向にあるからである。このような触媒の実効表面積を増
大させ、触媒活性を高めるためには、平均粒子径は10μ
m 以下で小さいほどよく、このような点から5μm 以下
にすることが望ましく、特には1μm 以下にすることが
望ましい。
In the case of using such a crushed wolframite catalyst, the average particle diameter is desirably 10 μm or less. If the average particle diameter exceeds 10 μm, the effective surface area of the catalyst (outer surface area of catalyst particles per catalyst weight) is obtained. This is because the contact efficiency between the catalyst and the coal is low and the catalytic activity tends to decrease. In order to increase the effective surface area of such a catalyst and enhance the catalytic activity, the average particle diameter is 10 μm.
It is better to be smaller than m, and from such a point, it is desirable to be 5 μm or less, and particularly desirable to be 1 μm or less.

【0018】ところで、鉄マンガン重石の触媒活性が粉
砕鉄鉱石触媒の場合に比して著しく高い理由について
は、必ずしも明らかではないが、触媒のX線回折分析の
結果等から、次のように考えられる。
The reason why the catalytic activity of wolframite is remarkably higher than that of the crushed iron ore catalyst is not necessarily clear, but from the result of X-ray diffraction analysis of the catalyst, the following is considered. Can be

【0019】即ち、鉄マンガン重石を石炭液化用触媒と
して使用した後、その触媒についてのX線回折分析等を
行い、その結果、先ず、鉄マンガン重石は硫化された状
態で石炭液化用触媒として作用することがわかった。次
に、このように硫化された状態のものや、鉄マンガン重
石を硫化処理したものについてのX線回折パターンに
は、二硫化タングステンのブロードな回折ピークと未硫
化の鉄マンガン重石の回折ピークとが認められ、この二
硫化タングステンの結晶子サイズは回折ピークの半価幅
から推定すると、かなり小さいことがわかった。又、硫
化鉄及び硫化マンガンについては、そのピークが検出さ
れず、従って、極めて結晶子サイズが小さい状態で存在
する可能性が強いと推定される。
That is, after using manganese heavy stone as a catalyst for coal liquefaction, X-ray diffraction analysis and the like of the catalyst are performed, and as a result, firstly, heavy iron manganese acts as a catalyst for coal liquefaction in a sulfided state. I found out. Next, the X-ray diffraction patterns of the sulfided state and the sulfided manganese heavy stone show the broad diffraction peak of tungsten disulfide and the diffraction peak of unsulfided manganese heavy stone. The crystallite size of this tungsten disulfide was found to be quite small as estimated from the half width of the diffraction peak. In addition, the peaks of iron sulfide and manganese sulfide are not detected, and it is therefore presumed that there is a strong possibility that they exist in a state where the crystallite size is extremely small.

【0020】一方、二硫化タングステン及び硫化鉄は石
炭液化用触媒として作用することが知られており、又、
触媒は一般に結晶子サイズが小さいほど触媒活性が高
い。
On the other hand, tungsten disulfide and iron sulfide are known to act as coal liquefaction catalysts.
Generally, the smaller the crystallite size, the higher the catalytic activity of the catalyst.

【0021】以上のことから、鉄マンガン重石の触媒活
性が粉砕鉄鉱石触媒の場合に比して著しく高い理由とし
て、鉄マンガン重石は、石炭液化用触媒として作用する
二硫化タングステン及び硫化鉄であって結晶子サイズが
小さくて触媒活性の高いものとなることが考えられる。
Based on the above, the reason why the catalytic activity of wolframite is remarkably higher than that of crushed iron ore catalyst is that wolframite is tungsten disulfide and iron sulfide which act as catalysts for coal liquefaction. Therefore, it is considered that the crystallite size becomes small and the catalytic activity becomes high.

【0022】上記の如く結晶子サイズが小さい理由につ
いては、次のように考えられる。即ち、鉄マンガン重石
は、前述の如く鉄重石(FeWO4)とマンガン重石(MnWO4)
との固溶体であるので、三成分金属(Fe, W, Mn)の複合
酸化物であり、それに起因して硫化物(二硫化タングス
テン、硫化鉄及び硫化マンガン)の凝集が起こり難く、
そのため二硫化タングステン、硫化鉄及び硫化マンガン
がそれぞれ触媒上で互いに分散して生成したことによる
ものと考えられる。
The reason why the crystallite size is small as described above is considered as follows. That is, as described above, iron manganese heavy stone is made of iron heavy stone (FeWO 4 ) and manganese heavy stone (MnWO 4 ).
Since it is a solid solution with, it is a composite oxide of ternary metals (Fe, W, Mn), and as a result, sulfide (tungsten disulfide, iron sulfide and manganese sulfide) hardly aggregates.
Therefore, it is considered that tungsten disulfide, iron sulfide, and manganese sulfide were each dispersed and formed on the catalyst.

【0023】本発明において、鉄マンガン重石は、前記
の如く硫化された状態で(即ち、二硫化タングステン、
硫化鉄、硫化マンガン等になって)石炭液化用触媒とし
て作用するので、石炭の水添反応の時点では硫化されて
いる必要がある。この硫化については、スラリー状混合
体中において鉄マンガン重石と共存する原料石炭中に比
較的多量の硫黄或いは硫黄化合物が含有されている場合
には、この硫黄或いは硫黄化合物と鉄マンガン重石との
反応により、起こさせることは可能であるが、鉄マンガ
ン重石をより充分に硫化させるためには、スラリー状混
合体に単体硫黄又は硫黄化合物を添加し、鉄マンガン重
石と共存させることが望ましい(請求項2記載の石炭の
液化方法)。一方、原料石炭中の硫黄或いは硫黄化合物
の含有量が少ない場合には、上記の如く単体硫黄又は硫
黄化合物を添加し、鉄マンガン重石と共存させると鉄マ
ンガン重石を充分に硫化させ得る(請求項2記載の石炭
の液化方法)。更に、鉄マンガン重石を予め硫化処理し
た後、スラリー状混合体に添加し、触媒として用いるよ
うにすると、確実に石炭液化用触媒として充分に作用さ
せ得るようになる(請求項3記載の石炭の液化方法)。
In the present invention, wolframite is sulfided as described above (ie, tungsten disulfide,
Since it acts as a coal liquefaction catalyst (as iron sulfide, manganese sulfide, etc.), it must be sulfided at the time of hydrogenation of coal. Regarding this sulphidation, if a relatively large amount of sulfur or a sulfur compound is contained in the raw coal that coexists with the manganese spar in the slurry mixture, the reaction of the sulfur or the sulfur compound with the sulphide manganese However, in order to sulphide iron manganese more sufficiently, it is preferable to add elemental sulfur or a sulfur compound to the slurry-like mixture and to coexist with the iron manganese heavy stone. Liquefaction method of coal described in 2). On the other hand, when the content of sulfur or the sulfur compound in the raw coal is small, if the elemental sulfur or the sulfur compound is added as described above and coexists with the manganese weighing stone, the manganese weighing stone can be sufficiently sulfided. Liquefaction method of coal described in 2). Furthermore, if the iron manganese spar is preliminarily sulfurized, it is added to the slurry-like mixture to be used as a catalyst, so that it can reliably function as a catalyst for coal liquefaction. Liquefaction method).

【0024】石炭としては、褐炭等の低炭化度炭(炭化
度の低い石炭)の他、亜瀝青炭や瀝青炭を使用すること
ができる。これらは通常、水分:15%以下に乾燥された
後、約60メッシュより細かい粒度に粉砕されたものが使
用され、これによれば有利に石炭液化を行うことができ
る。
As the coal, subbituminous coal and bituminous coal can be used in addition to low-carbonized coal (coal with low carbonization) such as lignite. These are usually used after being dried to a water content of 15% or less, and then pulverized to a particle size smaller than about 60 mesh, whereby coal liquefaction can be advantageously performed.

【0025】水添工程での水添反応条件は特に限定され
ず、水添反応が起こる条件であればよいが、通常は温
度:350〜500 ℃、水素分圧:7〜20MPa 、反応時間:10
〜120分の条件で行われ、これによれば有利に石炭液化
を行うことができる。水添反応で得られる水添生成物
は、触媒等の固形分の分離後、油分として回収されても
よいが、通常は該分離後の油分は蒸留塔に送られ所望の
目的物(重質油、中質油、軽質油等)に分離され回収さ
れると共に、その重質油等の一部は循環溶剤としてスラ
リー状混合体調製工程に循環され使用される。
The hydrogenation reaction conditions in the hydrogenation step are not particularly limited as long as the hydrogenation reaction occurs. Usually, the temperature is 350 to 500 ° C., the hydrogen partial pressure is 7 to 20 MPa, and the reaction time is: Ten
This is carried out under conditions of up to 120 minutes, according to which coal liquefaction can be advantageously carried out. The hydrogenated product obtained by the hydrogenation reaction may be recovered as an oil after separation of a solid such as a catalyst. However, usually, the oil after the separation is sent to a distillation column and a desired target product (heavy Oil, medium oil, light oil, etc.), and a part of the heavy oil is circulated and used as a circulating solvent in a slurry mixture preparation step.

【0026】鉄マンガン重石は、粉砕鉄鉱石触媒に比
し、触媒活性が前述の如く著しく高いので、少量の触媒
添加量であっても同等の油分収率を確保し得、換言すれ
ば、油分収率の目標値を一定(同一)とした場合に必要
な触媒添加量が少なくてよい。例えば、鉄鉱石触媒の中
で比較的触媒活性が高く、よく使用されているパイライ
ト鉱石触媒の場合では前述の如く無水無灰炭基準で5〜
10wt%必要であるが、この場合と同一の油分収率を得る
に必要な鉄マンガン重石の添加量は無水無灰炭基準で0.
5 〜5wt%でよい。
As mentioned above, iron manganese heavy stone has remarkably high catalytic activity as compared with pulverized iron ore catalyst, so that even if a small amount of catalyst is added, the same oil content yield can be secured. When the target value of the yield is constant (same), the amount of catalyst addition required may be small. For example, the catalyst activity is relatively high among iron ore catalysts, and in the case of a frequently used pyrite ore catalyst, as described above, 5 to 5 on an anhydrous ashless coal basis.
Although 10 wt% is required, the addition amount of iron manganese heavy stone required to obtain the same oil yield as in this case is 0.
It may be 5 to 5% by weight.

【0027】[0027]

【実施例】【Example】

(実施例1)先ず、鉄マンガン重石(W:57.5wt%, Fe:1
2.9wt%, Mn:2.6wt% )を粉砕し、平均粒径:2.6μm の粉
砕鉄マンガン重石を得た。そして、内容積:0.3リットル
のオートクレーブに、硫化処理用溶媒として1−メチル
ナフタレンを60.0g 、硫化処理用硫黄を11.4g 入れると
共に、前記粉砕鉄マンガン重石を17.7g 入れ、水素初
圧:10MPa 、反応温度:450℃、反応時間:60分の条件下
で粉砕鉄マンガン重石の硫化処理を行った。しかる後、
該硫化処理での反応生成物を濾過し、テトラハイドロフ
ランで洗浄した後、残渣を真空乾燥して粉砕鉄マンガン
重石を硫化したもの(以降、粉砕鉄マンガン重石の硫化
触媒)を得た。
(Example 1) First, manganese heavy stone (W: 57.5wt%, Fe: 1)
2.9 wt%, Mn: 2.6 wt%) to obtain a crushed wolframite having an average particle size of 2.6 μm. Then, in an autoclave having an inner volume of 0.3 liter, 60.0 g of 1-methylnaphthalene and 11.4 g of sulfur for sulfidation as a solvent for sulfidation were added, and 17.7 g of the pulverized manganese heavy stone was added, and an initial hydrogen pressure: 10 MPa, Sulfurization treatment of the pulverized manganese heavy stone was performed under the conditions of a reaction temperature: 450 ° C and a reaction time: 60 minutes. After a while
After the reaction product of the sulfidation treatment was filtered and washed with tetrahydrofuran, the residue was dried in vacuo to obtain sulfurized pulverized manganese heavy stone (hereinafter referred to as a pulverized manganese heavy iron sulfide catalyst).

【0028】次に、豪州ヤルーン褐炭に上記粉砕鉄マン
ガン重石の硫化触媒及び硫黄を添加し、更に褐炭液化溶
剤を添加し、スラリー状混合体を得た。このとき、粉砕
鉄マンガン重石の硫化触媒の添加量は無水無灰炭基準で
鉄マンガン重石として3.0wt%、又、硫黄の添加量は無
水無灰炭基準で0.9wt %となる量にした。
Next, the sulfurizing catalyst and sulfur of the pulverized iron manganese heavy stone were added to Yaloon brown coal in Australia, and a brown coal liquefaction solvent was further added to obtain a slurry mixture. At this time, the amount of the sulfurized catalyst added to the pulverized wolframite was 3.0 wt% based on anhydrous ashless coal, and the amount of sulfur was 0.9 wt% based on anhydrous ashless coal.

【0029】上記スラリー状混合体をオートクレーブ
(内容積5リットル)中に導入し、水素初圧:9 MPa、
反応温度:450℃、反応時間:60分の反応条件で水添反応
(液化反応)を行わせた。しかる後、得られた反応生成
物(水添生成物)を分離し、それを蒸留し、油分を沸点
範囲別に分離して得た。その結果、C5 〜沸点:420℃の
液体留分(油分)の収率は、無水無灰炭基準で49.8wt%
であった。
The above slurry mixture was introduced into an autoclave (internal volume: 5 liters), and hydrogen initial pressure: 9 MPa,
A hydrogenation reaction (liquefaction reaction) was performed under a reaction temperature of 450 ° C. and a reaction time of 60 minutes. Thereafter, the obtained reaction product (hydrogenated product) was separated, distilled, and oil was separated by boiling range to obtain. As a result, the yield of a liquid fraction (oil) having a boiling point of C 5 to 420 ° C. was 49.8 wt% based on anhydrous ashless coal.
Met.

【0030】(比較例1)比較のため、天然パイライト
鉱石を粉砕し、平均粒径:2.6μm の粉砕パイライト鉱石
触媒を得た。この粉砕パイライト鉱石触媒を前記粉砕鉄
マンガン重石の硫化触媒に代えて使用し、硫黄を無添加
としたことを除き前記実施例1と同様の工程及び条件に
よりスラリー状混合体の調製、石炭液化、蒸留を行っ
た。その結果、C5 〜沸点:420℃の液体留分の収率は、
無水無灰炭基準で24.8wt%であった。
Comparative Example 1 For comparison, a natural pyrite ore was pulverized to obtain a pulverized pyrite ore catalyst having an average particle size of 2.6 μm. This crushed pyrite ore catalyst was used in place of the sulfide catalyst of the crushed wolframite, and the preparation of a slurry mixture, coal liquefaction, and the like were performed by the same steps and conditions as in Example 1 except that sulfur was not added. Distillation was performed. As a result, the yield of the liquid fraction having a C 5 to boiling point of 420 ° C. is as follows:
It was 24.8% by weight based on anhydrous ashless coal.

【0031】尚、触媒添加量(スラリー状混合体中での
粉砕パイライト鉱石触媒の含有量)は、無水無灰炭基準
で鉄原子として3.0wt %とした。これは、触媒添加量を
実質的に前記実施例1と同等とするためである。
The catalyst addition amount (content of the pulverized pyrite ore catalyst in the slurry-like mixture) was 3.0 wt% as iron atoms based on anhydrous ashless coal. This is because the amount of the catalyst added is substantially equal to that of the first embodiment.

【0032】(実施例2)スラリー状混合体の調製に際
し、粉砕鉄マンガン重石の硫化触媒(前記実施例1と同
様の条件で得られた同様の硫化触媒)の添加量をパラメ
ータとして変化させ、該添加量の異なるスラリー状混合
体を得た。この点を除き、実施例1と同様の工程及び条
件によりスラリー状混合体の調製、石炭液化、蒸留を行
った。そして、粉砕鉄マンガン重石の硫化触媒の添加量
とC5 〜沸点:420℃の液体留分の収率との関係を調べ、
それよりC5 〜沸点:420℃の液体留分の収率が比較例1
と同一となるときの触媒添加量を求めたところ、その触
媒添加量は無水無灰炭基準で0.8 wt%であった。
(Example 2) In preparing a slurry-like mixture, the addition amount of a sulfide catalyst of ground iron manganese deuterite (similar sulfide catalyst obtained under the same conditions as in Example 1) was changed as a parameter. Slurry-like mixtures having different addition amounts were obtained. Except for this point, preparation of a slurry-like mixture, liquefaction of coal, and distillation were performed by the same steps and conditions as in Example 1. Then, the relationship between the amount of the sulfurized catalyst added to the crushed wolframite and the yield of the liquid fraction having a C 5 to boiling point of 420 ° C. was examined,
The yield of the liquid fraction having a C 5 to boiling point of 420 ° C. was higher than that of Comparative Example 1.
When the amount of the catalyst added was the same as in the above, the amount of the catalyst added was 0.8 wt% based on anhydrous ashless coal.

【0033】上記実施例1と比較例1との比較より、触
媒添加量が実質的に同一(実施例1では無水無灰炭基準
で鉄マンガン重石として3.0wt %、比較例1では無水無
灰炭基準で鉄原子として3.0wt %)のとき、粉砕鉄マン
ガン重石の硫化触媒を用いた場合(実施例1)は、粉砕
パイライト鉱石の硫化触媒を用いた場合(比較例1)に
比し、C5 〜沸点:420℃の液体留分の収率が極めて高い
ことがわかる。
From the comparison between Example 1 and Comparative Example 1, it was found that the amounts of the catalysts added were substantially the same (Example 1: 3.0 wt% as manganese heavy stone based on anhydrous ashless coal; Comparative Example 1: anhydrous ashless In the case of using sulfurized catalyst of pulverized iron manganese heavy stone (Example 1) when the sulfur atom is 3.0 wt% as iron atom on the basis of charcoal (Comparative Example 1), It can be seen that the yield of the liquid fraction at C 5 to boiling point: 420 ° C. is extremely high.

【0034】又、上記実施例2と比較例1との比較よ
り、粉砕鉄マンガン重石の硫化触媒を用いた場合(実施
例2)は、粉砕パイライト鉱石の硫化触媒を用いた場合
(比較例1)に比し、C5 〜沸点:420℃の液体留分の収
率同一となるときの触媒添加量が極めて少なく、より少
量の触媒添加量で同一(同等)の油分収率を確保し得る
ことがわかる。
From the comparison between Example 2 and Comparative Example 1, when the sulfurized catalyst of pulverized iron manganese heavy stone was used (Example 2), the sulfurized catalyst of pulverized pyrite ore was used (Comparative Example 1). compared to), C 5 ~ bp catalytic amount of 420 when ℃ consisting of a yield identical liquid fraction is very small, can ensure the oil yield of the same (equivalent) with a smaller amount of catalyst loading You can see that.

【0035】(実施例3)前記粉砕鉄マンガン重石の硫
化触媒に代えて粉砕鉄マンガン重石触媒(硫化処理して
いない粉砕鉄マンガン重石触媒)を使用し、スラリー状
混合体の調製の際に助触媒として硫黄を比較的多量(無
水無灰炭基準で 2.7wt%)添加し、これらの点を除き前
記実施例1と同様の工程及び条件によってスラリー状混
合体の調製、石炭液化、蒸留を行ったところ、C5 〜沸
点:420℃の液体留分の収率は、無水無灰炭基準で49.1wt
%であった。この実施例3と前記実施例1との比較よ
り、粉砕鉄マンガン重石を予め硫化処理してからスラリ
ー状混合体に添加する場合(実施例1)と、粉砕鉄マン
ガン重石をスラリー状混合体に添加してから助触媒によ
り硫化する場合(実施例3)とでは、液体留分の収率が
同等であり、従って、両者の粉砕鉄マンガン重石の硫化
の程度及び触媒活性の程度は同等であったと考えられ
る。
Example 3 A pulverized manganese weighing stone catalyst (a pulverized manganese weighing stone catalyst not subjected to sulfidation treatment) was used in place of the pulverized manganese weighing stone sulfide catalyst to assist in preparing a slurry-like mixture. A relatively large amount of sulfur (2.7 wt% based on anhydrous ashless coal) was added as a catalyst, and a slurry mixture was prepared, coal liquefied, and distilled by the same steps and conditions as in Example 1 except for these points. As a result, the yield of the liquid fraction having a C 5 to boiling point of 420 ° C. was 49.1 wt.
%Met. From the comparison between Example 3 and Example 1, the case where the crushed wolframite is added to the slurry-like mixture after the sulfurating treatment in advance (Example 1) and the case where the crushed wolframite is added to the slurry-like mixture are shown. In the case of sulfurization with the cocatalyst after the addition (Example 3), the yields of the liquid fractions are equal, and therefore, the degree of sulfidation and the degree of catalytic activity of both pulverized manganese heavy stones are equal. It is considered that

【0036】[0036]

【発明の効果】本発明に係る石炭の液化方法によれば、
従来法(石炭液化用触媒として粉砕鉄鉱石触媒を用いる
石炭の液化方法)に比し、少量の触媒添加量であっても
従来法と同等の油分収率を確保し得るようになる。又、
従来法と同等の触媒添加量のとき、従来法に比し、油分
収率を高め得るようになる。
According to the coal liquefaction method of the present invention,
Compared to the conventional method (a method for coal liquefaction using a pulverized iron ore catalyst as a catalyst for coal liquefaction), an oil yield equivalent to that of the conventional method can be secured even with a small amount of added catalyst. or,
When the catalyst addition amount is the same as the conventional method, the oil yield can be increased as compared with the conventional method.

【0037】従って、従来法で問題であったエロージョ
ンの発生、触媒原料の粉砕処理量が多いこと等の支障を
生じることなく、油分収率の高い石炭の液化運転を遂行
し得るようになる。
Therefore, the liquefaction operation of coal having a high oil yield can be performed without causing problems such as erosion and a large amount of pulverization of the catalyst material, which are problems in the conventional method.

フロントページの続き (73)特許権者 000105567 コスモ石油株式会社 東京都港区芝浦1丁目1番1号 (72)発明者 兼子 隆雄 神奈川県厚木市毛利台2丁目26−12 (72)発明者 小山 徹 兵庫県加古川市加古川町美乃利124−1 −101 (72)発明者 田沢 和治 兵庫県加古川市別府町新野辺385 (72)発明者 今井 潤 埼玉県三郷市さつき平2丁目2−1− 104 (56)参考文献 特開 昭54−63103(JP,A) 特開 昭56−72079(JP,A) 特開 平3−131683(JP,A) 特開 昭59−166586(JP,A) 特開 昭59−155495(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10G 1/06 B01J 23/85 B01J 27/047 Continuing on the front page (73) Patent holder 000105567 Cosmo Oil Co., Ltd. 1-1-1, Shibaura, Minato-ku, Tokyo (72) Inventor Takao Kaneko 2-26-12 Moridai, Atsugi-shi, Kanagawa Prefecture (72) Inventor Koyama Tohru 124-1-101 Minori, Kakogawa-cho, Kakogawa-shi, Hyogo (72) Inventor Kazuharu Tazawa 385 Shinnobe, Beppu-cho, Kakogawa-shi, Hyogo (72) Inventor Jun Jun Imai 2-1-1, Satsukidaira, Misato-shi, Saitama (56) References JP-A-54-63103 (JP, A) JP-A-56-72079 (JP, A) JP-A-3-131683 (JP, A) JP-A-59-166586 (JP, A) Kaisho 59-155495 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C10G 1/06 B01J 23/85 B01J 27/047

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 石炭を溶剤及び触媒の共存下で水添する
水添工程を含む石炭の液化方法において、前記触媒とし
て鉄マンガン重石を用いることを特徴とする石炭の液化
方法。
1. A coal liquefaction method comprising a hydrogenation step of hydrogenating coal in the coexistence of a solvent and a catalyst, wherein a manganese heavy stone is used as the catalyst.
【請求項2】 前記石炭、溶剤及び触媒と共に単体硫黄
又は硫黄化合物が存在する請求項1記載の石炭の液化方
法。
2. The coal liquefaction method according to claim 1, wherein elemental sulfur or a sulfur compound is present together with said coal, solvent and catalyst.
【請求項3】 前記鉄マンガン重石が硫化処理された
後、触媒として用いられる請求項1記載の石炭の液化方
法。
3. The coal liquefaction method according to claim 1, wherein the manganese deuterite is used as a catalyst after the sulfidation treatment.
JP01840494A 1994-01-13 1994-02-15 Coal liquefaction method Expired - Fee Related JP3227298B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01840494A JP3227298B2 (en) 1994-02-15 1994-02-15 Coal liquefaction method
AU81710/94A AU673784B2 (en) 1994-01-13 1994-12-22 Process of coal liquefaction
AU45803/96A AU681983B2 (en) 1994-01-13 1996-02-28 Process of coal liquefaction
AU45804/96A AU4580496A (en) 1994-01-13 1996-02-28 Process of coal liquefaction
AU58383/96A AU690029B2 (en) 1994-01-13 1996-07-08 Process for coal liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01840494A JP3227298B2 (en) 1994-02-15 1994-02-15 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPH07224283A JPH07224283A (en) 1995-08-22
JP3227298B2 true JP3227298B2 (en) 2001-11-12

Family

ID=11970740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01840494A Expired - Fee Related JP3227298B2 (en) 1994-01-13 1994-02-15 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JP3227298B2 (en)

Also Published As

Publication number Publication date
JPH07224283A (en) 1995-08-22

Similar Documents

Publication Publication Date Title
CN102380396B (en) Bimetal or multi-metal high-dispersion composite coal tar hydrogenation catalyst and preparation method thereof
JPS63113096A (en) Catalytic hydroconversion of heavy oil using two-metal catalyst
JPS61157350A (en) Hydrotreating catalyst containing iron mixed metal sulfide activated with mo and w and carrier and its use
CN100457261C (en) Iron-based coal liquefied catalyst and production thereof
GB1593007A (en) Hydrogenation catalysts
CA2961020C (en) Method for hydrocracking, method for producing hydrocracked oil, hydrocracking device, and device for producing hydrocracked oil
US2112292A (en) Process for recovery of catalytically active molybdenum sulphide
WO2017088198A1 (en) Oil-soluble hydrogenation catalyst, and preparation method therefor and use thereof
JP3227298B2 (en) Coal liquefaction method
JP2001164263A (en) Method for liquefying coal
JP2003327971A (en) Method for hydrocracking petroleum-based heavy oil
CN102989486B (en) Heavy-oil hydrogenation modifying catalyst and preparation method thereof and heavy oil hydrogenation modifying method
CN103059915A (en) Poor-quality heavy oil hydro-upgrading method
JP3227312B2 (en) Coal liquefaction method
JP3476358B2 (en) Coal liquefaction method
CN102989495A (en) Heavy oil hydrogenation modification catalyst and preparation method thereof, and heavy oil hydrogenation modification method
CN104549278B (en) A kind of residual oil bifunctional catalyst and its preparation and application
Sato et al. Activity enhancement of iron ores as a catalyst for direct coal liquefaction
CN114427038A (en) Method for recycling metal components in tail oil
CN1233798C (en) Preparation process for suspension bed hydrogenating cracking catalyst for slag oil
JP3287684B2 (en) Coal liquefaction method
CN110270331B (en) Suspension bed hydrogenation catalyst and preparation method and application thereof
CN100441340C (en) Phosphorus-containing organic compound modified low-melting-point alloy nano particles and method for preparing same
CN113893883B (en) Preparation method and application of metal sulfide oily dispersion
US4518709A (en) Dual particle hydrotreating catalyst

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010809

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees