JP3283766B2 - 炭種判別方法 - Google Patents

炭種判別方法

Info

Publication number
JP3283766B2
JP3283766B2 JP25615096A JP25615096A JP3283766B2 JP 3283766 B2 JP3283766 B2 JP 3283766B2 JP 25615096 A JP25615096 A JP 25615096A JP 25615096 A JP25615096 A JP 25615096A JP 3283766 B2 JP3283766 B2 JP 3283766B2
Authority
JP
Japan
Prior art keywords
coal
type
absorbance
discriminant
hierarchy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25615096A
Other languages
English (en)
Other versions
JPH10104156A (ja
Inventor
三幸 ▲高▼橋
治 畠山
敏 菅原
文夫 沓掛
正敏 横山
卓也 木下
定次 河副
洋 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Japan Tobacco Inc
Original Assignee
Tohoku Electric Power Co Inc
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Japan Tobacco Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP25615096A priority Critical patent/JP3283766B2/ja
Priority to EP97302810A priority patent/EP0803726A3/en
Priority to US08/842,510 priority patent/US5873982A/en
Priority to TW086105315A priority patent/TW393574B/zh
Priority to KR1019970015628A priority patent/KR100239851B1/ko
Publication of JPH10104156A publication Critical patent/JPH10104156A/ja
Application granted granted Critical
Publication of JP3283766B2 publication Critical patent/JP3283766B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、石炭の種類(以
降、「炭種」という。)を非接触で自動的に判別する炭
種判別方法に関する。
【0002】
【従来の技術】石炭の性状はその産地によって異なって
おり、炭質に応じて大きく分けると、無煙炭、歴青炭、
かっ炭等に分類される。石炭は地質時代の植物が堆積し
て地殻運動により繊維成分が脱水化反応を起こし腐植化
したものであるが、炭質が、かっ炭、歴青炭、無煙炭に
移行するに従って腐植化の度合が進んで石炭化度が増加
し揮発分は少なくなる傾向を示す。このように、腐植化
の度合により石炭の内容成分は変化し、地域に応じて多
種類の性状の石炭が形成される。これまで石炭の性状に
ついては、色やにおい等だけでは正確な判別ができない
ため、内容成分を化学分析し石炭の性状から過去の性状
データと比較して判別していた。
【0003】
【発明が解決しようとする課題】しかし、化学分析を行
うにはかなりの時間(3〜4日)と熟練が必要であり、
例えば、ボイラー等の供給ラインで燃料となる炭種を変
更して燃焼調整を行う場合など、その場ですぐに炭種を
判別したい場合に問題があった。
【0004】また、中赤外線を利用して石炭の揮発分を
測定し、石炭の品質管理を自動化、連続化しようとする
試みもあるが、この方法は中赤外線を使用しているた
め、検出器の感度が低くS/N比が小さくなって測定精
度が悪い、水分等の吸収が強いため反射光が弱く、迷
光、石炭の粒度および湿度の影響が大きい、中赤外線は
熱線領域であり温度の影響が大きい等の問題がある。こ
のため、例えば石炭を供給するオンライン上で測定する
ときには迷光、粒度等の影響を受けやすく精度良く炭種
性状を判別するには問題があった。
【0005】さらに、ボイラー等の供給ラインは炭種を
変更することが行われるが、化学分析で性状が判別して
も炭種までを判別するのは困難であった。
【0006】本発明は、炭種の判別を自動化して非接触
でリアルタイムに判別するとともに、オンライン上でも
迷光、粒度および温度等の影響を低減して精度良く判別
できるようにすることを課題とする。
【0007】
【課題を解決するための手段】上記の課題を解決するた
めになした本発明の炭種判別方法は、使用が予定される
複数種類の炭種について、波長帯域が1500nm〜2
500nmの近赤外線領域の波長の異なる複数の近赤外
線を照射して該近赤外線の反射光から各炭種における吸
光度の分布をそれぞれ求め、該吸光度の分布に応じて該
複数の炭種を所定の階層をなす複数の群に割り当てると
ともに、同階層の2の群、または、同階層の群と炭種、
または、同階層の2の炭種について、前記吸光度の分布
領域を分ける境界からの距離に対応する判別式を各階層
に対応してそれぞれ記憶しておき、石炭を供給するコン
ベア上に配設され前記近赤外線を該コンベア上の石炭に
照射するとともにこの石炭からの近赤外線の反射光を受
する測定ヘッドを用い、前記測定ヘッドからの電圧信
号に基づいて吸光度換算値を求めるとともに、前記最上
位階層から最下位階層にかけて各階層の前記判別式を順
次選択し、前記吸光度換算値および前記判別式に基づい
て、群同士の判別、群と炭種の判別および炭種同士の判
別を行い、単一の炭種を決定するようにしたことを特徴
とする。
【0008】本発明の炭種判別方法において、判別式
は、所定の組み合わせの2群についてそれぞれ記憶して
おく。そして、近赤外線を石炭に照射してその反射光か
ら吸光度を求め、この吸光度と判別式に基づいて、その
吸光度がどの群に属するかを判定する。このとき2群ず
つの判別を順次行うことにより、その吸光度が属する群
を絞り込むことになり、最終的に単一の炭種が決定され
る。
【0009】
【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。この例はボイラー等のエネルギー源として
石炭を使用する工程に用いたものである。このような工
程で炭種判別を行うことはエネルギーの供給を安定的か
つ効率的に維持するために非常に重要である。つまり、
エネルギー供給源の石炭をリアルタイムに炭種判別する
ことにより、異なる種類の石炭の供給量およびバーナー
の空気量等の燃焼調整をコントロールすることができ発
熱量を精度良く一定レベルに保つことができる。また、
凍結炭や非凍結炭を判別できる。
【0010】図1は本発明を適用した炭種判別装置を示
す図であり、測定ヘッドAは、図示しないボイラーに石
炭Cを供給するコンベア100上に配設されている。測
定ヘッドAは近赤外線領域で特定成分に対して強い吸収
を示す測定光と特定成分の吸収を受けにくい参照光の光
束を生成してコンベア100上の石炭Cに照射するとと
もに石炭Cからの反射光を検出し、その受光量に応じた
信号を出力する。そして、コントローラBは測定ヘッド
Aの出力信号に基づいて炭種を判別して表示する。
【0011】測定ヘッドAの光学系は、光源1、第1集
光レンズ2、ディスク回転用モータ3、回転ディスク
4、第2集光レンズ5、反射鏡6、凹面鏡7、凸面鏡8
および受光素子9を備えており、光源1からの光は第1
集光レンズ2で収束されて回転ディスク4に照射され
る。
【0012】図2に示したように、回転ディスク4には
波長帯域が1500nm〜2500nmの近赤外線領域
の所定の波長で狭帯域の透過特性をもつ干渉フィルタ4
1,4a2 ,4a3 ,…が取り付けられており、ディ
スク回転用モータ3によって回転ディスク4が回転され
ると各フィルタ4a1 ,4a2 ,4a3 ,…は第1集光
レンズ2と第2集光レンズ5の間の光路を順番に横切る
ようになっている。
【0013】回転ディスク4に照射された光は各フィル
タ4a1 ,4a2 ,4a3 ,…で近赤外線の測定光およ
び参照光となって反射鏡6を介して石炭Cに照射され
る。そして、石炭Cからの反射光は凹面鏡7で集光され
て凸面鏡8を介して受光素子9に導かれ、この受光素子
9は受光量に応じたレベルの電圧信号をコントローラB
に出力する。なお、回転ディスク4の近傍には回転ディ
スク4の回転位置を検出する回転位置検出器10が配設
されており、コントローラBは、この回転位置検出器1
0の検出信号によって各フィルタ4a1 ,4a2 ,4a
3 ,…の測定光および参照光に対応する電圧信号の種類
を識別する。
【0014】コントローラBは、AD変換回路11、C
PU12、メモリ13、表示器14および操作キー15
を備えており、測定ヘッドAからの電圧信号はAD変換
回路11で電圧値に対応するデジタルデータ(以後、
「受光量データ」という。)に変換されてCPU12に
読み取られる。メモリ13には、吸光度換算、炭種判別
および表示処理等を行う各プログラムが記憶されてお
り、CPU12はこれらのプログラムに基づいて処理を
行う。
【0015】具体的には、AD変換回路11から出力さ
れる測定光の受光量データSと参照光の受光量データR
の比S/Rの自然対数を近赤外の吸光度換算値xとして
求める。この実施例では、測定光を4、参照光を1とし
た場合に、測定光に対する出力電圧V1〜V4と参照光に
対する出力電圧V0から、次式に基づいて、吸光度換算
値x1,x2,x3,x4が得られる。そして、この吸光度
換算値x1,x2,x3,x4に基づいて炭種を判別する。 x1=LN(V0/V1) x2=LN(V0/V2) x3=LN(V0/V3) x4=LN(V0/V4)
【0016】炭種の判別は次のように行う。4つの各吸
光度換算値x1,x2,x3,x4を軸とする4次元空間を
概念的に想定すると、任意の炭種についての1回の測定
すなわち1サンプルは、その一組の吸光度換算値x1,
x2,x3,x4を座標とする4次元空間内の1つのサン
プル点に対応する。また、吸光度換算値x1,x2,x
3,x4 は炭種毎にその炭種に応じた傾向の値を取り、
各サンプル点は、炭種毎にある程度の広がりを持つ炭種
特有の所定の領域内にそれぞれ含まれる。この炭種特有
の領域は、炭種毎にほぼ分離しているので、サンプル点
がどの領域にあるかを判定して炭種を判別する。なお、
この実施例では、各炭種を判別するにあたり、複数の炭
種を階層をなす複数の群に割り当て、群同士の判別、群
と炭種の判別および炭種同士の判別を行い、単一の炭種
に決定する。
【0017】サンプル点の領域の判定には、吸光度換算
値x1,x2,x3,x4 を変数、a0,a1,a2,a3,a4 を係
数とする次式(1)の判別式を用いる。 Z=a0+a1・x1+a2・x2+a3・x3+a4・x4 ……(1) なお、この係数a0,a1,a2,a3,a4については後述説
明する。
【0018】ここで、a0,a1,a2,a3,a4を係数
とする次の方程式(2)は4次元空間内の一つの平面
(2次元平面を拡張した概念的な平面)を表している。 a0+a1・x1+a2・x2+a3・x3+a4・x4=0 ……(2) また、前記判別式(1)は、方程式(2)と1次の項の
係数a0,a1,a2,a3,a4が等しいので方程式
(2)の平面に平行な任意の平面を表している。そし
て、この方程式(2)の平面から判別式(1)の平面ま
での距離は、 Z/Δ ,(ただし、Δ=±[a12+a22+a32+a421/2 )……(3) となる。
【0019】いま、1回のサンプルで吸光度換算値とし
てx1*,x2*,x3*,x4*が得られ、このときの判別式
(1)の値がZ*であったとすると、この吸光度換算値
x1*,x2*,x3*,x4*に対応するサンプル点は、Z*
を定数とした次式(4)の平面上の一点に相当する。 Z*=a0+a1・x1+a2・x2+a3・x3+a4・x4 ……(4) したがって、式(2)で表される面から吸光度換算値x
1*,x2*,x3*,x4*に対応するサンプル点までの距離
は式(3)から、Z*/Δとなる。なお、Δの値を正ま
たは負のいずれか一方に定義すると、距離の値は正また
は負の値を取り、その符号の違いは逆方向を示す。
【0020】すなわち、判別式の値Z* は距離に比例す
る値であり、その値が正であるか負であるかによって、
サンプル点が式(2)で表される平面のどちら側にある
かを判別することができる。
【0021】そこで、この式(2)で表される平面(以
降、「基準面」という。)を、4次元空間内での各炭種
毎の特有な領域あるいはそれらの群をそれぞれ分割する
面として複数想定し、この各炭種毎および群毎の領域と
複数の基準面を設定する過程で、係数a0,a1,a2,a3,
a4 の組と判別対象とする炭種と群を決める。
【0022】先ず、判別対象とする複数炭種の各々につ
いて吸光度換算値x1,x2,x3,x4のサンプリングを行
い、各炭種毎にサンプル点の分布を調べる。次に、各炭
種の領域あるいは群の二つの領域における平均サンプル
点を想定し、二つの領域の平均サンプル点間の中点を通
って、二つの領域を最も精度良く分割する面となるよう
に係数a0,a1,a2,a3,a4 を求める。そして、この係
数を前式(1)の判別式の係数とすることにより、判別
式の値Zの正負の符号から領域を判別する。なお、判別
式の値Zが0の場合は正の場合に含める。
【0023】なお、上記のように二つの領域を最も精度
良く分割する面の係数を求めるためには分散分析等の手
法を用いることができる。例えば、次表1のように、分
割すべき2つの領域、第1群,第2群について、吸光度
換算値に対応する変量がp個、第1群のサンプルがn1
個、第2群のサンプルがn2個あるとする。
【0024】
【表1】
【0025】このとき、係数a1,a2,a3,a4 に相当す
る係数a1,a2,…,apは、第1群および第2群の平均間
の標準化距離を最大とするものとして、次式の連立方程
式(5)の解として得られる。
【0026】
【数1】
【0027】また、係数a0 は次式(6)で求められ
る。
【0028】
【数2】
【0029】図3は実施例における炭種の群分けと判別
の手順を示す図である。この例では炭種A〜炭種Qの1
7種類の炭種をツリー構造となるように複数群に分けて
あり、ツリー構造の分岐点に対応する部分で両群に応じ
て設定された判別式(係数が(ア) 〜(タ) )によりそれぞ
れ2群ずつでどちらの群に属するかを判別する。各判別
式の係数は、例えば図4に示したようにメモリ13にテ
ーブルとして記憶しており、判別結果に基づいて次ぎの
判別式の係数を選択して吸光度換算値と共に演算を行
う。
【0030】先ず、係数(ア) を選択して判別式の値Zの
正負を判定し、炭種Aであれば処理を終了し、炭種Aで
なければ、係数(イ) を選択して炭種B〜Hの群と炭種I
〜Qの群との2群について判別する。以下同様に、判別
結果に基づいて係数(ウ) 〜(タ) を選択し、最終的に単一
の炭種が決定されるまで判別を順次行う。
【0031】図5は実施例の動作を示すフローチャート
であり、先ず、ステップS1で、コンベア等で供給され
る石炭など判別対象の石炭に光を照射し、ステップS2
で最初の判別式の係数を選択する。次に、ステップS3
で各測定波長についての吸光度換算値x1,x2,x3,
x4を演算して判別式に代入し、ステップS4で判別式
Zの演算結果に基づいて単一の炭種に決定されたかを判
定し、単一の炭種に決定されなければ、ステップS5で
判別対象とする群に応じて次の判別式の係数を選択し、
ステップS3に戻る。以上の処理を繰り返して、ステッ
プS4で単一の炭種に決定されると、ステップS6でそ
の炭種を表示するなど判別結果を出力して処理を終了す
る。
【0032】以上のように、非接触でリアルタイムに炭
種を判別できるので、オンライン上での炭種判別に適用
することができる。また、近赤外線を用いているので、
迷光、粒度および温度等の影響を低減して精度良く判別
することができる。
【0033】なお、以上の実施例では測定波長が4種類
の場合について説明したが、複数種類の波長であればよ
く、一般に、波長の種類を増やすことにより判別精度を
高めることができる。
【0034】
【発明の効果】以上説明したように、本発明の炭種判別
方法によれば、使用が予定される複数種類の炭種につい
て、波長帯域が1500nm〜2500nmの近赤外線
領域の波長の異なる複数の近赤外線を照射して該近赤外
線の反射光から各炭種における吸光度の分布をそれぞれ
求め、該吸光度の分布に応じて該複数の炭種を所定の階
層をなす複数の群に割り当てるとともに、同階層の2の
群、または、同階層の群と炭種、または、同階層の2の
炭種について、前記吸光度の分布領域を分ける境界から
の距離に対応する判別式を各階層に対応してそれぞれ記
憶しておき、石炭を供給するコンベア上に配設され前記
近赤外線を該コンベア上の石炭に照射するとともにこの
石炭からの近赤外線の反射光を受光する測定ヘッドを用
い、前記測定ヘッドからの電圧信号に基づいて吸光度換
算値を求めるとともに、前記最上位階層から最下位階層
にかけて各階層の前記判別式を順次選択し、前記吸光度
換算値および前記判別式に基づいて、群同士の判別、群
と炭種の判別および炭種同士の判別を行い、単一の炭種
を決定するようにしたので、吸光度換算値と判別式に基
づいて、その吸光度が属する群を絞り込んで単一の炭種
を決定することができ、炭種の判別を自動化して非接触
でリアルタイムに判別することができる。また、波長帯
域が1500nm〜2500nmの近赤外線領域の波長
を用いているので、オンライン上でも迷光、粒度および
温度等の影響を低減して精度良く判別することができ
る。
【図面の簡単な説明】
【図1】本発明を適用した炭種判別装置を示す図であ
る。
【図2】同炭種判別装置の回転ディスクを示す図であ
る。
【図3】実施例における炭種の群分けと判別の手順を示
す図である。
【図4】実施例における判別式の係数のテーブルを示す
図である。
【図5】実施例における動作を示すフローチャートであ
る。
【符号の説明】
4a 干渉フィルタ 12 CPU 13 メモリ A 測定ヘッド B コントローラ C 石炭 100 コンベア
───────────────────────────────────────────────────── フロントページの続き (72)発明者 畠山 治 宮城県宮城郡七ヶ浜町代ヶ崎浜字前島1 番地 東北電力株式会社 仙台火力発電 所内 (72)発明者 菅原 敏 宮城県宮城郡七ヶ浜町代ヶ崎浜字前島1 番地 東北電力株式会社 仙台火力発電 所内 (72)発明者 沓掛 文夫 東京都大田区南馬込一丁目8番1号 株 式会社ケット科学研究所内 (72)発明者 横山 正敏 宮城県仙台市青葉区二日町2番15号 株 式会社ケット科学研究所 仙台営業所内 (72)発明者 木下 卓也 東京都大田区南馬込一丁目8番1号 株 式会社ケット科学研究所内 (72)発明者 河副 定次 神奈川県平塚市黒部丘1番31号 日本た ばこ産業株式会社 生産技術開発センタ ー内 (72)発明者 小原 洋 神奈川県平塚市黒部丘1番31号 日本た ばこ産業株式会社 生産技術開発センタ ー内 (56)参考文献 尾崎幸洋,日本分光学会測定法シリー ズ32・近赤外分光法,日本,株式会社学 会出版センター,1996年 5月20日,初 版,p.109−118 O.Ito,他2名,Diffuse reflectance spect ra in near−ir regi on of coals,FUEL,英 国,Elsevier Scienc e,vol.67,p.573−578 (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 JICSTファイル(JOIS)

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 使用が予定される複数種類の炭種につい
    て、波長帯域が1500nm〜2500nmの近赤外線
    領域の波長の異なる複数の近赤外線を照射して該近赤外
    線の反射光から各炭種における吸光度の分布をそれぞれ
    求め、該吸光度の分布に応じて該複数の炭種を所定の階
    層をなす複数の群に割り当てるとともに、同階層の2の
    群、または、同階層の群と炭種、または、同階層の2の
    炭種について、前記吸光度の分布領域を分ける境界から
    の距離に対応する判別式を各階層に対応してそれぞれ記
    憶しておき、石炭を供給するコンベア上に配設され 前記近赤外線を
    コンベア上の石炭に照射するとともにこの石炭からの近
    赤外線の反射光を受光する測定ヘッドを用い、 前記測定ヘッドからの電圧信号に基づいて吸光度換算値
    を求めるとともに、前記 最上位階層から最下位階層にか
    けて各階層の前記判別式を順次選択し、前記吸光度換算
    および前記判別式に基づいて、群同士の判別、群と炭
    種の判別および炭種同士の判別を行い、単一の炭種を決
    定するようにしたことを特徴とする炭種判別方法。
  2. 【請求項2】 前記判別式は、前記複数の波長に対応す
    る複数の吸光度を変数とする1次結合式であることを特
    徴とする請求項1記載の炭種判別方法。
JP25615096A 1996-04-26 1996-09-27 炭種判別方法 Expired - Fee Related JP3283766B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25615096A JP3283766B2 (ja) 1996-09-27 1996-09-27 炭種判別方法
EP97302810A EP0803726A3 (en) 1996-04-26 1997-04-24 Method and apparatus for discriminating coal species
US08/842,510 US5873982A (en) 1996-04-26 1997-04-24 Method and apparatus of discriminating coal species
TW086105315A TW393574B (en) 1996-04-26 1997-04-24 Method and apparatus of discriminating coal species
KR1019970015628A KR100239851B1 (ko) 1996-04-26 1997-04-25 석탄종의 구별방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25615096A JP3283766B2 (ja) 1996-09-27 1996-09-27 炭種判別方法

Publications (2)

Publication Number Publication Date
JPH10104156A JPH10104156A (ja) 1998-04-24
JP3283766B2 true JP3283766B2 (ja) 2002-05-20

Family

ID=17288609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25615096A Expired - Fee Related JP3283766B2 (ja) 1996-04-26 1996-09-27 炭種判別方法

Country Status (1)

Country Link
JP (1) JP3283766B2 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
O.Ito,他2名,Diffuse reflectance spectra in near−ir region of coals,FUEL,英国,Elsevier Science,vol.67,p.573−578
尾崎幸洋,日本分光学会測定法シリーズ32・近赤外分光法,日本,株式会社学会出版センター,1996年 5月20日,初版,p.109−118

Also Published As

Publication number Publication date
JPH10104156A (ja) 1998-04-24

Similar Documents

Publication Publication Date Title
Mouazen et al. Characterization of soil water content using measured visible and near infrared spectra
Alpert et al. IR: theory and practice of infrared spectroscopy
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
EP0663997B1 (en) Spectroscopic instrument calibration
CN108535199B (zh) 一种户外多尺度枣园高光谱偏振探测方法
US7847935B2 (en) Method and apparatus for gas concentration quantitative analysis
CN108279217A (zh) 一种基于太赫兹时域光谱的煤岩判别方法
Shara et al. A deep survey for Galactic Wolf-Rayet stars. I-Motivation, search technique, and first results
Blanco et al. Principal component regression for mixture resolution in control analysis by UV-visible spectrophotometry
Haddadi et al. Using near-infrared hyperspectral images on subalpine fir board. Part 1: Moisture content estimation
US4952061A (en) Method and apparatus for sensing or determining one or more properties or the identity of a sample
US5873982A (en) Method and apparatus of discriminating coal species
JP3283766B2 (ja) 炭種判別方法
JP3268972B2 (ja) 炭種性状判別方法
US2844033A (en) Radiant energy measurement methods and apparatus
JP6061031B2 (ja) 分光分析システムおよび該方法
Kaffka et al. PQS (polar qualification system) the new data reduction and product qualification method
Baettig et al. Evaluation of intra-ring wood density profiles using NIRS: comparison with the X-ray method
Yegon et al. Application of portable near‐infrared spectroscopy for rapid detection and quantification of adulterants in baobab fruit pulp
JP2757021B2 (ja) 近赤外線分光分析方法
Ayalew et al. Development of a prototype infrared reflectance moisture meter for milled peat
JPH0640069B2 (ja) 近赤外線による食味値推定方法
Hooper Estimation of the moisture content of grass from diffuse reflectance measurements at near infrared wavelengths
Mueller Ocean optics protocols for satellite ocean color sensor validation, revision 4: radiometric measurements and data analysis protocols
Greensill et al. An experimental comparison of simple NIR spectrometers for fruit grading applications by CV Greensill, DS Newman

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

LAPS Cancellation because of no payment of annual fees