JP3282849B2 - Regeneration method of deteriorated catalyst - Google Patents

Regeneration method of deteriorated catalyst

Info

Publication number
JP3282849B2
JP3282849B2 JP16773792A JP16773792A JP3282849B2 JP 3282849 B2 JP3282849 B2 JP 3282849B2 JP 16773792 A JP16773792 A JP 16773792A JP 16773792 A JP16773792 A JP 16773792A JP 3282849 B2 JP3282849 B2 JP 3282849B2
Authority
JP
Japan
Prior art keywords
catalyst
reference example
reaction
deteriorated
methacrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16773792A
Other languages
Japanese (ja)
Other versions
JPH067685A (en
Inventor
求 大北
豊 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP16773792A priority Critical patent/JP3282849B2/en
Publication of JPH067685A publication Critical patent/JPH067685A/en
Application granted granted Critical
Publication of JP3282849B2 publication Critical patent/JP3282849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はメタクロレインを気相接
触酸化して、メタクリル酸を製造する際に使用する触媒
において、触媒活性の劣化した触媒を再生する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating a catalyst having a reduced catalytic activity in a catalyst used for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation.

【0002】[0002]

【従来の技術】メタクロレインを気相接触酸化して、メ
タクリル酸を製造する際に用いられる触媒に関しては、
数多くの提案がなされている。しかしながら、何れの触
媒も触媒の持つ宿命のためか、長期に亘って安定に触媒
活性を維持することは困難である。一方、経済的見地か
ら触媒活性の劣化した触媒を繰り返し再生し、使用する
方法が強く望まれている。このような観点から触媒の再
生についての提案が幾つかなされている。例えば、特開
昭60−232247号公報には、活性が低下した触媒
を反応管から抜出した後、含窒素ヘテロ環化合物で再生
処理する方法が、また、特開昭63−130144号公
報には、同様に反応管から抜出した後、アンモニア水及
び含窒素ヘテロ環化合物等で再生処理する方法が提案さ
れている。しかしながら、これらの化合物を用いる方法
は触媒を活性化するとき熱処理することが必要である
が、その際、含窒素ヘテロ環化合物の燃焼による触媒の
焼結や、含窒素ヘテロ環化合物による触媒の還元等を生
じ、取扱いが容易でない。一方、活性が低下した触媒を
反応管内で再生処理する方法も、幾つか提案されてい
る。例えば、特開昭56−91846号公報には、活性
が低下した触媒を、硝酸、亜硝酸のような窒素含有化合
物で活性化する方法が提案されている。反応管内で再生
するために、硝酸、亜硝酸等の化合物を用いるこの方法
は煩雑で、もっと簡易な方法が望まれる。このような方
法として、特開昭58−156351号公報には、水蒸
気10容量%以上含むガスで、70〜240℃の温度で
処理する方法が提案されている。この方法は簡易で好ま
しいが、70〜240℃という低い処理温度では、劣化
触媒を十分に活性化できない欠点を有している。
2. Description of the Related Art Regarding a catalyst used in producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation,
Many suggestions have been made. However, it is difficult to stably maintain the catalyst activity over a long period of time, either due to the fate of the catalyst. On the other hand, from an economic point of view, there is a strong demand for a method of repeatedly regenerating and using a catalyst having deteriorated catalytic activity. From such a viewpoint, some proposals have been made on the regeneration of the catalyst. For example, Japanese Patent Application Laid-Open No. Sho 60-232247 discloses a method in which a catalyst whose activity has been reduced is extracted from a reaction tube and then regenerated with a nitrogen-containing heterocyclic compound. Similarly, there has been proposed a method of performing a regenerating treatment with ammonia water, a nitrogen-containing heterocyclic compound, etc., after extracting from a reaction tube. However, the method using these compounds requires heat treatment when activating the catalyst. In this case, sintering of the catalyst by combustion of the nitrogen-containing heterocyclic compound and reduction of the catalyst by the nitrogen-containing heterocyclic compound are required. Etc., and handling is not easy. On the other hand, some methods for regenerating a catalyst whose activity has decreased in a reaction tube have also been proposed. For example, Japanese Patent Application Laid-Open No. 56-91846 proposes a method of activating a catalyst whose activity has decreased with a nitrogen-containing compound such as nitric acid or nitrous acid. This method using a compound such as nitric acid or nitrous acid for regeneration in a reaction tube is complicated, and a simpler method is desired. As such a method, Japanese Patent Application Laid-Open No. 58-156351 proposes a method in which a gas containing 10% by volume or more of water vapor is treated at a temperature of 70 to 240 ° C. Although this method is simple and preferable, it has a drawback that at a processing temperature as low as 70 to 240 ° C., the deteriorated catalyst cannot be sufficiently activated.

【0003】[0003]

【発明が解決しようとする課題】本発明は、メタクロレ
インを気相接触酸化して、メタクリル酸を製造する際に
用いられる、少なくともリン、モリブデン及びバナジウ
ムを含む活性の劣化した触媒を、再生使用するための劣
化触媒の再生を目的としている。
SUMMARY OF THE INVENTION The present invention relates to a method for regenerating a catalyst having a reduced activity containing at least phosphorus, molybdenum and vanadium, which is used in producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation. The purpose is to regenerate the deteriorated catalyst for the purpose.

【0004】[0004]

【課題を解決するための手段】本発明は、反応管に充填
された少なくともリン、モリブデン及びバナジウムを含
む触媒を用いて、メタクロレインを分子状酸素を用いて
気相接触酸化し、メタクリル酸を製造する際に用いられ
た劣化触媒の再生法であって、劣化触媒に対し20重量
%以下の硝酸アンモニウム、炭酸アンモニウム及び/又
は重炭酸アンモニウムに、分子状酸素を少なくとも0.
1容量%含有する酸化性ガスを接触させて得られた、硝
酸アンモニウム、炭酸アンモニウム及び/又は重炭酸ア
ンモニウムの分解物を含む酸化性ガスを、気相接触酸化
後の劣化触媒が充填されたままの反応管に流通させ、反
応管内の劣化触媒を300〜410℃の温度で0.5〜
50時間熱処理することを特徴とする劣化触媒の再生法
にある。
According to the present invention, methacrolein is subjected to gas-phase catalytic oxidation using molecular oxygen using a catalyst containing at least phosphorus, molybdenum and vanadium filled in a reaction tube to convert methacrylic acid. A method for regenerating a deteriorated catalyst used in the production, wherein at least 0.2% of molecular oxygen is added to ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate at 20% by weight or less based on the deteriorated catalyst.
An oxidizing gas containing a decomposition product of ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate obtained by contacting with an oxidizing gas containing 1% by volume is filled with a deteriorated catalyst after gas phase catalytic oxidation. The degraded catalyst in the reaction tube is passed through the reaction tube at a temperature of 300 to 410 ° C. for 0.5 to
A method for regenerating a deteriorated catalyst is characterized by performing a heat treatment for 50 hours.

【0005】触媒は工業的見地、経済的見地から触媒活
性を長期に亘って安定に維持できることが望ましい。こ
のため、触媒調製方法や触媒組成・組成比等について改
良に改良を重ね、寿命の長い触媒の開発に力が注がれて
きている。しかしながら、メタクロレインの部分酸化用
触媒では触媒の持つ寿命には自ら限度がある。そこで、
本発明者らは触媒活性が劣化する原因について解析を試
み、触媒を長期に亘って使用できる方法について鋭意研
究を重ねてきた。その結果、劣化触媒をアンモニア含有
化合物の分解物を含む酸化性ガスで高い処理温度で熱処
理するだけという簡単な操作で活性が回復することを見
出し、本発明を完成するに至った。すなわち、本発明は
触媒活性の劣化した触媒を反応管内で抜出すことなく再
生することを特徴とする劣化触媒の再生法である。
[0005] It is desirable that the catalyst can maintain the catalyst activity stably for a long period of time from the industrial and economic viewpoints. For this reason, the catalyst preparation method, the catalyst composition, the composition ratio, and the like have been continuously improved, and efforts have been focused on the development of long-life catalysts. However, the catalyst for partial oxidation of methacrolein has its own limit on the service life of the catalyst. Therefore,
The present inventors have tried to analyze the cause of the deterioration of the catalyst activity, and have intensively studied a method that can use the catalyst for a long time. As a result, the inventors have found that the activity can be recovered by a simple operation of simply heat-treating the deteriorated catalyst with an oxidizing gas containing a decomposition product of an ammonia-containing compound at a high treatment temperature, and completed the present invention. That is, the present invention is a method for regenerating a deteriorated catalyst, which comprises regenerating a catalyst having deteriorated catalytic activity without extracting the catalyst in a reaction tube.

【0006】気相接触酸化後の劣化触媒が充填されたま
まの反応管に流通させる再生処理ガスは、劣化触媒に対
し20重量%以下、好ましくは2.5〜15重量%の硝
酸アンモニウム、炭酸アンモニウム及び/又は重炭酸ア
ンモニウムに、分子状酸素を少なくとも0.1容量%、
好ましくは1〜30容量%含有する酸化性ガスを接触さ
せて得られた、硝酸アンモニウム、炭酸アンモニウム及
び/又は重炭酸アンモニウムの分解物を含む酸化性ガス
である。硝酸アンモニウム、炭酸アンモニウム及び/又
は重炭酸アンモニウムの量が2.5重量%未満では添加
効果が小さい。また、20重量%を超すと再生効果が現
われなくなる。硝酸アンモニウム、炭酸アンモニウム及
び/又は重炭酸アンモニウムと接触させる酸化性ガスの
分子状酸素の含有量が0.1容量%未満では劣化触媒を
再生することができない。また、分子状酸素の含有量が
30容量%を超えるのは経済的に好ましくない。
[0006] The regeneration processing gas passed through the reaction tube filled with the deteriorated catalyst after the gas phase catalytic oxidation is 20% by weight or less, preferably 2.5 to 15% by weight of ammonium nitrate or ammonium carbonate based on the deteriorated catalyst. And / or at least 0.1% by volume of molecular oxygen in ammonium bicarbonate,
An oxidizing gas containing a decomposition product of ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate, obtained by contacting an oxidizing gas containing preferably 1 to 30% by volume. If the amount of ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate is less than 2.5% by weight, the effect of addition is small. On the other hand, if it exceeds 20% by weight, the regenerating effect is not exhibited. If the molecular oxygen content of the oxidizing gas to be brought into contact with ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate is less than 0.1% by volume, the deteriorated catalyst cannot be regenerated. Further, it is not economically preferable that the content of molecular oxygen exceeds 30% by volume.

【0007】硝酸アンモニウム、炭酸アンモニウム及び
/又は重炭酸アンモニウムに、分子状酸素を少なくとも
0.1容量%含有する酸化性ガスを接触させる方法とし
ては、これらのアンモニア含有化合物が分解する方法で
あればいかなる方法でもよい。このような方法の一つと
して、反応ガス入口部の反応管内に添加し、酸化性ガス
を流通する方法を挙げることが出来る。反応管に流通さ
せる再生処理ガスの空間速度は100ml/hr/ml-cat.
以上であればよい。再生処理ガスを流通させる際の熱処
理温度は300〜410℃、好ましくは330〜400
℃である。熱処理温度が300℃未満では、劣化触媒の
再生が十分でなく、また、410℃を超えると触媒の分
解を起こし好ましくない。熱処理時間は0.5〜50時
間、好ましくは1〜30時間である。
As a method for contacting ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate with an oxidizing gas containing at least 0.1% by volume of molecular oxygen, any method may be used as long as these ammonia-containing compounds are decomposed. It may be a method. As one of such methods, a method in which an oxidizing gas is added to the inside of a reaction tube at a reaction gas inlet to flow an oxidizing gas can be cited. The space velocity of the regeneration gas flowing through the reaction tube is 100 ml / hr / ml-cat.
All that is required is the above. The heat treatment temperature when flowing the regeneration treatment gas is 300 to 410 ° C., preferably 330 to 400 ° C.
° C. If the heat treatment temperature is lower than 300 ° C, regeneration of the deteriorated catalyst is not sufficient, and if it exceeds 410 ° C, decomposition of the catalyst occurs, which is not preferable. The heat treatment time is 0.5 to 50 hours, preferably 1 to 30 hours.

【0008】[0008]

【実施例及び比較例】以下、実施例、比較例を挙げて本
発明を説明する。先ず、実施例、比較例を記すに先立っ
て、相互比較を行なうために必要な参考例を示す。
Examples and Comparative Examples Hereinafter, the present invention will be described with reference to Examples and Comparative Examples. First, prior to describing the examples and comparative examples, reference examples necessary for performing mutual comparison will be described.

【0009】参考例1 パラモリブデン酸アンモニウム100部、メタバナジン
酸アンモニウム2.8部及び硝酸カリウム4.8部を純
水300部に溶解した。これに85%リン酸8.2部を
純水10部に溶解したものを加え、更にテルル酸3.3
部を純水20部に溶解したもの及び三酸化アンチモン
3.4部を加え攪拌しながら95℃に昇温した。つぎ
に、硝酸銅3.4部及び硝酸第二鉄5.7部を純水30
部に溶解したものを加え、混合液を100℃に加熱攪拌
しながら蒸発乾固した。得られた固型物を130℃で1
6時間乾燥後加圧成型し、空気流通下に380℃で5時
間熱処理したものを触媒として用いた。得られた触媒の
酸素以外の元素の組成(以下同じ)は、P1.5Mo
120.5Fe0.3Cu0.3Sb0.5Te
0.3で、本触媒を内径16.1mm、長さ600mmのス
テンレス製反応管に充填し、メタクロレイン5%、酸素
10%、水蒸気30%及び窒素55%(容量%)の混合
ガスを反応温度290℃、接触時間3.6秒で通じた。
生成物を捕集しガスクロマトグラフィーで分析したとこ
ろ、メタクロレイン反応率87.5%、メタクリル酸選
択率87.3%であった。
Reference Example 1 100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 300 parts of pure water. A solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added thereto, and 3.3% of telluric acid was further added.
The mixture was dissolved in 20 parts of pure water and 3.4 parts of antimony trioxide were added, and the mixture was heated to 95 ° C. with stirring. Next, 3.4 parts of copper nitrate and 5.7 parts of ferric nitrate were added to 30 parts of pure water.
The mixture was added to the solution, and the mixture was evaporated to dryness while heating and stirring at 100 ° C. The obtained solid was heated at 130 ° C. for 1 hour.
After drying for 6 hours, the mixture was molded under pressure, and heat-treated at 380 ° C. for 5 hours under air flow was used as a catalyst. The composition of the elements other than oxygen in the obtained catalyst (hereinafter the same) is P 1.5 Mo
12 V 0.5 Fe 0.3 Cu 0.3 Sb 0.5 K 1 Te
At 0.3 , the catalyst was filled into a stainless steel reaction tube having an inner diameter of 16.1 mm and a length of 600 mm, and reacted with a mixed gas of methacrolein 5%, oxygen 10%, steam 30% and nitrogen 55% (volume%). The temperature was 290 ° C. and the contact time was 3.6 seconds.
When the product was collected and analyzed by gas chromatography, the conversion of methacrolein was 87.5% and the selectivity of methacrylic acid was 87.3%.

【0010】参考例2 参考例1の触媒を長さ2500mmのステンレス製反応管
に充填し、1年間連続反応を行った。連続反応により劣
化した触媒を回収し、均一に混合したのち、参考例1と
同様にして反応を行った。その結果、メタクロレイン反
応率20.5%、メタクリル酸選択率90.2%であっ
た。
Reference Example 2 The catalyst of Reference Example 1 was filled in a stainless steel reaction tube having a length of 2500 mm, and a continuous reaction was carried out for one year. After the catalyst degraded by the continuous reaction was recovered and mixed uniformly, the reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 20.5% and the selectivity of methacrylic acid was 90.2%.

【0011】参考例3 三酸化モリブデン酸100部、五酸化バナジウム2.6
部及び85%リン酸6.7部を純水800部に加え、1
00℃で6時間加熱還流した。これに酢酸銅1.2部を
加え、更に100℃で3時間加熱還流した。還流後、混
合液温を40℃に冷却し、純水100部に溶解した重炭
酸セシウム11.2部を加え、更に混合液温を40℃で
純水100部に溶解した炭酸アンモニウム5.6部を加
えた後、混合液を加熱しながら蒸発乾固した。得られた
固形物を120℃で16時間乾燥した後、加圧成型し、
空気流通下に380℃で5時間熱処理したものを触媒と
して用いた。得られた触媒の組成は、PMo12
0.5Cu0.1Csであった。この触媒を用い、反
応温度285℃で参考例1と同様な反応条件で反応を行
った。その結果、メタクロレイン反応率85.8%、メ
タクリル酸選択率83.9%であった。
Reference Example 3 100 parts of molybdic acid trioxide, 2.6 parts of vanadium pentoxide
Parts and 6.7 parts of 85% phosphoric acid were added to 800 parts of pure water.
The mixture was heated and refluxed at 00 ° C. for 6 hours. To this was added 1.2 parts of copper acetate, and the mixture was further heated under reflux at 100 ° C. for 3 hours. After the reflux, the temperature of the mixture was cooled to 40 ° C, 11.2 parts of cesium bicarbonate dissolved in 100 parts of pure water was added, and the mixture was further heated at 40 ° C to 5.6 parts of ammonium carbonate dissolved in 100 parts of pure water. Then, the mixture was evaporated to dryness while heating. The resulting solid was dried at 120 ° C. for 16 hours, and then molded under pressure.
A catalyst heat-treated at 380 ° C. for 5 hours under air flow was used as a catalyst. The composition of the obtained catalyst was P 1 Mo 12 V
0.5 Cu 0.1 Cs 1 . Using this catalyst, a reaction was performed at a reaction temperature of 285 ° C. under the same reaction conditions as in Reference Example 1. As a result, the conversion of methacrolein was 85.8%, and the selectivity of methacrylic acid was 83.9%.

【0012】参考例4 参考例3の触媒を長さ2500mmのステンレス製反応管
に充填し、1年間連続反応を行った。連続反応により劣
化した触媒を回収し、均一に混合したのち、参考例3と
同様にして反応を行った。その結果、メタクロレイン反
応率18.9%、メタクリル酸選択率87.7%であっ
た。
Reference Example 4 The catalyst of Reference Example 3 was filled in a stainless steel reaction tube having a length of 2500 mm, and a continuous reaction was carried out for one year. After the catalyst degraded by the continuous reaction was recovered and mixed uniformly, the reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 18.9%, and the selectivity of methacrylic acid was 87.7%.

【0013】比較例1 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で390℃にて15時間熱処理し再生した。
この再生触媒を用い、参考例1と同様にして反応を行っ
た。その結果、メタクロレイン反応率75.7%、メタ
クリル酸選択率90.8%であった。
Comparative Example 1 The deteriorated catalyst of Reference Example 2 was regenerated by heat treatment at 390 ° C. for 15 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen.
Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 75.7%, and the selectivity for methacrylic acid was 90.8%.

【0014】比較例2 参考例2の劣化触媒を分子状酸素30容量%含む酸化性
ガス流通下で390℃にて15時間熱処理し再生した。
この再生触媒を用い、参考例1と同様にして反応を行っ
た。その結果、メタクロレイン反応率75.5%、メタ
クリル酸選択率90.8%であった。
Comparative Example 2 The deteriorated catalyst of Reference Example 2 was regenerated by heat treatment at 390 ° C. for 15 hours in an oxidizing gas flow containing 30% by volume of molecular oxygen.
Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 75.5%, and the selectivity of methacrylic acid was 90.8%.

【0015】比較例3 参考例2の劣化触媒を分子状酸素5容量%含む酸化性ガ
ス流通下で390℃にて15時間熱処理し再生した。こ
の再生触媒を用い、参考例1と同様にして反応を行っ
た。その結果、メタクロレイン反応率75.4%、メタ
クリル酸選択率90.9%であった。
Comparative Example 3 The deteriorated catalyst of Reference Example 2 was regenerated by heat treatment at 390 ° C. for 15 hours in an oxidizing gas flow containing 5% by volume of molecular oxygen. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 75.4%, and the selectivity of methacrylic acid was 90.9%.

【0016】比較例4 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で390℃にて3時間熱処理し再生した。こ
の再生触媒を用い、参考例1と同様にして反応を行っ
た。その結果、メタクロレイン反応率75.8%、メタ
クリル酸選択率90.7%であった。
Comparative Example 4 The deteriorated catalyst of Reference Example 2 was regenerated by heat treatment at 390 ° C. for 3 hours in a flow of an oxidizing gas containing 20% by volume of molecular oxygen. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 75.8%, and the selectivity of methacrylic acid was 90.7%.

【0017】実施例1 参考例2の劣化触媒に硝酸アンモニウムを劣化触媒重量
に対し10重量%、反応ガス入口部の反応管内に添加
し、分子状酸素を20容量%含む酸化性ガス流通下で3
90℃にて15時間熱処理し再生した。この再生触媒を
用い、参考例1と同様にして反応を行った。その結果、
メタクロレイン反応率77.6%、メタクリル酸選択率
90.7%であった。
Example 1 Ammonium nitrate was added to the deteriorated catalyst of Reference Example 2 in an amount of 10% by weight, based on the weight of the deteriorated catalyst, in a reaction tube at a reaction gas inlet portion.
Heat treatment was performed at 90 ° C. for 15 hours to regenerate. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. as a result,
The methacrolein conversion was 77.6% and the methacrylic acid selectivity was 90.7%.

【0018】実施例2 参考例2の劣化触媒に炭酸アンモニウムを劣化触媒重量
に対し8重量%添加した。本実施例では、反応ガス入口
前方に予熱ゾーンを作成し、この予熱ゾーン中に所定量
の炭酸アンモニウムを充填したのち200℃に加熱保持
し、分子状酸素を20容量%含む酸化性ガスで炭酸アン
モニウムを流通下分解しつつ、390℃にて15時間熱
処理し再生した。この再生触媒を用い、参考例1と同様
にして反応を行った。その結果、メタクロレイン反応率
77.4%、メタクリル酸選択率90.8%であった。
Example 2 To the deteriorated catalyst of Reference Example 2, 8% by weight of ammonium carbonate was added based on the weight of the deteriorated catalyst. In the present embodiment, a preheating zone is created in front of the reaction gas inlet, a predetermined amount of ammonium carbonate is filled in the preheating zone, and the preheating zone is heated and maintained at 200 ° C. While the ammonium was decomposed in the flow, it was heated at 390 ° C. for 15 hours for regeneration. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 77.4% and the selectivity of methacrylic acid was 90.8%.

【0019】比較例5 参考例4の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で350℃にて3時間熱処理し再生した。こ
の再生触媒を用い、参考例3と同様にして反応を行っ
た。その結果、メタクロレイン反応率74.3%、メタ
クリル酸選択率88.5%であった。
Comparative Example 5 The deteriorated catalyst of Reference Example 4 was regenerated by heat treatment at 350 ° C. for 3 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 74.3%, and the selectivity of methacrylic acid was 88.5%.

【0020】比較例6 参考例4の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で330℃にて3時間熱処理し再生した。こ
の再生触媒を用い、参考例3と同様にして反応を行っ
た。その結果、メタクロレイン反応率74.1%、メタ
クリル酸選択率88.5%であった。
Comparative Example 6 The deteriorated catalyst of Reference Example 4 was regenerated by heat treatment at 330 ° C. for 3 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 74.1%, and the selectivity of methacrylic acid was 88.5%.

【0021】比較例7 参考例4の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で390℃にて3時間熱処理し再生した。こ
の再生触媒を用い、参考例3と同様にして反応を行っ
た。その結果、メタクロレイン反応率74.7%、メタ
クリル酸選択率88.4%であった。
Comparative Example 7 The deteriorated catalyst of Reference Example 4 was regenerated by heat treatment at 390 ° C. for 3 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 74.7%, and the selectivity of methacrylic acid was 88.4%.

【0022】実施例3 参考例4の劣化触媒に重炭酸アンモニウムを劣化触媒重
量に対し3重量%、反応ガス入口部の反応管内に添加
し、分子状酸素を20容量%含む酸化性ガス流通下で3
90℃にて3時間熱処理し再生した。この再生触媒を用
い、参考例3と同様にして反応を行った。その結果、メ
タクロレイン反応率76.5%、メタクリル酸選択率8
8.5%であった。
Example 3 Ammonium bicarbonate was added to the deteriorated catalyst of Reference Example 4 in an amount of 3% by weight, based on the weight of the deteriorated catalyst, in a reaction tube at a reaction gas inlet portion. 3
Heat treatment was performed at 90 ° C. for 3 hours for regeneration. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the methacrolein conversion was 76.5% and the methacrylic acid selectivity was 8
8.5%.

【0023】実施例4 参考例4の劣化触媒に炭酸アンモニウム及び重炭酸アン
モニウムを劣化触媒重量に対し、それぞれ5重量%、反
応ガス入口部の反応管内に添加し、分子状酸素を20容
量%含む酸化性ガス流通下で390℃にて3時間熱処理
し再生した。この再生触媒を用い、参考例3と同様にし
て反応を行った。その結果、メタクロレイン反応率7
6.6%、メタクリル酸選択率88.4%であった。
Example 4 Ammonium carbonate and ammonium bicarbonate were added to the deteriorated catalyst of Reference Example 4 in an amount of 5% by weight, based on the weight of the deteriorated catalyst, and into the reaction tube at the inlet of the reaction gas. Heat treatment was performed at 390 ° C. for 3 hours under an oxidizing gas flow to regenerate. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, methacrolein conversion 7
6.6% and methacrylic acid selectivity was 88.4%.

【0024】実施例5 参考例4の劣化触媒に硝酸アンモニウム及び炭酸アンモ
ニウムを劣化触媒重量に対し、それぞれ3重量%、反応
ガス入口部の反応管内に添加し、分子状酸素を20容量
%含む酸化性ガス流通下で390℃にて15時間熱処理
し再生した。この再生触媒を用い、参考例3と同様にし
て反応を行った。その結果、メタクロレイン反応率7
6.8%、メタクリル酸選択率88.2%であった。
EXAMPLE 5 Ammonium nitrate and ammonium carbonate were added to the deteriorated catalyst of Reference Example 4 in an amount of 3% by weight, based on the weight of the deteriorated catalyst, in a reaction tube at the inlet of a reaction gas. It was heat-treated at 390 ° C. for 15 hours under a gas flow to regenerate. Using this regenerated catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, methacrolein conversion 7
6.8% and methacrylic acid selectivity was 88.2%.

【0025】比較例8 参考例2の劣化触媒を分子状酸素0.02容量%含む酸
化性ガス流通下で390℃にて15時間熱処理した。こ
の触媒を用い、参考例1と同様にして反応を行った。そ
の結果、メタクロレイン反応率45.7%、メタクリル
酸選択率90.0%で、実施例1〜4と較べて触媒性能
の回復割合が乏しかった。
Comparative Example 8 The deteriorated catalyst of Reference Example 2 was heat-treated at 390 ° C. for 15 hours in an oxidizing gas flow containing 0.02% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion rate of methacrolein was 45.7% and the selectivity of methacrylic acid was 90.0%, and the recovery ratio of the catalyst performance was poor as compared with Examples 1-4.

【0026】比較例9 参考例2の劣化触媒を窒素ガス流通下で390℃にて1
5時間熱処理した。この触媒を用い、参考例1と同様に
して反応を行った。その結果、メタクロレイン反応率2
5.5%、メタクリル酸選択率87.1%であった。
Comparative Example 9 The deteriorated catalyst of Reference Example 2 was heated at 390 ° C.
Heat treatment was performed for 5 hours. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, methacrolein reaction rate 2
5.5% and methacrylic acid selectivity was 87.1%.

【0027】比較例10 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で280℃にて15時間熱処理した。この触
媒を用い、参考例1と同様にして反応を行った。その結
果、メタクロレイン反応率53.5%、メタクリル酸選
択率90.1%であった。
Comparative Example 10 The deteriorated catalyst of Reference Example 2 was heat-treated at 280 ° C. for 15 hours under an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 53.5% and the selectivity of methacrylic acid was 90.1%.

【0028】比較例11 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で200℃にて15時間熱処理した。この触
媒を用い、参考例1と同様にして反応を行った。その結
果、メタクロレイン反応率30.5%、メタクリル酸選
択率90.3%であった。
Comparative Example 11 The deteriorated catalyst of Reference Example 2 was heat-treated at 200 ° C. for 15 hours under an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 30.5% and the selectivity of methacrylic acid was 90.3%.

【0029】比較例12 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で430℃にて15時間熱処理した。この触
媒を用い、参考例1と同様にして反応を行った。その結
果、メタクロレイン反応率10.5%、メタクリル酸選
択率82.3%であった。
Comparative Example 12 The deteriorated catalyst of Reference Example 2 was heat-treated at 430 ° C. for 15 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 10.5%, and the selectivity for methacrylic acid was 82.3%.

【0030】比較例13 参考例2の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で390℃にて0.1時間熱処理した。この
触媒を用い、参考例1と同様にして反応を行った。その
結果、メタクロレイン反応率55.5%、メタクリル酸
選択率90.1%であった。
Comparative Example 13 The deteriorated catalyst of Reference Example 2 was heat-treated at 390 ° C. for 0.1 hour under a flow of an oxidizing gas containing 20% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, the conversion of methacrolein was 55.5%, and the selectivity of methacrylic acid was 90.1%.

【0031】比較例14 参考例2の劣化触媒に炭酸アンモニウムを劣化触媒重量
に対し25重量%添加した。本比較例では、酸化性ガス
入口前方に予熱ゾーンを作成し、この予熱ゾーン中に炭
酸アンモニウムを充填したのち200℃に加熱保持し、
分子状酸素を20容量%含む酸化性ガスで炭酸アンモニ
ウムを流通下分解しつつ、劣化触媒を390℃にて15
時間熱処理した。この触媒を用い、参考例1と同様にし
て反応を行った。その結果、メタクロレイン反応率6
5.5%、メタクリル酸選択率88.5%であった。
Comparative Example 14 Ammonium carbonate was added to the deteriorated catalyst of Reference Example 2 in an amount of 25% by weight based on the weight of the deteriorated catalyst. In this comparative example, a preheating zone was created in front of the oxidizing gas inlet, and after filling the preheating zone with ammonium carbonate, the preheating zone was heated and maintained at 200 ° C.
While decomposing ammonium carbonate under flow with an oxidizing gas containing 20% by volume of molecular oxygen, the deteriorated catalyst was treated at 390 ° C. for 15 minutes.
Heat treated for hours. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 1. As a result, methacrolein conversion 6
5.5% and methacrylic acid selectivity was 88.5%.

【0032】比較例15 参考例4の劣化触媒を分子状酸素0.05容量%含む酸
化性ガス流通下で350℃にて3時間熱処理した。この
触媒を用い、参考例3と同様にして反応を行った。その
結果、メタクロレイン反応率43.6%、メタクリル酸
選択率88.3%で、実施例7〜9と較べて触媒性能の
回復割合が乏しかった。
COMPARATIVE EXAMPLE 15 The deteriorated catalyst of Reference Example 4 was heat-treated at 350 ° C. for 3 hours in a flow of an oxidizing gas containing 0.05% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 43.6%, the selectivity of methacrylic acid was 88.3%, and the recovery ratio of the catalyst performance was lower than in Examples 7 to 9.

【0033】比較例16 参考例4の劣化触媒を分子状酸素20容量%含む酸化性
ガス流通下で200℃にて3時間熱処理した。この触媒
を用い、参考例3と同様にして反応を行った。その結
果、メタクロレイン反応率30.3%、メタクリル酸選
択率88.3%であった。
Comparative Example 16 The deteriorated catalyst of Reference Example 4 was heat-treated at 200 ° C. for 3 hours in an oxidizing gas flow containing 20% by volume of molecular oxygen. Using this catalyst, a reaction was carried out in the same manner as in Reference Example 3. As a result, the conversion of methacrolein was 30.3% and the selectivity of methacrylic acid was 88.3%.

【0034】[0034]

【発明の効果】本発明の再生法は極めて簡便であり、劣
化触媒の再生のレベルもかなり高く、工業的な応用に大
きな経済効果をもたらす。
The regenerating method of the present invention is extremely simple, has a considerably high level of regenerating the deteriorated catalyst, and has a great economic effect for industrial applications.

フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 57/07 C07C 57/07 (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C07C 57/07 C07C 51/235 C07C 57/055 C07C 57/07 Continuation of the front page (51) Int.Cl. 7 identification code FI C07C 57/07 C07C 57/07 (58) Field surveyed (Int.Cl. 7 , DB name) B01J 21/00-38/74 C07C 57 / 07 C07C 51/235 C07C 57/055 C07C 57/07

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応管に充填された少なくともリン、モ
リブデン及びバナジウムを含む触媒を用いて、メタクロ
レインを分子状酸素を用いて気相接触酸化し、メタクリ
ル酸を製造する際に用いられた劣化触媒の再生法であっ
て、劣化触媒に対し20重量%以下の硝酸アンモニウ
ム、炭酸アンモニウム及び/又は重炭酸アンモニウム
に、分子状酸素を少なくとも0.1容量%含有する酸化
性ガスを接触させて得られた、硝酸アンモニウム、炭酸
アンモニウム及び/又は重炭酸アンモニウムの分解物を
含む酸化性ガスを、気相接触酸化後の劣化触媒が充填さ
れたままの反応管に流通させ、反応管内の劣化触媒を3
00〜410℃の温度で0.5〜50時間熱処理するこ
とを特徴とする劣化触媒の再生法。
1. A method for producing methacrylic acid by subjecting methacrolein to gas-phase catalytic oxidation using molecular oxygen using a catalyst containing at least phosphorus, molybdenum and vanadium filled in a reaction tube. A method for regenerating a catalyst, comprising contacting an oxidizing gas containing at least 0.1% by volume of molecular oxygen with 20% by weight or less of ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate based on a deteriorated catalyst. In addition, an oxidizing gas containing a decomposition product of ammonium nitrate, ammonium carbonate and / or ammonium bicarbonate is passed through a reaction tube filled with the deteriorated catalyst after the gas phase catalytic oxidation to remove the deteriorated catalyst in the reaction tube.
A method for regenerating a deteriorated catalyst, comprising performing heat treatment at a temperature of 00 to 410 ° C for 0.5 to 50 hours.
JP16773792A 1992-06-25 1992-06-25 Regeneration method of deteriorated catalyst Expired - Fee Related JP3282849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16773792A JP3282849B2 (en) 1992-06-25 1992-06-25 Regeneration method of deteriorated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16773792A JP3282849B2 (en) 1992-06-25 1992-06-25 Regeneration method of deteriorated catalyst

Publications (2)

Publication Number Publication Date
JPH067685A JPH067685A (en) 1994-01-18
JP3282849B2 true JP3282849B2 (en) 2002-05-20

Family

ID=15855198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16773792A Expired - Fee Related JP3282849B2 (en) 1992-06-25 1992-06-25 Regeneration method of deteriorated catalyst

Country Status (1)

Country Link
JP (1) JP3282849B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321115B1 (en) * 1987-12-14 1991-08-14 Sawai Pharmaceutical Co., Ltd. Carboxamide derivatives having tetrazole and thiazole rings and their use
JP3506872B2 (en) * 1997-03-13 2004-03-15 三菱レイヨン株式会社 Method for producing hydrocyanic acid
JP3705105B2 (en) 2000-09-27 2005-10-12 住友化学株式会社 Method for reactivating catalyst for methacrylic acid production
US20040102318A1 (en) * 2002-11-27 2004-05-27 Brazdil James F. Method for enhancing the productivity of vanadium antimony oxide catalysts
WO2004062798A1 (en) 2003-01-09 2004-07-29 Mitsubishi Rayon Co., Ltd. Method for preserving catalyst
JP4957628B2 (en) * 2008-04-09 2012-06-20 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5335490B2 (en) * 2009-03-09 2013-11-06 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5892826B2 (en) 2012-03-27 2016-03-23 住友化学株式会社 Method for producing methacrylic acid

Also Published As

Publication number Publication date
JPH067685A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
US4210628A (en) Removal of nitrogen oxides
EP0169449B1 (en) Process for regenerating a catalyst
JP3282849B2 (en) Regeneration method of deteriorated catalyst
US3998876A (en) Catalytic process for preparation of unsaturated carboxylic acids
US4814305A (en) Method for regeneration of oxidation catalyst
JP3972718B2 (en) Method for regenerating catalyst for methacrylic acid production
JPH0768131A (en) Method for decreasing content of nitrogen suboxide in exhaust gas, especially exhaust gas of synthesis process containing nitric acid oxidation
US4165296A (en) Method for regenerating an oxidation catalyst
US6346646B1 (en) Process for producing methacrolein and methacrylic acid
JPS60232247A (en) Regeneration of hetero-polyacid type catalyst
JP3562983B2 (en) Method for producing methacrolein and methacrylic acid
JPS5853572B2 (en) How to regenerate oxidation catalyst
KR100995258B1 (en) Method for reactivating catalyst for methacrylic acid preparation
JP2554357B2 (en) Method for recovering NO from waste gas produced during ammonium nitrite production
JP3140135B2 (en) Regeneration method of deteriorated catalyst
JP4536656B2 (en) Storage method of catalyst
JPS638095B2 (en)
JPH03167152A (en) Production of methacrylic acid
SU1706374A3 (en) Method of regeneration of catalyst for oxidation of propylene, isobutylene or ternary butanol
JPS5825653B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH064559B2 (en) Method for producing methacrylic acid
JPS6131092B2 (en)
JPS5929570B2 (en) Production method of unsaturated carboxylic acid
JPS58150438A (en) Regeneration of catalyst for preparing indoles
JPH03238050A (en) Catalyst for preparing methacrylic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees