JP3282204B2 - Method of forming aluminum-based alloy film - Google Patents

Method of forming aluminum-based alloy film

Info

Publication number
JP3282204B2
JP3282204B2 JP35563391A JP35563391A JP3282204B2 JP 3282204 B2 JP3282204 B2 JP 3282204B2 JP 35563391 A JP35563391 A JP 35563391A JP 35563391 A JP35563391 A JP 35563391A JP 3282204 B2 JP3282204 B2 JP 3282204B2
Authority
JP
Japan
Prior art keywords
sputtering
film
based alloy
substrate
sputtering chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35563391A
Other languages
Japanese (ja)
Other versions
JPH05171434A (en
Inventor
純司 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP35563391A priority Critical patent/JP3282204B2/en
Priority to EP19920119377 priority patent/EP0542271B1/en
Priority to DE1992624038 priority patent/DE69224038T2/en
Priority to US07/975,282 priority patent/US5367179A/en
Publication of JPH05171434A publication Critical patent/JPH05171434A/en
Priority to HK98114683A priority patent/HK1013520A1/en
Application granted granted Critical
Publication of JP3282204B2 publication Critical patent/JP3282204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、スパッタ装置によるア
ルミニウム系合金膜の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an aluminum alloy film by a sputtering apparatus.

【0002】[0002]

【従来の技術】薄膜トランジスタ等の薄膜素子や、絶縁
膜をはさんで複数層に配線を形成した多層配線板の電極
や配線は、一般に、Cr (クロム),Ta (タンタ
ル),Mo(モリブデン)等の高融点金属で形成されて
いるが、これらの高融点金属はその抵抗値が高いため、
電極および配線での電圧降下が大きいという問題をもっ
ている。
2. Description of the Related Art In general, the electrodes and wirings of a thin film element such as a thin film transistor or a multilayer wiring board in which wiring is formed in a plurality of layers with an insulating film interposed therebetween are generally made of Cr (chromium), Ta (tantalum), and Mo (molybdenum). Etc., but these high melting metals have high resistance,
There is a problem that the voltage drop at the electrode and the wiring is large.

【0003】そこで、上記薄膜素子や多層配線板の電極
および配線に、抵抗値が低く、しかも安価なAl (アル
ミニウム)を使用することが検討されている。しかし、
このAl の膜は、これを数百℃に加熱すると表面にヒロ
ックが発生するという問題をもっているため、上記薄膜
素子や多層配線板の下部電極および下部配線をAl で形
成すると、薄膜素子や多層配線板の製造過程で、下部電
極および下部配線の上に形成した絶縁膜に欠陥が発生
し、下部電極および下部配線と上部電極および下部配線
との間に層間短絡が発生してしまう。
Therefore, the use of inexpensive Al (aluminum) having a low resistance value for the electrodes and wirings of the thin film element and the multilayer wiring board has been studied. But,
Since this Al film has a problem that hillocks are generated on the surface when it is heated to several hundred degrees Celsius, if the lower electrode and the lower wiring of the thin film element or the multilayer wiring board are formed of Al, the thin film element or the multilayer wiring In the manufacturing process of the board, a defect occurs in the insulating film formed on the lower electrode and the lower wiring, and an interlayer short circuit occurs between the lower electrode and the lower wiring and the upper electrode and the lower wiring.

【0004】すなわち、例えば逆スタガー型の薄膜トラ
ンジスタは、ガラス等からなる絶縁性基板の上にゲート
電極およびゲート配線を形成し、その上に、Si N(窒
化シリコン)からなるゲート絶縁膜と、a−Si (アモ
ルファスシリコン)からなるi型半導体層と、n型不純
物をドープしたa−Si からなるn型半導体層と、ソー
ス,ドレイン用金属膜とを順次成膜し、この後、前記ソ
ース,ドレイン用金属膜とその下のn型半導体層とを、
ソース,ドレイン電極およびデータ配線の形状にパター
ニングする製法で製造されるが、この場合、上記ゲート
絶縁膜とi型およびn型半導体層はプラズマCVD装置
により数百℃の基板温度で成膜されるため、これらの成
膜時に、ゲート電極およびゲート配線の表面にヒロック
が発生する。このヒロックは、加熱によってAl 膜に生
ずる応力の緩和現象によると考えられている。
That is, for example, an inverted stagger type thin film transistor has a gate electrode and a gate wiring formed on an insulating substrate made of glass or the like, and a gate insulating film made of SiN (silicon nitride) is formed thereon. An i-type semiconductor layer made of -Si (amorphous silicon), an n-type semiconductor layer made of a-Si doped with an n-type impurity, and a metal film for source and drain are sequentially formed. A drain metal film and an n-type semiconductor layer thereunder;
The gate insulating film and the i-type and n-type semiconductor layers are formed at a substrate temperature of several hundred degrees centigrade by a plasma CVD apparatus. Therefore, hillocks are generated on the surfaces of the gate electrode and the gate wiring during the film formation. This hillock is considered to be due to a phenomenon of relaxation of stress generated in the Al film by heating.

【0005】そして、このようにゲート電極およびゲー
ト配線の表面にヒロックが発生すると、このヒロックが
ゲート絶縁膜を突き破ってこのゲート絶縁膜にクラック
等の欠陥を発生させ、そのため、下部のゲート電極およ
びゲート配線と、上部のソース,ドレイン電極およびデ
ータ配線とが短絡してしまう。
When hillocks are generated on the surfaces of the gate electrode and the gate wiring, the hillocks penetrate the gate insulating film and generate defects such as cracks in the gate insulating film. The gate wiring is short-circuited with the upper source and drain electrodes and the data wiring.

【0006】一方、従来から、上記Al にTi (チタ
ン)やTa 等の高融点金属を含有させると、加熱時にお
けるヒロックの発生が抑制されることが解明されてお
り、前記高融点金属を含有させたAl 系合金で薄膜素子
や多層配線板の下部電極および下部配線を形成すれば、
後工程の絶縁膜等の成膜時に下部電極および下部配線の
表面に上記ヒロックが発生するのを防ぐことができる。
On the other hand, it has been clarified that if Al contains a high melting point metal such as Ti (titanium) or Ta, the generation of hillocks during heating is suppressed. By forming the lower electrode and the lower wiring of the thin film element and the multilayer wiring board with the Al-based alloy,
The hillock can be prevented from being generated on the surface of the lower electrode and the lower wiring during the formation of an insulating film or the like in a later step.

【0007】ところで、上記薄膜素子や多層配線板の下
部電極および下部配線は、基板上にスパッタ装置により
金属膜を成膜し、この金属膜をフォトリソグラフィ法に
よりパターニングして形成される。
By the way, the lower electrode and the lower wiring of the thin film element and the multilayer wiring board are formed by forming a metal film on a substrate by a sputtering apparatus and patterning the metal film by a photolithography method.

【0008】上記スパッタ装置による金属膜の成膜は、
従来、スパッタ室内に基板を入れた後、スパッタ室内の
空気をスパッタ室内圧が5×10-6Torr以下になるまで
排気して、スパッタ室内をほぼ真空状態にし、この後ス
パッタ室内にAr (アルゴン)ガス等のスパッタガスを
導入して、所定のガス圧(3×10-3〜8×10-3Tor
r)でスパッタリングを開始する方法で行なわれてい
る。
[0008] The formation of a metal film by the above sputtering apparatus is as follows.
Conventionally, after a substrate is placed in a sputtering chamber, air in the sputtering chamber is evacuated until the pressure in the sputtering chamber becomes 5 × 10 −6 Torr or less, and the sputtering chamber is almost evacuated. ) A sputtering gas such as a gas is introduced, and a predetermined gas pressure (3 × 10 −3 to 8 × 10 −3
The method is performed by starting sputtering in r).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の成膜方法で成膜された金属膜で下部電極および下部
配線を形成した薄膜素子や多層配線板は、前記金属膜が
高融点金属を含有させたAl 系合金膜であっても、下部
電極および下部配線と上部電極および上部配線との間に
層間短絡が発生することがある。
However, in a thin film element or a multilayer wiring board in which a lower electrode and a lower wiring are formed by a metal film formed by the above-mentioned conventional film forming method, the metal film contains a high melting point metal. Even with the Al-based alloy film formed, an interlayer short circuit may occur between the lower electrode and the lower wiring and the upper electrode and the upper wiring.

【0010】そこで、上記層間短絡の発生原因を知るた
め、図2および図3に示すように、ガラス基板1上に高
融点金属としてTi を含有させたAl 系合金からなる電
極2を形成し、この基板1を約250℃に加熱して前記
電極2の表面の状態の変化を調べたところ、この電極2
には上述したヒロックは発生しないが、電極2の側面お
よびエッジ部に、図示のような突起3が局部的に発生す
ることが分かった。この突起3の発生原因は不明である
が、上述したヒロックの発生とは別な形での応力緩和現
象、つまり加熱によってAl 系合金膜に生ずる応力が被
膜の側面やエッジ部の弱い部分に集中し、この部分に局
部的な結晶成長が起きるためと推測される。
Therefore, in order to know the cause of the occurrence of the interlayer short-circuit, as shown in FIGS. 2 and 3, an electrode 2 made of an Al-based alloy containing Ti as a refractory metal is formed on a glass substrate 1. When the substrate 1 was heated to about 250 ° C. and the change in the state of the surface of the electrode 2 was examined,
Although the hillocks described above do not occur, it has been found that the projections 3 as shown in the figure are locally generated on the side surfaces and edge portions of the electrode 2. Although the cause of the formation of the projections 3 is unknown, the stress relaxation phenomenon in a form different from the above-mentioned generation of hillocks, that is, the stress generated in the Al-based alloy film by heating is concentrated on the weak portions of the side surfaces and edges of the coating. However, it is presumed that local crystal growth occurs in this portion.

【0011】そして、薄膜素子や多層配線板は上述した
製法で製造されるため、下部電極および下部配線の上に
絶縁膜等を成膜する際に下部電極および下部配線が加熱
されて上記突起3を発生し、この突起3の影響により前
記絶縁膜にクラック等の欠陥が発生して層間短絡を発生
する。
Since the thin film element and the multilayer wiring board are manufactured by the above-described manufacturing method, the lower electrode and the lower wiring are heated when an insulating film or the like is formed on the lower electrode and the lower wiring, so that the protrusions 3 are formed. And defects such as cracks occur in the insulating film due to the influence of the projections 3, causing an interlayer short circuit.

【0012】本発明の目的は、数百℃に加熱しても、ヒ
ロックはもちろん、被膜の側面およびエッジ部での局部
的な突起も発生しない、信頼性の高いAl 系合金膜を得
ることができるAl 系合金膜の成膜方法を提供すること
にある。
It is an object of the present invention to provide a highly reliable Al-based alloy film which does not generate hillocks or local protrusions on the side and edge portions of the coating film even when heated to several hundred degrees centigrade. An object of the present invention is to provide a method of forming an Al-based alloy film that can be formed.

【0013】[0013]

【課題を解決するための手段】本発明は、スパッタ室内
に基板を挿入した後、スパッタ室の空気をスパッタ室内
圧が5×10-5 〜5×10-4 Torrになるまで排気し、
その後スパッタ室内にスパッタガスを導入して3×10
-3 〜8×10 -3 Torrのガス圧に調整し、高融点金属を
含有させたアルミニウム系合金からなるターゲットに放
電電流を供給してスパッタリングを行うことにより、窒
素、酸素、水素等を含み、且つ高融点金属を含有するア
ルミニウム系合金を成膜することを特徴とするものであ
る。
According to the present invention, after a substrate is inserted into a sputtering chamber, air in the sputtering chamber is evacuated until the pressure in the sputtering chamber becomes 5 × 10 -5 to 5 × 10 -4 Torr.
After that, a sputtering gas is introduced into the sputtering chamber and 3 × 10
-3 to 8 × 10 -3 Torr gas pressure.
To a target made of an aluminum alloy
By supplying electric current and performing sputtering, nitrogen
Containing metals, oxygen, hydrogen, etc. and containing high melting point metals.
It is characterized by forming a film of a luminium-based alloy .

【0014】[0014]

【作用】すなわち、本発明は、スパッタ室内に基板を装
入した後のスパッタ室内の排気を、スパッタ室内圧が5
×10-5〜5×10-4Torrになるまでしか行なわずに、
スパッタ室内に僅かな空気を残しておくようにしたもの
であり、このようにスパッタ室内に僅かな空気を残存さ
せておくと、この後にスパッタ室内に導入したスパッタ
ガス中に残存空気が混入し、この残存空気中の窒素、酸
素、水素等がスパッタ粒子とともに基板上に堆積するた
め、成膜されたAl 系合金膜が、微量の窒素、酸素、水
素等を含んだ膜となる。この窒素、酸素、水素等を含む
Al 系合金膜は、これを数百℃に加熱しても、ヒロック
はもちろん、側面およびエッジ部への局部的な突起も発
生しない。
That is, according to the present invention, the exhaust gas in the sputter chamber after the substrate is charged into the sputter chamber is discharged at a pressure of 5 sputter chamber.
Only until it reaches x10 -5 to 5x10 -4 Torr,
A small amount of air is left in the sputtering chamber.If a small amount of air is left in the sputtering chamber, the remaining air is mixed into the sputtering gas introduced into the sputtering chamber thereafter. Since the nitrogen, oxygen, hydrogen and the like in the remaining air are deposited on the substrate together with the sputtered particles, the formed Al-based alloy film becomes a film containing a trace amount of nitrogen, oxygen, hydrogen and the like. The Al-based alloy film containing nitrogen, oxygen, hydrogen and the like does not generate hillocks or local projections on the side and edge portions even when heated to several hundred degrees Celsius.

【0015】[0015]

【実施例】以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

【0016】図1はスパッタ装置を示している。このス
パッタ装置は、種々の金属膜の成膜に使用されているも
のであり、スパッタ室10の基板装入搬入口および取出
口には開閉可能な密閉扉11a,11bが設けられてい
る。このスパッタ室10には、図示しない排気ポンプに
接続された排気管12と、Ar ガス等のスパッタガスを
導入するスパッタガス導入管13が接続されている。な
お、14および15は前記ガス導入管13に設けられた
流量コントローラおよび開閉弁である。また、前記スパ
ッタ室10内の底部には、その基板装入搬入口から装入
された基板20を取出口に向けて搬送する基板搬送装置
機構16が設けられている。さらにスパッタ室10内の
上部には、前記基板20を加熱するヒータ17とターゲ
ット18とが基板搬送方向に並べて配置されており、前
記ターゲット18にはスパッタ電源19が接続されてい
る。
FIG. 1 shows a sputtering apparatus. This sputtering apparatus is used for forming various metal films, and is provided with openable and closable doors 11 a and 11 b at a substrate loading / unloading entrance and an exit of the sputtering chamber 10. An exhaust pipe 12 connected to an exhaust pump (not shown) and a sputter gas introduction pipe 13 for introducing a sputter gas such as Ar gas are connected to the sputter chamber 10. Reference numerals 14 and 15 are a flow rate controller and an on-off valve provided in the gas introduction pipe 13. At the bottom of the sputtering chamber 10, there is provided a substrate transfer device mechanism 16 for transferring the substrate 20 loaded from the substrate loading / unloading port toward the exit. Further, a heater 17 for heating the substrate 20 and a target 18 are arranged side by side in the substrate transfer direction in an upper part in the sputtering chamber 10, and a sputtering power supply 19 is connected to the target 18.

【0017】このスパッタ装置による基板20上へのA
l 系合金膜の成膜は、ターゲット18に、Ti またはT
a 等の高融点金属を含有させたAl 系合金板を用い、次
のような手順で行なう。
[0017] A
The l-based alloy film is deposited on the target 18 by Ti or T
The procedure is as follows using an Al-based alloy plate containing a high melting point metal such as a.

【0018】まず、スパッタ室10内に、その基板装入
搬入口からAl 系合金膜を成膜する基板20を装入し、
この基板20を、その被成膜面を上に向けた状態で基板
搬送装置機構16に支持させる。
First, a substrate 20 for forming an Al-based alloy film is loaded into the sputtering chamber 10 from the substrate loading / unloading port.
The substrate 20 is supported by the substrate transfer device mechanism 16 with its film formation surface facing upward.

【0019】次に、密閉扉11aを閉じてスパッタ室1
0を密閉した後、スパッタ室10内の空気をスパッタ室
内圧が5×10-5〜5×10-4Torrになるまで排気す
る。このスパッタ室内圧は、従来の成膜方法における圧
力(5×10-6Torr以下)より一桁ないし二桁以上高い
圧力であり、そのため、スパッタ室10内の空気は完全
には排気されずに、僅かな量の空気がスパッタ室10内
に残る。
Next, the sealing door 11a is closed and the sputtering chamber 1 is closed.
After sealing 0, the air in the sputtering chamber 10 is exhausted until the pressure in the sputtering chamber becomes 5 × 10 −5 to 5 × 10 −4 Torr. This sputter chamber pressure is one or two or more digits higher than the pressure (5 × 10 −6 Torr or less) in the conventional film forming method. Therefore, the air in the sputter chamber 10 is not completely exhausted. A small amount of air remains in the sputtering chamber 10.

【0020】次に、ヒータ17による基板20の加熱を
開始するとともに、スパッタ室10内にスパッタガスを
導入し、基板20の温度を所定の成膜温度にし、かつス
パッタ室10内のスパッタガスの圧力を所定のガス圧
(3×10-3〜8×10-3Torr)で安定させた後、基板
搬送装置機構15による基板20の搬送を開始し、同時
にスパッタ電源19からターゲット18に放電電流を供
給してスパッタリングを開始する。
Next, the heating of the substrate 20 by the heater 17 is started, a sputtering gas is introduced into the sputtering chamber 10, the temperature of the substrate 20 is set to a predetermined film forming temperature, and the sputtering gas in the sputtering chamber 10 is heated. After the pressure is stabilized at a predetermined gas pressure (3 × 10 −3 to 8 × 10 −3 Torr), the transfer of the substrate 20 by the substrate transfer device mechanism 15 is started, and at the same time, the discharge current from the sputtering power source 19 to the target 18 is discharged. To start sputtering.

【0021】このスパッタリングの原理は周知の通りで
あり、スパッタ電源19からターゲット18に放電電流
を供給してプラズマを発生させると、このプラズマによ
ってターゲット(Al 系合金板)18からスパッタ粒子
がスパッタされ、このスパッタ粒子が基板20面に堆積
する。
The principle of this sputtering is well known. When a discharge current is supplied from a sputtering power supply 19 to a target 18 to generate plasma, sputter particles are sputtered from the target (Al-based alloy plate) 18 by the plasma. The sputtered particles are deposited on the surface of the substrate 20.

【0022】そして、この成膜方法では、スパッタ室1
0内に基板21を装入した後のスパッタ室10内の排気
を、スパッタ室内圧が5×10-5〜5×10-4Torrにな
るまでしか行なわずに、スパッタ室10内に僅かな空気
を残しているため、この後にスパッタ室10内に導入し
たスパッタガス中に、スパッタ室10内に残存している
空気が混入し、この残存空気中の窒素、酸素、水素等が
スパッタ粒子とともに基板上に堆積する。このため、上
記成膜方法で成膜されたAl 系合金膜21が、微量の窒
素、酸素、水素等を含んだ膜となる。
In this film forming method, the sputtering chamber 1
After the substrate 21 is charged into the chamber 0, the inside of the sputtering chamber 10 is evacuated only slightly until the pressure in the sputtering chamber becomes 5 × 10 −5 to 5 × 10 −4 Torr. Since the air is left, the air remaining in the sputtering chamber 10 is mixed with the sputtering gas introduced into the sputtering chamber 10 thereafter, and nitrogen, oxygen, hydrogen, etc. in the remaining air are sputtered together with sputter particles. Deposit on the substrate. Therefore, the Al-based alloy film 21 formed by the above-described film forming method becomes a film containing trace amounts of nitrogen, oxygen, hydrogen and the like.

【0023】この窒素、酸素、水素等を含むAl 系合金
膜は、これを数百℃に加熱しても、ヒロックはもちろ
ん、図2および図3に示したような被膜の側面およびエ
ッジ部での局部的な突起も発生しない。
Even when this Al-based alloy film containing nitrogen, oxygen, hydrogen, etc. is heated to several hundreds of degrees Celsius, not only hillocks but also the side and edge portions of the film as shown in FIGS. No local protrusion occurs.

【0024】これは、ガラス基板の上に、上記成膜方法
でAl 系合金膜を成膜し、このAl系合金膜を図2およ
び図3に示したような電極形状にパターニングした後、
この基板を250〜300℃に加熱して前記Al 系合金
膜の表面の状態の変化を調べた結果からも確認された。
In this method, an Al-based alloy film is formed on a glass substrate by the above-described film forming method, and after patterning the Al-based alloy film into an electrode shape as shown in FIGS. 2 and 3,
This was also confirmed by heating the substrate to 250 to 300 ° C. and examining the change in the state of the surface of the Al-based alloy film.

【0025】[0025]

【発明の効果】本発明によれば、スパッタ室内に基板を
装入した後のスパッタ室内の排気を、スパッタ室内圧が
5×10-5〜5×10-4Torrになるまでしか行なわず
に、スパッタ室内に僅かな空気を残しておき、この残存
空気中の窒素、酸素、水素等をスパッタ粒子とともに堆
積させているため、数百℃に加熱してもヒロックはもち
ろん被膜の側面およびエッジ部での局部的な突起も発生
しない、信頼性の高いAl系合金膜を得ることができ
る。
According to the present invention, the evacuation of the sputter chamber after loading the substrate into the sputter chamber is performed only until the pressure in the sputter chamber becomes 5 × 10 -5 to 5 × 10 -4 Torr. Since a small amount of air is left in the sputtering chamber and nitrogen, oxygen, hydrogen, etc. in the remaining air are deposited together with the sputtered particles, even if heated to several hundred degrees Celsius, hillocks as well as side surfaces and edge portions of the coating will of course remain. Thus, a highly reliable Al-based alloy film which does not cause local projections in the step can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スパッタ装置の概略図。FIG. 1 is a schematic diagram of a sputtering apparatus.

【図2】高融点金属のみを含有するAl 系合金で形成し
た電極の加熱後の平面図。
FIG. 2 is a plan view after heating an electrode formed of an Al-based alloy containing only a high melting point metal.

【図3】図2の III−III 線に沿う拡大断面図。FIG. 3 is an enlarged sectional view taken along the line III-III in FIG. 2;

【符号の説明】[Explanation of symbols]

10…スパッタ室、11a,11b…密閉扉、12…排
気管、13…スパッタガス導入管、16…基板搬送装置
機構、17…ヒータ、18…ターゲット、19…スパッ
タ電源、20…基板、21…Al 系合金膜。
DESCRIPTION OF SYMBOLS 10 ... Sputter chamber, 11a, 11b ... Closed door, 12 ... Exhaust pipe, 13 ... Sputter gas introduction pipe, 16 ... Substrate transfer mechanism, 17 ... Heater, 18 ... Target, 19 ... Sputter power supply, 20 ... Substrate, 21 ... Al-based alloy film.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スパッタ装置によるアルミニウム系合金膜
の成膜において、 スパッタ室内に基板を挿入した後、スパッタ室の空気を
スパッタ室内圧が5×10-5 〜5×10-4 Torrになる
まで排気し、その後スパッタ室内にスパッタガスを導入
して3×10 -3 〜8×10 -3 Torrのガス圧に調整し、
高融点金属を含有させたアルミニウム系合金からなるタ
ーゲットに放電電流を供給してスパッタリングを行うこ
とにより、窒素、酸素、水素等を含み、且つ高融点金属
を含有するアルミニウム系合金を成膜することを特徴と
するアルミニウム系合金膜の形成方法。
In forming an aluminum-based alloy film by a sputtering apparatus, after inserting a substrate into a sputtering chamber, air in the sputtering chamber is blown until the pressure in the sputtering chamber becomes 5 × 10 −5 to 5 × 10 −4 Torr. After exhausting, a sputtering gas is introduced into the sputtering chamber and adjusted to a gas pressure of 3 × 10 −3 to 8 × 10 −3 Torr,
Aluminum alloy containing high melting point metal
Sputtering by supplying discharge current to the target.
Depending on the content of nitrogen, oxygen, hydrogen, etc.
A method for forming an aluminum alloy film, comprising forming an aluminum alloy film containing :
JP35563391A 1990-04-25 1991-12-24 Method of forming aluminum-based alloy film Expired - Lifetime JP3282204B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35563391A JP3282204B2 (en) 1991-12-24 1991-12-24 Method of forming aluminum-based alloy film
EP19920119377 EP0542271B1 (en) 1991-11-15 1992-11-12 Thin-film device with a compound conductive layer
DE1992624038 DE69224038T2 (en) 1991-11-15 1992-11-12 Thin film assembly with a conductive tie layer
US07/975,282 US5367179A (en) 1990-04-25 1992-11-12 Thin-film transistor having electrodes made of aluminum, and an active matrix panel using same
HK98114683A HK1013520A1 (en) 1991-11-15 1998-12-22 Thin-film device with a compound conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35563391A JP3282204B2 (en) 1991-12-24 1991-12-24 Method of forming aluminum-based alloy film

Publications (2)

Publication Number Publication Date
JPH05171434A JPH05171434A (en) 1993-07-09
JP3282204B2 true JP3282204B2 (en) 2002-05-13

Family

ID=18444975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35563391A Expired - Lifetime JP3282204B2 (en) 1990-04-25 1991-12-24 Method of forming aluminum-based alloy film

Country Status (1)

Country Link
JP (1) JP3282204B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553205B1 (en) * 1995-10-12 2017-01-25 Kabushiki Kaisha Toshiba Sputter target for forming thin film interconnector and thin film interconnector line
USRE45481E1 (en) 1995-10-12 2015-04-21 Kabushiki Kaisha Toshiba Interconnector line of thin film, sputter target for forming the wiring film and electronic component using the same
US5998730A (en) * 1997-05-13 1999-12-07 Canon Kabushiki Kaisha Production method for deposited film, production method for photoelectric conversion element, production apparatus for deposited film, production apparatus for photoelectric conversion element
CN107492490B (en) * 2016-06-12 2020-03-31 北京北方华创微电子装备有限公司 Film forming method for semiconductor device, film forming method for aluminum nitride, and electronic apparatus

Also Published As

Publication number Publication date
JPH05171434A (en) 1993-07-09

Similar Documents

Publication Publication Date Title
US5367179A (en) Thin-film transistor having electrodes made of aluminum, and an active matrix panel using same
JPH0234918A (en) Manufacture of semiconductor device
JPH07115062A (en) Method and device for manufacturing thin film
JPS6217026B2 (en)
JP3282204B2 (en) Method of forming aluminum-based alloy film
JPH0677216A (en) Plasma annealing method for enhancement of barrier characteristic of vapor-deposited thin film
EP0476701B1 (en) A thin-film transistor and a thin film transistor panel using thin-film transistors of this type
EP0542271B1 (en) Thin-film device with a compound conductive layer
JP2002151693A (en) Bottom gate thin-film transistor, manufacturing method thereof, etching device, and nitriding device
JP3149035B2 (en) Thin film transistor and method of forming protective insulating film therefor
US6730368B1 (en) Method of preparing a poly-crystalline silicon film
JP3938437B2 (en) Thin film formation method
KR19990029468A (en) Method of manufacturing polycrystalline silicon thin film
JPH0519296A (en) Method and device for forming insulating film
JPH0282578A (en) Manufacture of thin film transistor
JPH05242745A (en) Formation of ito film and manufacture of liquid crystal display element
JPH07225395A (en) Liquid crystal display device and its production
JP3986178B2 (en) Al thin film forming method
JP2737540B2 (en) Method and apparatus for forming thin film transistors
JPH05331619A (en) Method and apparatus for forming thin film
JP2712796B2 (en) Method for manufacturing thin film transistor
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture
JPH11214702A (en) Semiconductor device and its manufacture
JPH05283411A (en) Forming method of thin film
JPH04130776A (en) Thin film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

EXPY Cancellation because of completion of term