JP3275128B2 - Manufacturing method of green phosphor for slow electron beam - Google Patents

Manufacturing method of green phosphor for slow electron beam

Info

Publication number
JP3275128B2
JP3275128B2 JP00639796A JP639796A JP3275128B2 JP 3275128 B2 JP3275128 B2 JP 3275128B2 JP 00639796 A JP00639796 A JP 00639796A JP 639796 A JP639796 A JP 639796A JP 3275128 B2 JP3275128 B2 JP 3275128B2
Authority
JP
Japan
Prior art keywords
phosphor
luminance
zno
temperature
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00639796A
Other languages
Japanese (ja)
Other versions
JPH09194834A (en
Inventor
英紀 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP00639796A priority Critical patent/JP3275128B2/en
Publication of JPH09194834A publication Critical patent/JPH09194834A/en
Application granted granted Critical
Publication of JP3275128B2 publication Critical patent/JP3275128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光表示管の発光
部に用いられ、数V〜数十V程度の低い加速電圧で発光
するいわゆる低速電子線励起によって緑色に発光する低
速電子線用緑色蛍光体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a light-emitting portion of a fluorescent display tube, and emits green at a low acceleration voltage of about several volts to several tens of volts. The present invention relates to a method for manufacturing a phosphor.

【0002】[0002]

【従来の技術】蛍光表示管は、低電圧で駆動でき、消費
電力も少なく、小型化が容易で高輝度が得られるので、
ディスプレイとして広く利用されている。また、用途の
拡大とともに、最近では各種の発光色や単一管内でのマ
ルチカラー化が求められ、一部実用化されている。現
在、最も多く利用されている発光色は、緑色の発光であ
り、この蛍光体としてはZnO:ZnやZnS:Cu,
Al+In23が良く知られている。
2. Description of the Related Art A fluorescent display tube can be driven at a low voltage, consumes little power, can be easily miniaturized, and can obtain high luminance.
Widely used as a display. In addition, with the expansion of applications, recently, various emission colors and multi-color within a single tube have been demanded, and some of them have been put into practical use. At present, the emission color most frequently used is green emission, and the phosphor is ZnO: Zn, ZnS: Cu,
Al + In 2 O 3 is well known.

【0003】特にZnO:Zn蛍光体は、蛍光表示管の
初期段階から使用され、発光閾値,発光効率および発光
輝度の点でバランスがとれ、緑色蛍光体として最も多く
使用されている。最近、ZnO:Zn蛍光体の緑色は、
いわゆる青緑白色であり、色純度としては若干不十分で
あるので、この点を改良するために一般式でZnO・G
23化合物、すなわちガリウム酸塩素化合物を母体と
する緑色発光用蛍光体の開発がなされている。
[0003] In particular, ZnO: Zn phosphors are used from the initial stage of a fluorescent display tube, are balanced in terms of light emission threshold, light emission efficiency and light emission luminance, and are most often used as green phosphors. Recently, the green color of the ZnO: Zn phosphor has
It is a so-called blue-green-white color, and its color purity is slightly insufficient.
2. Description of the Related Art A green light-emitting phosphor mainly composed of an a 2 O 3 compound, that is, a chlorine gallate compound has been developed.

【0004】例えば特開昭51−149772号公報に
はA(Zn1-XMgX)O・Ga23:BMn(但し、
0.6≦A≦1.2,0<B<5×10-2,0≦X≦
1.0)なる組成の蛍光体が提案されており、また、特
開平6−340875号公報にはZnO(AlX
1-X23:Mn(但し、X=0.001〜0.3m
ol)なる組成の蛍光体が提案されている。
For example, Japanese Patent Laid-Open Publication No. 51-149772 discloses A (Zn 1 -X Mg X ) O.Ga 2 O 3 : BMn (provided that
0.6 ≦ A ≦ 1.2, 0 <B <5 × 10 −2 , 0 ≦ X ≦
1.0), and a phosphor of ZnO (Al X G) is disclosed in JP-A-6-340875.
a 1-X ) 2 O 3 : Mn (where X = 0.001 to 0.3 m)
ol) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
ZnO・Ga23を母体とする蛍光体を蛍光表示管に組
み込み、実際に動作させた場合、その発光の輝度は、点
灯開始後から少しづつ輝度を増し、通常1000〜20
00時間にわたる連続点灯(エージング)の後にやっと
安定化する傾向が多く認められる。この安定化に要する
時間は、蛍光体を製造する際の各種の要因,出発原料間
のロット差,窯の焼成位置,外気温度などによって微妙
な影響を受け、比較的短時間で安定化する蛍光体もあれ
ば、3000時間以上のエージングでも輝度の安定しな
い蛍光体もあることは現業において良く経験される。
However, when these phosphors based on ZnO.Ga 2 O 3 are incorporated in a fluorescent display tube and actually operated, the luminance of the light emission gradually increases after the start of lighting. Increase brightness, typically 1000-20
A tendency to stabilize only after continuous lighting (aging) over 00 hours is recognized. The time required for this stabilization is delicately influenced by various factors during the production of the phosphor, lot differences between the starting materials, the firing position of the kiln, the outside air temperature, and the like. It is often experienced in the business that there is a body and there is a phosphor whose luminance is not stable even after aging for 3000 hours or more.

【0006】また、最近の蛍光表示管は、用途の広がり
に伴って大型化し、管内に多種多様の記号,図形,数値
などの表示部を供え、多数のセグメントで構成されてい
る。そして最終需要先での点灯頻度は所望の表示形によ
って各種多様であり、セグメントによって大幅に異なる
ため、出荷前の工場内での通常、数〜数10時間のエー
ジングでは、管全体の発光輝度が完全には均一に安定化
できず、需要先で輝度のアンバランスを生じ、表示品位
が低下するという問題があった。
[0006] Recent fluorescent display tubes have been increased in size as their applications have expanded, and are provided with a variety of symbols, figures, numerical values, and other display portions in the tube, and are constituted by a large number of segments. The lighting frequency at the final demand destination varies depending on the desired display form, and varies greatly depending on the segment. Therefore, in a factory before shipment, aging of several to several tens of hours usually results in a light emission luminance of the entire tube. There is a problem in that the display cannot be completely stabilized uniformly, resulting in an imbalance in luminance at a demand destination and a deterioration in display quality.

【0007】また、この問題を回避する手段としては、
工場内でエージングを実施することが考えられるが、前
述したように工場内で数1000時間にわたって大量に
連続点灯することは、多くの点で不可能であった。
[0007] In order to avoid this problem,
Although it is conceivable to perform aging in a factory, it is impossible in many respects to continuously light in a large amount for several thousand hours in the factory as described above.

【0008】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、点
灯初期でも輝度が十分高く、かつ輝度が安定化するに要
する時間が短い低速電子線用緑色発光蛍光体の製造方法
を提供することにある。
Accordingly, the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a low-speed electron beam which has a sufficiently high luminance even at the initial stage of lighting and a short time for stabilizing the luminance. A method for producing a green light-emitting phosphor for use.

【0009】[0009]

【課題を解決するための手段】このような目的を達成す
るために本発明は、一般式ZnO・Ga23で表される
蛍光体母体にMnを付活剤とする緑色蛍光体の製造方法
において、焼成によりZnOとなるZn化合物と焼成に
よりGa 2 3 となるGa化合物とにより蛍光体母体を合
成する第1の工程と、蛍光体母体にMnをドープする第
2の工程とを備え、MnをZnO・Ga23中にドープ
する雰囲気が還元性であり、加熱温度が800〜100
0℃の範囲で行うようにしたものであり、また、このよ
うに製造した蛍光体を不活性雰囲気下650〜950℃
の温度範囲でアニール処理するようにしたことにより、
初期輝度が高く、より短時間の点灯で発光輝度が安定す
る。
In order to achieve the above object, the present invention provides a method for producing a green phosphor using Mn as an activator in a phosphor matrix represented by the general formula ZnO.Ga 2 O 3. In the method, the baking is performed with a Zn compound which becomes ZnO by baking.
The phosphor matrix is combined with a Ga compound to become Ga 2 O 3.
A first step of forming and a second step of doping the phosphor matrix with Mn.
And a second step, a atmosphere reducing to dope Mn in ZnO · Ga 2 O 3, the heating temperature is 800 to 100
The phosphor is manufactured at a temperature of 650 to 950 ° C. in an inert atmosphere.
By annealing at the temperature range of
The initial luminance is high, and the light emission luminance is stabilized by lighting for a shorter time.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。蛍光体の母体となるZnO・Ga2
3(ZnGa24とも言う)の合成には、大気中の焼
成により、各々ZnO,Ga23となるZn化合物,G
a化合物が出発原料として適宜選択される。例えばZn
O源には、ZnO,Zn(OH)2 ,Zn(NO32
ZnCl2またはZnCO3などの無機化合物が好まし
い。
Embodiments of the present invention will be described below in detail. ZnO / Ga 2 serving as the base of the phosphor
O 3 (also referred to as ZnGa 2 O 4 ) is synthesized by baking in the atmosphere to obtain ZnO and Ga 2 O 3.
Compound a is appropriately selected as a starting material. For example, Zn
O sources include ZnO, Zn (OH) 2 , Zn (NO 3 ) 2 ,
Inorganic compounds such as ZnCl 2 or ZnCO 3 are preferred.

【0011】一方、Ga23源には、Ga23,Ga
(OH)3,GaCl3またはGa(NO33などが同様
に挙げられ、可能な限り高純度99.9%以上、好まし
くは純度99.99%以上を蛍光体の発光輝度を高める
ために用いるべきである。出発原料を所定のモル比1:
1になるように調合し、水などの溶剤に難容性であれば
乾式または湿式で混合し、可容性であれば水に溶解し、
共沈法などの操作にて混合物を得る。
On the other hand, Ga 2 O 3 sources include Ga 2 O 3 , Ga
Similarly, (OH) 3 , GaCl 3 or Ga (NO 3 ) 3 may be mentioned, and the purity is as high as 99.9% or more, preferably 99.99% or more in order to increase the emission luminance of the phosphor. Should be used. The starting materials are mixed at a predetermined molar ratio of 1:
1 if mixed, dry or wet if it is difficult to dissolve in solvents such as water, if soluble, dissolve in water,
A mixture is obtained by an operation such as a coprecipitation method.

【0012】乾式混合によるZnOとGa23とからの
ZnO・Ga23の合成は、使用する原料の粒度や混合
度によって反応の達成度(反応率)が大きく左右され、
達成度を上げるには反応時の温度をより高温度(130
0℃程度)にすることが要求されるが、一般に高温度に
なるほど出発原料のZnOやまたは反応したZnO・G
23中のZnOがZnOガスまたはZnガスとして系
外に揮散し、後に過剰のGa23が残ってしまうため、
合成されたZnO・Ga23の蛍光体としての性能が著
しく劣化してしまう。また、共沈法よるZnO・Ga2
3の合成には、前述した問題が比較的少ないが、やは
り純然たる固相反応であるため、反応率が低く、所定時
間内に反応を達成するにはやはり高温度が必要である。
In the synthesis of ZnO.Ga 2 O 3 from ZnO and Ga 2 O 3 by dry mixing, the degree of achievement (reaction rate) of the reaction is greatly affected by the particle size and mixing degree of the raw materials used.
To increase the degree of achievement, the temperature during the reaction is increased to a higher temperature (130
0 ° C.), but in general, the higher the temperature, the higher the starting material ZnO or reacted ZnO.G
Since ZnO in a 2 O 3 volatilizes out of the system as ZnO gas or Zn gas, and excess Ga 2 O 3 remains afterwards.
The performance of the synthesized ZnO.Ga 2 O 3 as a phosphor is remarkably deteriorated. In addition, ZnO.Ga 2
Although the above-mentioned problems are relatively small in the synthesis of O 3 , the reaction rate is low because it is also a pure solid-phase reaction, and a high temperature is required to achieve the reaction within a predetermined time.

【0013】このため、より低温度で反応を達成できる
少量のフラックスを添加することが有利である。この場
合、フラックスには、NaCl,NaF,Na2CO3
NaNO3などのNa系化合物,KCl,KF,K2CO
3,KNO3などのK系化合物またはLiCl,LiF,
LiCO3,LiNO3などのLi系化合物が挙げられる
が、好ましくはリン酸リチウム化合物,LiH2PO4
Li3PO4,Li425,LiPO4などであり、より
好ましくはLi3PO4である。
[0013] For this reason, it is advantageous to add a small amount of flux that can achieve the reaction at a lower temperature. In this case, the flux includes NaCl, NaF, Na 2 CO 3 ,
Na-based compounds such as NaNO 3 , KCl, KF, K 2 CO
K compounds such as 3 , KNO 3 or LiCl, LiF,
Li-based compounds such as LiCO 3 and LiNO 3 may be mentioned, but preferably lithium phosphate compounds, LiH 2 PO 4 ,
Li 3 PO 4 , Li 4 P 2 O 5 , LiPO 4 and the like, and more preferably Li 3 PO 4 .

【0014】ここで、Li3PO4をフラックスとした場
合、約1000℃という比較的低い温度でZnO・Ga
23が十分に合成できるため、ZnOの揮散がなく、安
定して定比の化合物が得られる。また、Li3PO4の添
加量には特に限定はなく、ZnO・Ga23合成後、存
在する過剰のLiおよびP成分(Li3PO4)は、蛍光
体の発光輝度を低下させる要因となるため、酸洗浄によ
り添加された過剰のLi3PO4が除去されるので、Zn
O・Ga231mol当たり0.01〜0.3molの
Li3PO4の添加が好ましい。
Here, when Li 3 PO 4 is used as the flux, ZnO.Ga is used at a relatively low temperature of about 1000 ° C.
Since 2 O 3 can be sufficiently synthesized, ZnO is not volatilized, and a compound with a constant ratio can be obtained stably. There is no particular limitation on the amount of Li 3 PO 4 to be added, and the excess Li and P components (Li 3 PO 4 ) present after the synthesis of ZnO.Ga 2 O 3 are factors that lower the emission luminance of the phosphor. Since excess Li 3 PO 4 added by acid washing is removed, Zn
The addition of O · Ga 2 O 3 of 1mol per 0.01~0.3mol Li 3 PO 4 are preferred.

【0015】また、Li3PO4の添加が0.01mol
未満では、反応の達成率が少なく、また、0.3mol
を超えると、洗浄,除去などに多くの労力を費やしてし
まう。残存するLiおよびPの量は、添加量や洗浄の程
度などによって異なるが、概ね数1000ppm〜数1
0ppmと考えられる。
The addition of Li 3 PO 4 is 0.01 mol.
If it is less, the achievement rate of the reaction is low, and 0.3 mol
If it exceeds, much labor will be spent on cleaning and removal. The amount of the remaining Li and P varies depending on the amount of addition and the degree of cleaning, but is generally about several thousand ppm to several one ppm.
It is considered to be 0 ppm.

【0016】このように合成したZnO・Ga23は、
引き続いて緑色を発光させるための付活剤としてMnが
ZnO・Ga23結晶中にドープされる。Mn源には、
MnO,Mn34,Mn(NO32,MnSO4,Mn
Cl2などが挙げられるが、結晶中に少量で均一にドー
プするには水溶液の形態が好ましい。ここではMnSO
4がより好ましい。
The ZnO.Ga 2 O 3 thus synthesized is
Subsequently, Mn is doped into the ZnO.Ga 2 O 3 crystal as an activator for emitting green light. Mn sources include:
MnO, Mn 3 O 4, Mn (NO 3) 2, MnSO 4, Mn
Such as Cl 2 and the like, but the form of an aqueous solution to uniformly doped with a small amount into the crystal are preferred. Here, MnSO
4 is more preferred.

【0017】[0017]

【実施例】以下、図1を用いて本発明の実施例を詳細に
説明する。まず、蛍光体の母体となるZnO・Ga23
を合成するために純度99.999%のZnO粉を4
0.7gと、同じく99.999%のGa23粉を9
3.7gと、0.1mol%に相当する純度99%以上
のLi3PO4粉を11.6gとを各々秤量し、これに適
量の水を添加してスラリー状となし、メノウ乳鉢中で2
時間混合した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIG. First, ZnO.Ga 2 O 3 serving as a base material of the phosphor is used.
To synthesize 99.999% pure ZnO powder to synthesize
0.7 g and 99.999% of Ga 2 O 3 powder
3.7 g and 11.6 g of Li 3 PO 4 powder having a purity of 99% or more corresponding to 0.1 mol% were weighed, and an appropriate amount of water was added thereto to form a slurry, which was then placed in an agate mortar. 2
Mix for hours.

【0018】次にこれをオーブンに移し、120℃にて
5時間保持し、水分を蒸発させて乾燥した。この乾燥物
を高純度アルミナ製のルツボに入れ、電気炉にて120
0℃,3時間の大気雰囲気下で加熱し、蛍光体の母体と
なるべきZnO・Ga23を合成した。次に炉温が約4
00℃になるまで炉内に放置し、次いでこれを取り出
し、デシケーター中で室温まで冷却した。合成物は、若
干焼結が進行し、塊状となっているため、高純度アルミ
ナ製乳鉢中で約100メッシュの篩いを通過できる程度
に粉砕した。
Next, this was transferred to an oven, kept at 120 ° C. for 5 hours, and dried by evaporating water. The dried product is placed in a high-purity alumina crucible and is placed in an electric furnace for 120 minutes.
Heating was performed at 0 ° C. for 3 hours in an air atmosphere to synthesize ZnO.Ga 2 O 3 to be a base of the phosphor. Next, the furnace temperature is about 4
It was left in the furnace until it reached 00 ° C., then it was taken out and cooled in a desiccator to room temperature. Since the sintering proceeded slightly to form a lump, the composite was pulverized in a high-purity alumina mortar so that it could pass through a sieve of about 100 mesh.

【0019】この粉砕物には、過剰のリチウム(Li)
およびリン(P)が含まれ、発光の輝度特性には悪影響
を及ぼすと考えられるので、過剰分を除去した。除去方
法は、0.1Nの硝酸水溶液にこれら粉砕物を投入し、
過剰のリチウムとリン酸とを溶解させ、濾過分離し、最
後に純水にて数回洗浄した。
The pulverized material contains excess lithium (Li).
And phosphorus (P), which is considered to adversely affect the luminance characteristics of light emission. The removal method is to put these pulverized materials in 0.1N nitric acid aqueous solution,
Excess lithium and phosphoric acid were dissolved, separated by filtration, and finally washed several times with pure water.

【0020】次に付活剤として作用するMn(マンガ
ン)をこの母体中にドープするため、Mn源としてMn
SO4 を選び、試薬特級グレードで30.2gを純水2
000gに溶解し、この溶液20.3gを分取してZn
O・Ga23合成乾粉53.8gに添加した(ZnO・
Ga231molに対してMnを0.01molを添
加)。添加物を攪拌してスラリー状とし、ホットプレー
トに乗せ、常に攪拌しながら、加熱して水分を蒸発さ
せ、最後にオーブン中で150℃,5時間乾燥し、Mn
SO4 をZnO・Ga23に均一に被覆した。
Next, since Mn (manganese) acting as an activator is doped into the matrix, Mn is used as a Mn source.
Select SO 4 and add 30.2g of pure grade 2
000 g, 20.3 g of this solution was fractionated and Zn
Added to 53.8 g of O.Ga 2 O 3 synthetic dry powder (ZnO.
0.01 mol of Mn is added to 1 mol of Ga 2 O 3 ). The additive was stirred to form a slurry, placed on a hot plate, and heated with constant stirring to evaporate water, and finally dried in an oven at 150 ° C. for 5 hours to obtain Mn.
The SO 4 was uniformly coated on ZnO · Ga 2 O 3.

【0021】次にこの混合物を高純度アルミナ製容器に
移し替え、電気炉中に入れ、H2 (5%)−N2 (95
%)の還元ガス雰囲気下で所定の温度にて2時間保持
し、この合成物の還元加熱処理を行った。この還元処理
はMnをZnO・Ga23中にドープする工程であり、
このように処理されたものを以降ZnO・Ga23:M
n蛍光体という。なお、還元処理の加熱温度は750℃
〜1050℃の範囲で実施した。また、さらにこのガス
雰囲気下で炉中にて室温まで冷却した後、H2 ガスの流
路を閉じ、N2 ガスのみを流しながら、再度所定の温度
まで昇温し、1時間保持したものをアニール処理ZnO
・Ga23:Mn蛍光体という。
Next, this mixture was transferred to a high-purity alumina container, placed in an electric furnace, and H 2 (5%)-N 2 (95%).
%) At a predetermined temperature for 2 hours under a reducing gas atmosphere, and a reduction heat treatment of the synthesized product was performed. This reduction treatment is a step of doping Mn into ZnO.Ga 2 O 3 ,
The material thus treated is hereinafter referred to as ZnO.Ga 2 O 3 : M
It is called n phosphor. The heating temperature of the reduction treatment was 750 ° C.
The test was performed in the range of 1050 ° C. Further, after cooling to room temperature in a furnace under this gas atmosphere, the H 2 gas flow path is closed, the temperature is raised again to a predetermined temperature while flowing only N 2 gas, and the temperature is maintained for 1 hour. Annealed ZnO
Ga 2 O 3 : Mn phosphor.

【0022】このようにして合成した蛍光体を発光部に
用いた蛍光表示管を作製し、輝度特性を調べた。蛍光表
示管の作製は、次のようにして行った。合成した蛍光体
と有機溶剤(ビヒクル,エチルセルロース+ブチルカル
ビトールアセテート)とを混合してペースト状とし、ガ
ラス基板上に形成された陽極導体層上に印刷することに
より被着させる。その後、有機溶剤を除去するために乾
燥,焼成工程を通す。これにより、陽極導体層上に蛍光
表示管の発光部となる蛍光面が形成されたことになる。
A fluorescent display tube using the phosphor thus synthesized for a light emitting portion was manufactured, and the luminance characteristics were examined. The production of the fluorescent display tube was performed as follows. The synthesized phosphor and an organic solvent (vehicle, ethylcellulose + butyl carbitol acetate) are mixed to form a paste, and the paste is applied by printing on an anode conductor layer formed on a glass substrate. Thereafter, a drying and firing step is performed to remove the organic solvent. As a result, a phosphor screen serving as a light emitting portion of the fluorescent display tube is formed on the anode conductor layer.

【0023】蛍光面形成後、蛍光面上に電子の流れを制
御するグリッド電極(制御電極)を設置する。グリッド
電極設置後、グリッド電極を挟んで蛍光面の反対側に電
子放出源となるフィラメント(陰極)を設置する。その
後、蛍光面,グリッド電極,フィラメントを含む全体を
ガラス容器で覆い、ガラス容器内部を真空排気すること
により蛍光表示管が組み立てられる。
After the formation of the phosphor screen, a grid electrode (control electrode) for controlling the flow of electrons is provided on the phosphor screen. After the grid electrode is installed, a filament (cathode) serving as an electron emission source is installed on the opposite side of the phosphor screen across the grid electrode. Thereafter, the entirety including the fluorescent screen, the grid electrode, and the filament is covered with a glass container, and the inside of the glass container is evacuated to thereby assemble a fluorescent display tube.

【0024】次にこのようにして組み立てた蛍光表示管
の輝度を測定する。この場合、蛍光表示管をフィラメン
ト電圧VF =3.3V,グリッド電圧VG =30V,陽
極電圧VP =30Vの負荷で発光させ、その輝度をトプ
コン製BM−7型の輝度測定装置で測定する。
Next, the luminance of the fluorescent display tube assembled as described above is measured. In this case, the filament voltage the fluorescent display tube V F = 3.3V, the grid voltage V G = 30 V, is emitted by the load of the anode voltage V P = 30 V, measuring the luminance produced by TOPCON BM-7 type luminance measuring device I do.

【0025】下記表1は、母体であるZnO・Ga23
にMnをドープするときの還元加熱温度と初期輝度との
関係を調べたものであり、ここで、初期輝度とは、蛍光
表示管を最初に点灯したときの発光輝度を言う。なお、
表1中、実用値とは、発光の色純度によって実用化でき
る輝度が異なるため、ZnO・Ga23:Mn系緑色蛍
光体では30fl以上とする。
The following Table 1 shows that the parent ZnO.Ga 2 O 3
The relationship between the reduction heating temperature and the initial luminance when doping Mn with Mn is examined. Here, the initial luminance refers to the emission luminance when the fluorescent display tube is first turned on. In addition,
In Table 1, the practical value differs from the practical value depending on the color purity of the light emission. Therefore, the ZnO.Ga 2 O 3 : Mn green phosphor is set to 30 fl or more.

【0026】[0026]

【表1】 [Table 1]

【0027】図2は、表1を書き換えて示したものであ
り、実用値30flを100%としたときの各還元温度
における相対的な輝度を示したものである。図2に示す
ように還元温度が800℃以下では初期輝度がむしろ低
下し、1000℃以上の加熱でも同様に輝度低下の傾向
が認められ、これらの温度以下または以上は好ましくな
く、少なくとも実用値レベルである30fl以上とする
には、加熱温度が800〜1000℃の範囲にすること
が必要であり、好ましくは130%以上の輝度を確保す
るには、加熱温度830〜970℃の範囲の間が良く、
より好ましい150%では850〜950℃の範囲であ
ることが判る。
FIG. 2 is a rewrite of Table 1, showing relative luminance at each reduction temperature when the practical value of 30 fl is taken as 100%. As shown in FIG. 2, when the reduction temperature is 800 ° C. or lower, the initial luminance is rather lowered, and when the temperature is 1000 ° C. or higher, the luminance tends to decrease. It is necessary to set the heating temperature in the range of 800 to 1000 ° C. in order to obtain 30 fl or more, and preferably in order to secure the luminance of 130% or more, the heating temperature must be in the range of 830 to 970 ° C. well,
It can be seen that the more preferable 150% is in the range of 850 to 950 ° C.

【0028】図3は、輝度が最も高くなった各加熱温度
850℃,900℃および950℃にて還元されたZn
O・Ga23:Mn蛍光体をさらに純N2 ガス中でアニ
ールしたときの初期輝度とアニール温度との関係を求め
て示したものである。図中、点C′(アニール処理な
し)は、図2の点C′(850℃還元処理)に対応して
いる。
FIG. 3 shows that Zn reduced at heating temperatures of 850 ° C., 900 ° C. and 950 ° C. at which the brightness was highest was obtained.
This graph shows the relationship between the initial luminance and the annealing temperature when the O.Ga 2 O 3 : Mn phosphor is further annealed in pure N 2 gas. In the figure, point C '(without annealing treatment) corresponds to point C' (850 ° C. reduction treatment) in FIG.

【0029】図3において、曲線Aは850℃還元の蛍
光体,曲線Bは900℃還元の蛍光体,曲線Cは950
℃還元の蛍光体をさらに純N2 ガス雰囲気下にて温度6
00〜1100℃の範囲でアニール処理したときの初期
相対輝度の測定結果であり、850℃還元蛍光体(曲線
A)は、700〜900℃のアニール温度ではアニール
処理なしの蛍光体に比較して輝度が30%,さらに80
0〜850℃の範囲では50%も向上する。同様に90
0℃還元蛍光体(曲線B)は、800〜900℃、特に
900℃では約32%の増加が認められる。同様に95
0℃還元蛍光体(曲線C)は、850℃のアニール温度
で約20%の輝度向上が認められた。
In FIG. 3, curve A is a phosphor reduced at 850 ° C., curve B is a phosphor reduced at 900 ° C., and curve C is 950.
The phosphor reduced in ° C is further heated to a temperature of 6 in a pure N 2 gas atmosphere.
It is a measurement result of the initial relative luminance when annealing was performed in the range of 00 to 1100 ° C., and the 850 ° C. reduced phosphor (curve A) was compared with the phosphor without the annealing at the annealing temperature of 700 to 900 ° C. 30% brightness and 80 more
In the range of 0 to 850 ° C., it is improved by 50%. Similarly 90
The 0 ° C. reduced phosphor (curve B) shows an increase of about 32% at 800 to 900 ° C., particularly at 900 ° C. Similarly 95
The 0 ° C. reduced phosphor (curve C) showed about 20% improvement in luminance at the 850 ° C. annealing temperature.

【0030】図4は、850℃還元蛍光体をベースとし
て各種不活性ガスおよび大気下でアニール温度850
℃,1時間処理したときのガス種の違いによる初期相対
輝度の結果を示したものである。ここで、横軸の「な
し」とは、850℃還元のみでアニール処理のない蛍光
体の輝度を100%とした。図4に示すように窒素(N
2),アルゴン(Ar),ヘリウム(He)などの不活
性ガス種による輝度の変化はなく、いずれも発光輝度1
50%の値が得られ、一方、酸素を21%を含む大気中
におけるアニールでは初期相対輝度が90%と低下し
た。
FIG. 4 shows an annealing temperature of 850 ° C. based on a 850 ° C. reduced phosphor under various inert gases and atmosphere.
FIG. 5 shows the results of the initial relative luminance depending on the type of gas when treated at 1 ° C. for 1 hour. Here, “none” on the horizontal axis indicates that the luminance of the phosphor that was reduced only at 850 ° C. and did not undergo annealing was set to 100%. As shown in FIG.
2 ) There is no change in luminance due to inert gas species such as argon (Ar) and helium (He).
A value of 50% was obtained, while annealing in air containing 21% oxygen reduced the initial relative brightness to 90%.

【0031】最終製品としての蛍光表示管は、長期間に
わたって連続して使用されるケースが多いので、アニー
ル処理を施した蛍光体の輝度の経時変化について調べ
た。ここで、輝度は、相対値で示し、アニールなしの蛍
光体を基準100%とした。輝度の経時変化、すなわち
輝度変動率(%)=(1000時間連続点灯後の輝度−
一定時間点灯後の輝度)/(1000時間連続点灯後の
輝度)×100と定義する。この変動率が小さいほど蛍
光体が安定であり、好ましいが、実際に製造するのは困
難であり、通常、この変化率が±30%以内、好ましく
は±15%以内であれば十分に実用に供し得る。
Since a fluorescent display tube as a final product is often used continuously for a long period of time, the change with time of the luminance of the phosphor subjected to the annealing treatment was examined. Here, the luminance is shown as a relative value, and the phosphor without annealing was set to 100% as a reference. Change of luminance over time, that is, luminance fluctuation rate (%) = (luminance after continuous lighting for 1000 hours−
It is defined as luminance after lighting for a certain period of time / (luminance after continuous lighting for 1000 hours) × 100. The smaller the fluctuation rate is, the more stable and preferable the phosphor is, but it is difficult to actually manufacture the phosphor. Usually, if the fluctuation rate is within ± 30%, preferably within ± 15%, the phosphor becomes sufficiently practical. Can be served.

【0032】図5は、850℃で還元焼成し、さらに8
50℃でN2 ガスアニール処理を施したした蛍光体およ
びアニール処理のない同じ蛍光体の連続1000時間点
灯における輝度変化(変動率)を求めて示した図であ
り、相対輝度100%をアニール処理のない蛍光体の点
灯直後の初期輝度とした。また、本実施例の範囲外であ
る還元焼成温度1050℃のときの蛍光体の輝度の変化
を比較例として同時に示した。
FIG. 5 shows a reduction firing at 850 ° C.
FIG. 4 is a diagram showing a change in luminance (variation rate) of a phosphor that has been subjected to an N 2 gas annealing treatment at 50 ° C. and a phosphor without an annealing treatment after continuous lighting for 1000 hours. The initial luminance immediately after lighting of the phosphor without the color was defined as the initial luminance. Further, a change in luminance of the phosphor at a reduction firing temperature of 1050 ° C., which is out of the range of the present example, is also shown as a comparative example.

【0033】図5に示したようにアニール処理を施した
蛍光体は、点灯直後から既に相対輝度が135%と高
く、60時間後では145%,120時間後では150
%,300時間後では155%,1000時間後には1
58%となり、ほぼ300時間を経過すると、完全に一
定値となり、輝度は極めて安定する。同じくアニール処
理のみがない本実施例である蛍光体の輝度も60時間後
では110%,120時間後では120%,300時間
では133%となり、これ以降に少しづつ輝度が増大す
る傾向が見られ、1000時間後では前述した蛍光体の
輝度とほぼ同一値になる。
As shown in FIG. 5, the phosphor subjected to the annealing treatment has a relative luminance as high as 135% immediately after lighting, 145% after 60 hours, and 150% after 120 hours.
%, 155% after 300 hours, 1 after 1000 hours
It becomes 58%, and after approximately 300 hours, it becomes a completely constant value, and the luminance is extremely stable. Similarly, the luminance of the phosphor of this embodiment without only the annealing treatment is 110% after 60 hours, 120% after 120 hours, and 133% after 300 hours, and the luminance tends to gradually increase thereafter. After 1000 hours, the luminance becomes substantially the same as the luminance of the phosphor described above.

【0034】また、本実施例の範囲外である還元焼成温
度1050℃,アニール処理なしの蛍光体では、初期相
対輝度が68%,120時間後では75%、1000時
間後でも98%と低いことが判る。輝度変動率が15%
以内に収まるために要する点灯時間は、アニール処理蛍
光体では初期から、また、アニールなしでは約320時
間後、また、比較例では280時間後と若干前者より短
くなるが、輝度が低いため、好ましくない。
In the case of the phosphor not subjected to the reduction firing at 1050 ° C. and without annealing, which is out of the range of the present embodiment, the initial relative luminance is as low as 68%, 75% after 120 hours, and 98% even after 1000 hours. I understand. Brightness fluctuation rate is 15%
The lighting time required to fall within the range is slightly shorter than the former, from the initial stage for the annealed phosphor, after about 320 hours without annealing, and after 280 hours in the comparative example. Absent.

【0035】図6は、900℃還元,900℃N2 ガス
アニール処理としたときの蛍光体の相対輝度測定結果を
示したものである。図6に示すようにアニール処理した
蛍光体は、初期相対輝度が143%,1000時間後で
は162%,輝度変動率11.7%と極めて優れてい
る。また、アニール処理のみがない本実施例でも相対輝
度を高くすることができるが、変動率15%以内とする
ためには時間が必要である。以上のことから、還元焼成
に続きアニール処理を行うことにより、輝度が初めから
高く、輝度変動率の少ない、即時に使用できる蛍光体が
得られる。
FIG. 6 shows the results of measuring the relative luminance of the phosphor when reducing at 900 ° C. and performing N 2 gas annealing at 900 ° C. As shown in FIG. 6, the phosphor annealed has an extremely excellent initial relative luminance of 143%, 162% after 1000 hours, and a luminance variation rate of 11.7%. Further, in this embodiment having only the annealing process, the relative luminance can be increased, but it takes time to keep the variation rate within 15%. As described above, by performing the annealing treatment after the reduction firing, it is possible to obtain a phosphor that has a high luminance from the beginning and has a low luminance variation rate and can be used immediately.

【0036】次に本実施例による蛍光体の緑色発光特性
を色度図を用いて説明する。図7は、色度の測定結果を
色度図上にプロットして示したものであり、対照として
従来から知られているZnO,ZnS系緑色蛍光体も同
時に示した。これを色座標で示すと、下記表2のように
表される。
Next, the green light emission characteristics of the phosphor according to the present embodiment will be described with reference to a chromaticity diagram. FIG. 7 shows the measurement results of the chromaticity plotted on the chromaticity diagram, and a ZnO and ZnS-based green phosphor conventionally known as a control is also shown. This is represented by color coordinates as shown in Table 2 below.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すようにZnO系やZnS系の青
緑色や黄緑色に比較して純粋な緑色に近い緑色(x=
0.13,y=0.70)が得られた。この緑色は、本
実施の形態の範囲内の蛍光体であるならばほぼ同様な緑
色発光特性であった。
As shown in Table 2, green (x = n) which is closer to pure green than ZnO-based or ZnS-based blue-green or yellow-green.
0.13, y = 0.70) was obtained. This green color has substantially the same green light emission characteristics as long as it is a phosphor within the range of the present embodiment.

【0039】[0039]

【発明の効果】以上、説明したように本発明による緑色
発光のZnO・Ga23:Mn蛍光体の製造において、
母体となるZnO・Ga23にMnをドープする雰囲気
を還元性とし、そのときの焼成温度を800〜1000
℃の範囲に設定することにより、初期輝度の高い蛍光体
が得られた。
As described above, in the production of the green-emitting ZnO.Ga 2 O 3 : Mn phosphor according to the present invention,
The atmosphere in which ZnO.Ga 2 O 3 serving as a base is doped with Mn is reduced, and the firing temperature at that time is set to 800 to 1000.
By setting the temperature in the range of ° C., a phosphor having a high initial luminance was obtained.

【0040】また、この蛍光体を不活性雰囲気下650
〜950℃の温度範囲でアニール処理を行うことによ
り、より一段と初期輝度が高くなり、かつ輝度の安定化
に要する時間が従来に比較して1/3と短く、輝度変動
率の小さい蛍光体が得られた。これによって出荷前の工
場内での短時間のエージングが可能となり、需要家先で
の表示品位を保持できるという極めて優れた効果が得ら
れた。
Further, this phosphor was placed in an inert atmosphere at 650.
By performing the annealing process in the temperature range of 950 ° C. to 950 ° C., the initial luminance is further increased, and the time required for stabilizing the luminance is reduced to 1 / of that of the conventional phosphor, and a phosphor having a small luminance variation rate can be obtained. Obtained. As a result, aging can be performed for a short time in the factory before shipment, and an extremely excellent effect that the display quality at the customer's place can be maintained is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による蛍光体の製造方法の一実施の形
態を説明するための製造プロセスを示す図である。
FIG. 1 is a diagram showing a manufacturing process for explaining an embodiment of a method for manufacturing a phosphor according to the present invention.

【図2】 母体であるZnO・Ga23にMnをドープ
するときの還元雰囲気中での焼成温度と初期相対輝度の
関係を示す図である。
FIG. 2 is a view showing a relationship between a firing temperature in a reducing atmosphere and initial relative luminance when ZnO.Ga 2 O 3 as a base is doped with Mn.

【図3】 本発明による蛍光体の製造方法において、M
nのドープを約850℃および約900℃で行った蛍光
体について不活性雰囲気中での熱処理温度と初期相対輝
度との関係を示す図である。
FIG. 3 illustrates a method of manufacturing a phosphor according to the present invention;
FIG. 9 is a diagram showing a relationship between a heat treatment temperature in an inert atmosphere and an initial relative luminance for a phosphor doped with n at about 850 ° C. and about 900 ° C.

【図4】 各種アニール処理雰囲気と初期相対輝度との
関係を示す図である。
FIG. 4 is a diagram showing the relationship between various annealing treatment atmospheres and initial relative luminance.

【図5】 本発明による蛍光体の製造方法において、ア
ニール処理の温度を850℃で行った蛍光体についての
点灯時間に対する輝度の経時変化を示す図である。
FIG. 5 is a diagram showing a change over time in luminance with respect to the lighting time of a phosphor which was subjected to an annealing process at 850 ° C. in the method for producing a phosphor according to the present invention.

【図6】 本発明による蛍光体の製造方法において、ア
ニール処理の温度を900℃で行った蛍光体についての
点灯時間に対する輝度の経時変化を示す図である。
FIG. 6 is a diagram showing a change over time of luminance with respect to a lighting time of a phosphor which has been subjected to an annealing process at 900 ° C. in the method for producing a phosphor according to the present invention.

【図7】 本発明による蛍光体の製造方法により形成さ
れたZnO・Ga23 :Mn蛍光体の色度図上におけ
る位置を示す図である。
FIG. 7 is a diagram showing positions on a chromaticity diagram of a ZnO.Ga 2 O 3 : Mn phosphor formed by the phosphor manufacturing method according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C09K 11/62 CPB C09K 11/08 H01J 29/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C09K 11/62 CPB C09K 11/08 H01J 29/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式ZnO:Ga23で表される蛍光
体母体にMnを付活剤として用いた緑色蛍光体の製造方
法において、焼成によりZnOとなるZn化合物と焼成によりGa 2
3 となるGa化合物とにより前記蛍光体母体を合成す
る第1の工程と、 前記蛍光体母体にMnをドープする第2の工程と を備
え、 前記ZnO・Ga23中にMn化合物をドープさせる際
に還元性雰囲気中にて加熱温度が800〜1000℃の
範囲で行うことを特徴とする低速電子線用緑色蛍光体の
製造方法。
1. A method for producing a green phosphor using Mn as an activator in a phosphor matrix represented by the general formula ZnO: Ga 2 O 3 , wherein a Zn compound which becomes ZnO upon firing and Ga 2 upon firing.
The phosphor matrix is synthesized with a Ga compound to be O 3 .
Bei a first step and a second step of doping Mn into the phosphor matrix that
A method of producing a green phosphor for a low-speed electron beam , wherein the doping of the ZnO.Ga 2 O 3 with a Mn compound is performed in a reducing atmosphere at a heating temperature of 800 to 1000 ° C. .
【請求項2】 請求項1において、前記還元加熱後に不
活性雰囲気下650〜950℃の温度範囲でアニール処
理を行うことを特徴とする低速電子線用緑色蛍光体の製
造方法。
2. The method for producing a green phosphor for a low-speed electron beam according to claim 1, wherein annealing is performed in an inert atmosphere at a temperature in the range of 650 to 950 ° C. after the reduction heating.
【請求項3】 請求項1または請求項2において、前記
ZnO・Ga23の合成にLi3PO4を用いることを特
徴とする低速電子線用緑色蛍光体の製造方法。
3. The method according to claim 1, wherein Li 3 PO 4 is used for the synthesis of ZnO.Ga 2 O 3 .
JP00639796A 1996-01-18 1996-01-18 Manufacturing method of green phosphor for slow electron beam Expired - Lifetime JP3275128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00639796A JP3275128B2 (en) 1996-01-18 1996-01-18 Manufacturing method of green phosphor for slow electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00639796A JP3275128B2 (en) 1996-01-18 1996-01-18 Manufacturing method of green phosphor for slow electron beam

Publications (2)

Publication Number Publication Date
JPH09194834A JPH09194834A (en) 1997-07-29
JP3275128B2 true JP3275128B2 (en) 2002-04-15

Family

ID=11637247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00639796A Expired - Lifetime JP3275128B2 (en) 1996-01-18 1996-01-18 Manufacturing method of green phosphor for slow electron beam

Country Status (1)

Country Link
JP (1) JP3275128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926898B1 (en) * 2007-02-16 2009-11-17 삼성전자주식회사 Deep red phosphor and method for preparing same

Also Published As

Publication number Publication date
JPH09194834A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP2007224148A (en) Mixed crystal phosphor and display
JP3275128B2 (en) Manufacturing method of green phosphor for slow electron beam
KR20000075149A (en) Green fluorescent body based zinc silicate and a preparing method thereof
KR100502877B1 (en) Image-display device
JP4318536B2 (en) Red phosphor mainly composed of alkaline earth sulfide and method for producing the same
JPH09279140A (en) Fluorescent substance for excitation with low-energy electron beam and reduction in resistance of the same fluorescent substance
Jiang et al. Synthesis and properties of green phosphor SrGa2S4: Eu2+ for field emission displays by an environmentally clean technique
KR100363257B1 (en) Yttrium silicate phosphor using a surface coating and Manufacturing method thereof
US6544437B2 (en) Yttrium silicate based phosphor having effective emission at low voltages and method for synthesizing the same
US5185553A (en) Green emitting phosphor and cathode ray tube using said phosphor
KR100285274B1 (en) A green fluorescent body based gadolinium aluminate and process for preparing them
KR100285273B1 (en) A green fluorescent body based Zn2SiO4 and process for preparing them
KR100315226B1 (en) A blue phosphor with high brightness for low-voltage applications
KR100424864B1 (en) Process for preparing GdOBr green phosphor
RU2727633C1 (en) Zinc silicate, co-doped with manganese and magnesium, and a method for production thereof
JP4219518B2 (en) Europium-activated composite oxide phosphor
KR100419862B1 (en) The composition of the green phosphor in a GdPO4 system and its preparing method
KR100348207B1 (en) Fluorescent Material of Lanthanum Gallate and Method for Producing The Same
KR100348967B1 (en) Blue Luminescence comprising thulium for low voltage cathodoluminescence and manufacturing method thereof
KR100270409B1 (en) Ared flurorescent body based lanthanum titanate and its preparing method
KR20010026774A (en) A red fluorescent body based SrTiO3 used in low voltage and process for preparing them
KR20020025281A (en) A green phosphor for fluorescent display and a preparation method thereof
KR20000059660A (en) A red fluorescent body based SrTiO3and process for preparing them
KR930004373B1 (en) Preparation of geen fluorescent with excitation electron beam
KR100268715B1 (en) A blue mixed phosphor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term