JP3273477B2 - Light air secondary battery - Google Patents

Light air secondary battery

Info

Publication number
JP3273477B2
JP3273477B2 JP10965893A JP10965893A JP3273477B2 JP 3273477 B2 JP3273477 B2 JP 3273477B2 JP 10965893 A JP10965893 A JP 10965893A JP 10965893 A JP10965893 A JP 10965893A JP 3273477 B2 JP3273477 B2 JP 3273477B2
Authority
JP
Japan
Prior art keywords
negative electrode
light
type semiconductor
secondary battery
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10965893A
Other languages
Japanese (ja)
Other versions
JPH06325801A (en
Inventor
雅也 高橋
敬治 阿久戸
直樹 加藤
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10965893A priority Critical patent/JP3273477B2/en
Publication of JPH06325801A publication Critical patent/JPH06325801A/en
Application granted granted Critical
Publication of JP3273477B2 publication Critical patent/JP3273477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、充電と放電の双方が可
能な2次電池に係わり、酸化反応により放電し、光エネ
ルギーにより充電する光空気2次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery capable of both charging and discharging, and more particularly to a light air secondary battery which is discharged by an oxidation reaction and charged by light energy.

【0002】[0002]

【従来の技術】太陽可視光等の光エネルギーで2次電池
を充電する試みは、以前からなされており、この種の電
池としては、アモルファスシリコン太陽電池とニッケル
−カドミウム蓄電池や鉛蓄電池等の2次電池を組合せた
太陽光蓄電池が知られている。
2. Description of the Related Art Attempts to charge a secondary battery with light energy such as solar visible light have been made before. Such batteries include amorphous silicon solar batteries and nickel-cadmium storage batteries and lead storage batteries. 2. Description of the Related Art A solar storage battery in which a secondary battery is combined is known.

【0003】この太陽光蓄電池を図5を参照して説明す
る。図5は太陽光蓄電池の等価回路図を示し、この太陽
光蓄電池は、太陽電池1と、この太陽電池1で得られた
電力を貯蔵する蓄電池2と、太陽電池1に生じた電圧を
蓄電池2の充電に適した電圧に調整する電圧調整回路3
と、太陽電池1から蓄電池2に流れる電流が逆流するこ
とを防止する逆流防止ダイオード4とから構成されてい
る。この太陽光蓄電池は、太陽電池1で発電し、この太
陽電池1で得られた電力を蓄電池2に貯蔵させる二段階
型(間接型)方式に構成された光2次電池である。
[0003] This solar battery will be described with reference to FIG. FIG. 5 shows an equivalent circuit diagram of the solar battery. The solar battery includes a solar cell 1, a battery 2 for storing power obtained by the solar cell 1, and a battery 2 for storing a voltage generated in the solar cell 1. Voltage adjustment circuit 3 that adjusts to a voltage suitable for charging
And a backflow prevention diode 4 for preventing a current flowing from the solar cell 1 to the storage battery 2 from flowing back. This solar battery is a two-stage (indirect) optical secondary battery in which the solar battery 1 generates power and the power obtained by the solar battery 1 is stored in the storage battery 2.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
光2次電池にあっては、電圧調整回路3や逆流防止ダイ
オード4等の構成部品が必須であるため、光2次電池の
構造が複雑で大きなものとなるという欠点を有してい
る。
However, in the conventional photorechargeable battery, since the components such as the voltage adjusting circuit 3 and the backflow prevention diode 4 are essential, the structure of the photorechargeable battery is complicated. It has the disadvantage of being large.

【0005】また、従来の光2次電池を適正に機能させ
るには、太陽電池1で発電した電力を蓄電池2へ充電す
るのに適した電圧に調整する必要があり、この調整のた
めに消費されるエネルギー損失が大であるという問題が
あった。また、上記光2次電池は、光→電気→電気化学
の3段階のエネルギー変換ステップを経るため、このエ
ネルギー変換ステップのための構成部品数の増加や、あ
るいはこのエネルギー変換ステップに起因するエネルギ
ーロスの増大といった問題も有している。さらに、太陽
電池1を製造するには、p−n接合作製等の比較的高度
の製造技術が必要となるなど、太陽電池1の製造上の困
難性も有している。
In addition, in order for the conventional light secondary battery to function properly, it is necessary to adjust the power generated by the solar cell 1 to a voltage suitable for charging the storage battery 2, and the power consumed for this adjustment is required. There is a problem that the energy loss is large. In addition, since the above-mentioned photorechargeable battery undergoes three energy conversion steps of light → electricity → electrochemistry, the number of components for this energy conversion step is increased, or energy loss due to this energy conversion step is caused. There is also a problem such as an increase in Further, manufacturing the solar cell 1 also has difficulty in manufacturing the solar cell 1 such that a relatively advanced manufacturing technique such as pn junction manufacturing is required.

【0006】一方、図6は、従来の光化学2次電池の構
成図を示したものである。図中符号5は電池容器、5a
は電池容器を密閉するための蓋、6はセパレータ、7は
n型半導体部よりなる光電極、8aは充電用の電極、8
bは放電用の電極、9は電解質である。
FIG. 6 shows a configuration diagram of a conventional photochemical secondary battery. Reference numeral 5 in the figure denotes a battery container, 5a
Is a lid for sealing the battery container, 6 is a separator, 7 is a photoelectrode made of an n-type semiconductor part, 8a is a charging electrode, 8
b is a discharge electrode, and 9 is an electrolyte.

【0007】これらの光化学2次電池は、半導体−電解
質界面の電気化学特性を利用したものであり、即ち、半
導体電極を電解質と接触させた時に生じるエネルギーバ
ンドの曲りを利用して光エネルギーをにより生成した電
子を半導体電極の外部に取り出し、該電子の電気エネル
ギーを充電用電極において電気化学的に蓄積するもので
ある。図6に示す光化学2次電池の光変換部は、半導体
電極7を電解質9に浸漬させるだけで構成されており、
p−n接合作製技術等の比較的高度な製造技術を必要と
しない点において、アモルファスシリコン太陽電池等が
必要な図5に示した従来の光空気2次電池に比べ優れて
いる。しかし、上記光化学2次電池では、通常の2次電
池における正極と負極の他に光充電を行うための電極が
1〜2極必要であり、電池の構造が複雑になるという欠
点があった。
[0007] These photochemical secondary batteries make use of the electrochemical characteristics of the semiconductor-electrolyte interface, that is, the photoenergy is converted by utilizing the bending of the energy band generated when the semiconductor electrode is brought into contact with the electrolyte. The generated electrons are taken out of the semiconductor electrode, and the electric energy of the electrons is electrochemically stored in the charging electrode. The light conversion part of the photochemical secondary battery shown in FIG. 6 is configured by merely immersing the semiconductor electrode 7 in the electrolyte 9,
It is superior to the conventional light-air secondary battery shown in FIG. 5 which requires an amorphous silicon solar cell or the like in that a relatively advanced manufacturing technique such as a pn junction manufacturing technique is not required. However, the photochemical secondary battery requires one or two electrodes for performing light charging in addition to the positive electrode and the negative electrode in a normal secondary battery, and has a disadvantage that the structure of the battery is complicated.

【0008】これに対して、金属製の負極部材とn型半
導体とを一体成形し、n型半導体上で光エネルギーによ
り生成した電子を、電極外部に取り出すことなく、負極
部材の還元に用いれば、電極構成は、n型半導体と金属
製の負極部材とを複合形成した負極と、正極との二極で
構成することができ、電池構造の単純化を図ることがで
きる。しかし、通常、金属と半導体との接触界面では、
電子の通路であるエネルギーバンドに障壁が形成される
ことが多く、単純に金属とn型半導体とを接触させただ
けでは、半導体上で光エネルギーにより生成した電子を
効率よく金属製の負極部材に伝達することができないと
いった欠点が有った。
On the other hand, if a metal negative electrode member and an n-type semiconductor are integrally formed and electrons generated by light energy on the n-type semiconductor are used to reduce the negative electrode member without being taken out of the electrode. In addition, the electrode configuration can be composed of a negative electrode in which an n-type semiconductor and a negative electrode member made of metal are formed in combination, and a positive electrode, and the battery structure can be simplified. However, usually, at the contact interface between metal and semiconductor,
In many cases, a barrier is formed in the energy band, which is a path of electrons, and simply contacting a metal with an n-type semiconductor efficiently converts electrons generated by light energy on the semiconductor to a metal negative electrode member. There was a disadvantage that it could not be transmitted.

【0009】本発明は、上記事情に鑑みてなされたもの
で、光エネルギーにより充電し、充電器を必要としない
省エネルギー性に優れ、負極を半導体と金属とで複合形
成することにより、負極と正極との二電極よりなる単純
な電池構成にすることができ、半導体から金属への電子
の伝達性を向上させた光空気2次電池を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is excellent in energy saving by charging with light energy and not requiring a charger. By forming a negative electrode in a composite with a semiconductor and a metal, the negative electrode and the positive electrode are formed. It is an object of the present invention to provide a light-air secondary battery in which a simple battery configuration including two electrodes can be obtained, and in which the transfer of electrons from a semiconductor to a metal is improved.

【0010】[0010]

【課題を解決するための手段】請求項1記載の光空気2
次電池は、酸素触媒を有する正極と、負極と、これら正
極と負極とに接触する電解質と、上記正極と上記負極と
上記電解質とが収容される電池ケースとを有し、上記負
極は、金属製の負極部材と、該負極部材に電気的に接続
され、金属ー半導体の界面のエネルギーバンドにおける
障壁を低減させる金属層と、該金属層に電気的に接続さ
れたn型半導体部とを有し、上記金属層は、負極部材と
n型半導体部との間に一体に張り合わされ、上記電池ケ
ースには、上記負極のn型半導体部に光を入射する受光
部が設けられていることを特徴とするものである。
A light air 2 according to claim 1.
The secondary battery has a positive electrode having an oxygen catalyst, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, and a battery case in which the positive electrode, the negative electrode, and the electrolyte are accommodated. A negative electrode member, a metal layer electrically connected to the negative electrode member, for reducing a barrier in an energy band at a metal-semiconductor interface, and an n-type semiconductor portion electrically connected to the metal layer. The metal layer is integrally adhered between the negative electrode member and the n-type semiconductor portion, and the battery case is provided with a light receiving portion for inputting light to the n-type semiconductor portion of the negative electrode. It is a feature.

【0011】請求項2記載の光空気2次電池は、上記負
極部材の酸化反応と酸素の還元反応により放電され、上
記n型半導体部に光エネルギーを作用させることによ
り、放電で酸化した負極部材を還元させて充電させる構
成にされていることを特徴とするものである。
According to a second aspect of the present invention, the negative electrode member is discharged by an oxidation reaction of the negative electrode member and a reduction reaction of oxygen, and oxidized by the discharge by applying light energy to the n-type semiconductor portion. Is reduced and charged.

【0012】[0012]

【作用】本発明の光空気2次電池にあっては、金属製の
負極部材の酸化反応により放電され、電解質中にn型半
導体部を浸漬することで形成されるエネルギーバンドの
曲りを利用して、光エネルギー→電気化学エネルギーへ
の変換を行い、光エネルギーにより充電される。そし
て、金属ー半導体間におけるエネルギーバンド上の障壁
を低減させる金属層が金属製の負極部材とn型半導体部
との間に一体に張り合わされるとともに、これらにそれ
ぞれ電気的に接続されたので、従来の光化学2次電池に
おける負極と光電極との機能を一つの電極に併せ持たせ
られる。一方、充電時に、n型半導体部に光エネルギー
を作用させることにより電力を生じさせ、この電力を半
導体ー金属界面の障壁を受けずにn型半導体部から負極
部材に伝達させるので、この負極部材を還元に利用され
る光エネルギーの効率が向上される。そして、放電時
に、充電時の還元による生成物が空気中の酸素で酸化さ
れることにより、放電される。
In the photo-air secondary battery of the present invention, the discharge is caused by the oxidation reaction of the metal negative electrode member, and the bending of the energy band formed by immersing the n-type semiconductor portion in the electrolyte is utilized. Then, light energy is converted into electrochemical energy, and charged by the light energy. Since the metal layer for reducing the barrier on the energy band between the metal and the semiconductor is integrally bonded between the metal negative electrode member and the n-type semiconductor portion and electrically connected to these, respectively. The function of the negative electrode and the photoelectrode in the conventional photochemical secondary battery can be combined into one electrode. On the other hand, during charging, electric power is generated by applying light energy to the n-type semiconductor portion, and this power is transmitted from the n-type semiconductor portion to the negative electrode member without being blocked by the semiconductor-metal interface. The efficiency of light energy used for reduction is improved. Then, at the time of discharging, a product generated by the reduction at the time of charging is oxidized by oxygen in the air, thereby discharging.

【0013】また、金属製の負極部材とn型半導体部と
の間に金属層が一体に張り合わせられたため、n型半導
体部の表面に接触させ該n型半導体部から電流を効率よ
くするための集電体の役割を負極部材が兼ね、集電体等
が不要になる。したがって、充電時のエネルギー効率を
低下させることなく、正極と負極のみの単純な二極構成
が可能になった。
[0013] Further, since the metal layer is integrally bonded between the metal negative electrode member and the n-type semiconductor portion, the metal layer is brought into contact with the surface of the n-type semiconductor portion so that current can be efficiently supplied from the n-type semiconductor portion. The function of the current collector is also performed by the negative electrode member, so that the current collector and the like become unnecessary. Therefore, a simple two-pole configuration including only the positive electrode and the negative electrode can be achieved without lowering the energy efficiency during charging.

【0014】[0014]

【実施例】図1は、本発明に係る光空気2次電池の第1
の実施例の断面図である。図中符号10は多孔性酸素触
媒よりなる正極、11は負極、12は正極10と負極1
1とに接触する電解質、13はセパレータ、14は正極
10に電気的に接続された正極端子、15は負極11に
電気的に接続された負極端子、16は電池ケース、17
は撥水膜である。このような第一の実施例による光空気
2次電池の外観斜視図を図2に示した。
FIG. 1 shows a first embodiment of a light-air secondary battery according to the present invention.
It is sectional drawing of the Example of FIG. In the figure, reference numeral 10 denotes a positive electrode made of a porous oxygen catalyst, 11 denotes a negative electrode, 12 denotes a positive electrode 10 and a negative electrode 1.
1, an electrolyte in contact with 1, 13 a separator, 14 a positive electrode terminal electrically connected to the positive electrode 10, 15 a negative electrode terminal electrically connected to the negative electrode 11, 16 a battery case, 17
Is a water-repellent film. FIG. 2 is an external perspective view of such a light-air secondary battery according to the first embodiment.

【0015】正極10と負極11とは、ともに方形状に
形成され、例えば、一辺が1cmで他辺が3cmに形成
されている。ここで、正極10と負極11との形状を方
形状に限定するものでなく、電池ケース16の形状や大
きさ等を考慮して、方形以外の多角形状、円盤状、ある
いは円筒状等の形状に形成してもよい。正極10は、厚
さ1mmの多孔性炭素板に酸素触媒として白金微粒子を
担持した構造に形成されている。
The positive electrode 10 and the negative electrode 11 are both formed in a square shape, for example, one side is 1 cm and the other side is 3 cm. Here, the shape of the positive electrode 10 and the negative electrode 11 is not limited to a rectangular shape, but may be a polygonal shape other than a square, a disk shape, or a cylindrical shape in consideration of the shape and size of the battery case 16. May be formed. The positive electrode 10 is formed to have a structure in which platinum fine particles are supported as an oxygen catalyst on a porous carbon plate having a thickness of 1 mm.

【0016】負極11は、負極端子15に接続され、厚
さ1mmのコバルト製負極部材11aと、この負極部材
11の表面に一体に配設され、半導体ー金属界面におけ
る障壁を低減する金属層11bと、この金属層11bの
表面に一体に配設され、光エネルギーを電気エネルギー
に変換するn型半導体部11cとを有する。これら負極
部材11aとn型半導体部11cとは、金属層11bの
両面に一体にそれぞれ張り合わせられ、この金属層11
bを介してそれぞれ電気的に接続されている。負極部材
11aは、正極10に対向する位置に配設されている。
金属層11bは、厚さ0.3μmの合金層からなり、こ
の合金は、重量比で、金が84%、ゲルマニウムが12
%、ニッケルが4%で構成されている。n型半導体部1
1cは、後述する電池ケース16の受光部16aに対向
する位置に配設されており、厚さ0.2mmのn型ガリ
ウムリン単結晶半導体で形成されている。ここで、これ
ら負極部材11a、金属層11b、n型半導体部11c
は、電池ケース16の形状、大きさ、要求される電池の
容量等を考慮し、適切な厚み、形状に形成される。
The negative electrode 11 is connected to a negative electrode terminal 15 and has a 1 mm thick negative electrode member 11a made of cobalt, and a metal layer 11b integrally disposed on the surface of the negative electrode member 11 for reducing a barrier at a semiconductor-metal interface. And an n-type semiconductor portion 11c integrally provided on the surface of the metal layer 11b and converting light energy into electric energy. The negative electrode member 11a and the n-type semiconductor portion 11c are integrally attached to both surfaces of the metal layer 11b, respectively.
b are electrically connected to each other. The negative electrode member 11 a is disposed at a position facing the positive electrode 10.
The metal layer 11b is composed of an alloy layer having a thickness of 0.3 μm. This alloy has a weight ratio of 84% of gold and 12% of germanium.
% And nickel 4%. n-type semiconductor unit 1
1c is disposed at a position facing the light receiving portion 16a of the battery case 16 described later, and is formed of an n-type gallium phosphide single crystal semiconductor having a thickness of 0.2 mm. Here, these negative electrode member 11a, metal layer 11b, n-type semiconductor portion 11c
Is formed in an appropriate thickness and shape in consideration of the shape and size of the battery case 16, the required battery capacity, and the like.

【0017】電解質12は、濃度1mol/lの水酸化
カリウムの水溶液であり、後述する電池ケース16内に
充満されている。セパレータ13は、ガラス繊維からな
り、正極10と負極11の間に設置され、電解質12が
透過できる構造に形成されている。
The electrolyte 12 is an aqueous solution of potassium hydroxide having a concentration of 1 mol / l, and is filled in a battery case 16 described later. The separator 13 is made of glass fiber, is disposed between the positive electrode 10 and the negative electrode 11, and has a structure through which the electrolyte 12 can pass.

【0018】電池ケース16は、アクリル樹脂で直方体
状に形成され、表面を兼ねる透明アクリル板等の光透過
材からなる受光部16aと、裏面に設けられた板状の空
気透過部16bとを有し、この空気透過部16bには多
数の空気孔16cが形成されている。電池ケース16に
は、空気透過部16b側に配設された正極10と、受光
部16a側に配設された負極11と、これら正極10と
負極11との間、および受光部16aと負極11との間
に充満された液状電解質12と、上記正極10と負極1
1との間に設けられ、電解質12が通過可能なセパレー
タ13とが収納されている。電池ケース16の大きさ
は、例えば、幅が3.5cm、奥行き1.6cm、高さ
0.7cmに形成されている。
The battery case 16 has a rectangular parallelepiped shape made of acrylic resin, and has a light receiving portion 16a made of a light transmitting material such as a transparent acrylic plate also serving as a front surface, and a plate-shaped air transmitting portion 16b provided on the back surface. A large number of air holes 16c are formed in the air permeable portion 16b. The battery case 16 includes a positive electrode 10 disposed on the air permeable portion 16b side, a negative electrode 11 disposed on the light receiving portion 16a side, a space between the positive electrode 10 and the negative electrode 11, and a light receiving portion 16a and the negative electrode 11 , The liquid electrolyte 12 filled between the positive electrode 10 and the negative electrode 1
1 and a separator 13 through which the electrolyte 12 can pass. The size of the battery case 16 is, for example, 3.5 cm in width, 1.6 cm in depth, and 0.7 cm in height.

【0019】撥水膜17は、電池ケース16の空気透過
部16bと正極10との間に配設され、多孔性四フッ化
エチレン樹脂で製作され、通気性を有するとともに、該
撥水膜17の撥水作用により電解質12が電池外部へ流
出するのを防止する構成にされている。
The water-repellent film 17 is disposed between the air permeable portion 16b of the battery case 16 and the positive electrode 10, is made of porous tetrafluoroethylene resin, has air permeability, and has The electrolyte 12 is prevented from flowing out of the battery due to the water repellency of the battery.

【0020】本実施例の光空気2次電池では、親水性の
正極10と撥水膜17とを接触させることにより、酸素
と電解質12と正極10とからなる気−液−固相の三相
界面の面積を増大させ、空気中の酸素の還元に基づく放
電反応が効率的に行われる。従って、該三相界面場の増
大を目的として、空気中の酸素の放電反応を円滑に行う
ため、正極10が多孔性の酸素触媒で構成されている。
ただし、低率(低電流)放電で使用する電池を構成する
場合には、必ずしも多孔性である必要はなく、板状の正
極10を用いてもよい。
In the light-air secondary battery of this embodiment, the hydrophilic positive electrode 10 and the water-repellent film 17 are brought into contact with each other to form a three-phase gas-liquid-solid phase comprising oxygen, the electrolyte 12 and the positive electrode 10. The area of the interface is increased, and the discharge reaction based on the reduction of oxygen in the air is efficiently performed. Therefore, the positive electrode 10 is made of a porous oxygen catalyst in order to smoothly perform a discharge reaction of oxygen in the air for the purpose of increasing the three-phase interface field.
However, when configuring a battery used for low-rate (low-current) discharge, it is not necessarily required to be porous, and a plate-shaped positive electrode 10 may be used.

【0021】以下、上述した実施例における光空気2次
電池の充放電時の動作を簡単に説明する。放電時には、
負極11上で、負極11をなす金属製の負極部材11a
と電解質12中の水酸イオンや水分子とが反応して、最
終的に金属酸化物が生成するとともに、負極端子15を
通じて電子を外部負荷に供給する。一方、正極10上で
は、空気中から取り込んだ酸素と電解質12と酸素触媒
(正極)10により形成される三相界面において、酸素
と電解質12中の水及び負極から負荷を通して供給(放
出)されてきた電子とが反応して、水酸イオンを生成す
る。この放電反応においては、電池系全体では正極10
と負極部材11aでの反応が相殺される結果、電解質1
2の減少は全く起きない。また、正極活物質である酸素
は、電池ケース16の空気透過部16bを介して空気中
から取り込むため、その消費は問題とならない。結局、
本放電反応によって変化するのは負極部材11aであ
り、放電反応により金属酸化物が生成する。従って、本
実施例の光空気2次電池を充電するということは、該金
属酸化物を還元するということにほかならない。
The operation at the time of charging and discharging of the photo-air secondary battery in the above embodiment will be briefly described below. When discharging,
On the negative electrode 11, a metal negative electrode member 11a forming the negative electrode 11
Reacts with hydroxyl ions and water molecules in the electrolyte 12 to finally generate a metal oxide and supply electrons to an external load through the negative electrode terminal 15. On the other hand, on the positive electrode 10, at a three-phase interface formed by the oxygen taken in from the air, the electrolyte 12, and the oxygen catalyst (positive electrode) 10, the oxygen, water in the electrolyte 12, and the negative electrode are supplied (discharged) through a load. Reacts with the electrons to form hydroxyl ions. In this discharge reaction, the positive electrode 10
And the reaction in the negative electrode member 11a are canceled out, so that the electrolyte 1
No reduction of 2 occurs. In addition, oxygen, which is a positive electrode active material, is taken in from the air via the air permeable portion 16b of the battery case 16, so that its consumption does not matter. After all,
The part changed by this discharge reaction is the negative electrode member 11a, and a metal oxide is generated by the discharge reaction. Therefore, charging the photo-air secondary battery of this embodiment is nothing but reducing the metal oxide.

【0022】充電時は、負極11のn型半導体部11c
と電解質12との接触界面において、エネルギーバンド
が電解質12側へ向って上方曲りとなるn型半導体部1
1cの表面に太陽や蛍光燈等の光エネルギーを照射し、
n型半導体部11cの伝導帯に電子を励起して価電子帯
にホールを生む。このホールは、上記バンドの曲りに添
って電解質12側へ運ばれ、負極部材11a表面で水酸
イオンと反応して酸素と水を生成する。一方、伝導帯に
励起された電子は、バンドの曲りに添って、負極11の
負極部材11aへ移動し、やがて、電解質12と接触す
る負極部材11aの表面に達する。ここで、上記電子
が、電解質12中の水と反応して水酸イオンを生成する
とともに、負極部材11aの放電生成物である金属酸化
物を還元する。以上の経過を経て、光充電反応が進行す
る。
At the time of charging, the n-type semiconductor portion 11c of the negative electrode 11
N-type semiconductor part 1 whose energy band is bent upward toward electrolyte 12 at the contact interface between
Irradiate the surface of 1c with light energy such as the sun or fluorescent light,
Electrons are excited in the conduction band of the n-type semiconductor portion 11c to generate holes in the valence band. The holes are carried toward the electrolyte 12 along the bending of the band, and react with hydroxyl ions on the surface of the negative electrode member 11a to generate oxygen and water. On the other hand, the electrons excited in the conduction band move to the negative electrode member 11a of the negative electrode 11 along the bending of the band, and eventually reach the surface of the negative electrode member 11a in contact with the electrolyte 12. Here, the electrons react with water in the electrolyte 12 to generate hydroxyl ions, and reduce metal oxides, which are discharge products of the negative electrode member 11a. Through the above process, the photocharge reaction proceeds.

【0023】ここで、負極部材11aとn型半導体部1
1cとの間に形成された金属層11bは、半導体表面の
ドナー濃度を高める。その結果、金属−半導体界面にお
けるエネルギーバンドの障壁の幅が非常に薄くなり、こ
の障壁の影響を受けない状態で、光エネルギーにより生
じた電子が金属製の負極部材11aに効率よく伝達され
る。
Here, the negative electrode member 11a and the n-type semiconductor portion 1
1c increases the donor concentration on the surface of the semiconductor. As a result, the width of the energy band barrier at the metal-semiconductor interface becomes very thin, and electrons generated by light energy are efficiently transmitted to the metal negative electrode member 11a without being affected by the barrier.

【0024】本実施例で示した光空気2次電池におい
て、充放電時の正極端子14と負極端子15との間の電
圧の変化を、図3に実線で示した。光充電のための光源
には、キセノンランプが使用され、照射した光の強度を
50mWとした。また、放電時には、1mAの定電流放
電を行った。
The change in voltage between the positive terminal 14 and the negative terminal 15 during charging and discharging in the photo-air secondary battery shown in this embodiment is shown by a solid line in FIG. A xenon lamp was used as a light source for light charging, and the intensity of irradiated light was 50 mW. During discharging, a constant current discharge of 1 mA was performed.

【0025】(比較例)負極としてガリウムリン上に直
接コバルトを接触させた構造の電極を用いた以外は、第
一の実施例と同様な光空気2次電池を作製した。この電
池の充放電時の正極端子と負極端子との間の電圧変化
を、図3に破線で示した。図3の破線に示したように、
光充電される時の電圧上昇も少なく、放電時の電気容量
も少ないことがわかる。
(Comparative Example) A photo-air secondary battery was manufactured in the same manner as in the first example except that an electrode having a structure in which cobalt was directly contacted with gallium phosphide was used as a negative electrode. The change in voltage between the positive terminal and the negative terminal during charging and discharging of this battery is shown by a broken line in FIG. As shown by the broken line in FIG.
It can be seen that the voltage rise during light charging is small and the electric capacity during discharging is small.

【0026】上記正極10の材料としては、白金担持炭
素板の他に、カーボンやニッケル、および、これらにP
tやPdを担持した材料(Pd−C,Pt−Ni,Pd
−Ni)、さらに、Pt,Pd,Ir,Rh,Os,R
u,Pt−Co,Pt−Au,Pt−Sn,Pd−A
u,Ru−Ta,Pt−Pd−Au,Pt−酸化物,A
u,Ag,Ag−C,Ni−P,Ag−Ni−P,ラネ
ーニッケル,Ni−Mn,Ni−酸化コバルト、Cu−
Ag,Cu−Au,ラネー銀等の貴金属および合金,ホ
ウ化ニッケル,ホウ化コバルト,炭化タングステン,水
酸化チタン,リン化タングステン,リン化ニオブ,遷移
金属の炭化物,スピネル化合物,酸化銀,酸化タングス
テン,遷移金属のペロブスカイト型イオン結晶等の無機
化合物、およびフタロシアニン,金属フタロシアニン,
活性炭,キノン類等の有機化合物のいずれかで構成され
るのが好ましい。
As the material of the positive electrode 10, in addition to the platinum-carrying carbon plate, carbon or nickel,
Materials supporting t or Pd (Pd-C, Pt-Ni, Pd
-Ni), and Pt, Pd, Ir, Rh, Os, R
u, Pt-Co, Pt-Au, Pt-Sn, Pd-A
u, Ru-Ta, Pt-Pd-Au, Pt-oxide, A
u, Ag, Ag-C, Ni-P, Ag-Ni-P, Raney nickel, Ni-Mn, Ni-cobalt oxide, Cu-
Noble metals and alloys such as Ag, Cu-Au and Raney silver, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide, tungsten phosphide, niobium phosphide, carbides of transition metals, spinel compounds, silver oxide, tungsten oxide , Inorganic compounds such as perovskite-type ionic crystals of transition metals, and phthalocyanines, metal phthalocyanines,
It is preferable to be composed of any of organic compounds such as activated carbon and quinones.

【0027】また、負極11をなす負極部材11aの材
料としては、Ti,Zn,Fe,Pb,Al,Co,H
f,V,Nb,Ni,Pd,Pt,Cu,Ag,Cd,
In,Ge,Sn,Bi,Th,Ta,Cr,Mo,
W,Pr,U等の金属、又は該金属の少なくとも一部が
該金属の酸化物、および、これらの複合成分系金属、合
金等で構成される。
The material of the negative electrode member 11a forming the negative electrode 11 is Ti, Zn, Fe, Pb, Al, Co, H
f, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd,
In, Ge, Sn, Bi, Th, Ta, Cr, Mo,
A metal such as W, Pr, U, or at least a part of the metal is composed of an oxide of the metal, and a composite component metal or alloy thereof.

【0028】負極11のn型半導体部11cの材料とし
ては、ガリウムリン(Gap)の他に、GaAs、Al
As、ZnS、AlSb、InP、CdS、GaSb、
InAs等の化合物半導体、Si、Ge、Se等の無機
半導体,アントラセン、ピレン、フタロシアニン、銅フ
タロシアニン等の縮合多環芳香族化合物、ポリアセチレ
ン、ポリアニリン、ポリパラフェニレン、ポリピロール
等の高分子などから構成されるのが好ましい。
As the material of the n-type semiconductor portion 11c of the negative electrode 11, in addition to gallium phosphide (Gap), GaAs, Al
As, ZnS, AlSb, InP, CdS, GaSb,
Compound semiconductors such as InAs, inorganic semiconductors such as Si, Ge and Se, condensed polycyclic aromatic compounds such as anthracene, pyrene, phthalocyanine and copper phthalocyanine; and polymers such as polyacetylene, polyaniline, polyparaphenylene and polypyrrole. Preferably.

【0029】負極11の負極部材11aとn型半導体部
11cとの組合わせは、該n型半導体部11cと電解質
12との接触界面におけるn型半導体部11cの伝導帯
下端の電位レベルが負極活物質の酸化還元電位よりも卑
な電位を構成する組合わせであれば良く、特に部材の種
類には限定されない。
The combination of the negative electrode member 11a of the negative electrode 11 and the n-type semiconductor portion 11c is such that the potential level at the lower end of the conduction band of the n-type semiconductor portion 11c at the contact interface between the n-type semiconductor portion 11c and the electrolyte 12 is negative. Any combination may be used as long as the combination constitutes a potential lower than the oxidation-reduction potential of the substance, and the type of the member is not particularly limited.

【0030】金属層11bは、重量比で、金が84%、
ゲルマニウムが12%、ニッケルが4%に設定すること
により、金属ー半導体界面における障壁を低減させる効
果が高い点で望ましいが、これ以外の組成比でも障壁低
減の効果が得られる。かかる金属層11bの材料として
は、金−ゲルマニウム−ニッケルの他に、Au、In等
の金属、Au−Ge、Au−Si、Au−Zn、Au−
Ge−Pt、Au−Ge−In、Au−Pt−Ti、A
g−Ge−Ni、Ag−Ge−Pt、Ag−Ge−In
等の合金が望ましい。
The metal layer 11b contains 84% by weight of gold,
Setting germanium to 12% and nickel to 4% is desirable in that the effect of reducing the barrier at the metal-semiconductor interface is high, but the barrier reducing effect can be obtained with other composition ratios. As a material of the metal layer 11b, besides gold-germanium-nickel, metals such as Au and In, Au-Ge, Au-Si, Au-Zn, and Au-
Ge-Pt, Au-Ge-In, Au-Pt-Ti, A
g-Ge-Ni, Ag-Ge-Pt, Ag-Ge-In
Are desirable.

【0031】また、電解質12としては、水酸化カリウ
ムの他に、水酸化ナトリウム、塩化アンモニウム等の塩
基や、その他弱酸等の液状電解質が用いられる。また、
充電性能は低下するが、硫酸、塩酸等の強酸やこれら強
酸の塩の溶液を使うこともできる。なお、本実施例にお
いては、上述したように液状の電解質12を用いている
が、電解質12は、液状に限定されることなく、この電
解質12を介する正極10と負極11間の電子移動が妨
げられないものであれば、固体状やペースト状等どのよ
うな形態の電解質でも用いることができる。
As the electrolyte 12, in addition to potassium hydroxide, a base such as sodium hydroxide and ammonium chloride, and a liquid electrolyte such as other weak acids are used. Also,
Although the charging performance is deteriorated, a solution of a strong acid such as sulfuric acid or hydrochloric acid or a salt solution of these strong acids can be used. In the present embodiment, the liquid electrolyte 12 is used as described above. However, the electrolyte 12 is not limited to the liquid, and the electron transfer between the positive electrode 10 and the negative electrode 11 through the electrolyte 12 is hindered. As long as the electrolyte cannot be used, any form of electrolyte such as a solid or paste can be used.

【0032】セパレータ13は、本実施例ではガラス繊
維を用いたが、ポリアミド系繊維不織布、ポリオレフィ
ン系繊維不織布、セルロース、合成樹脂等の電解質12
に対する耐久性を有するものであれば特に限定されな
い。
Although the separator 13 is made of glass fiber in this embodiment, the separator 12 is made of a non-woven fabric of polyamide fiber, a non-woven fabric of polyolefin fiber, cellulose, synthetic resin or the like.
The material is not particularly limited as long as it has durability against.

【0033】電池ケース16は、ABS樹脂やフッ素樹
脂等の電解質12に侵されない材質であれば特に限定さ
れない。ただし、電池ケース16の負極11側に位置す
る受光部16a部分は、少なくとも可視光の一部や紫外
光の一部を透過する(無色あるいは有色の)部材、例え
ば、ガラス、石英ガラス、アクリル、スチロール等から
なる透明板や透明フィルム等で構成される。もちろん電
池ケース16全体をこれら透明板や透明フィルム等の部
材で構成してもよい。なお、本実施例では、電池ケース
16を、箱状に形成したが、多面体状、円盤状、円筒状
等の形状に形成してもよい。
The battery case 16 is not particularly limited as long as it is made of a material such as ABS resin and fluororesin which is not affected by the electrolyte 12. However, the light receiving portion 16a located on the negative electrode 11 side of the battery case 16 is a member (colorless or colored) that transmits at least a part of visible light and a part of ultraviolet light, for example, glass, quartz glass, acrylic, It is composed of a transparent plate or film made of styrene or the like. Of course, the entire battery case 16 may be made of such a member as a transparent plate or a transparent film. In the present embodiment, the battery case 16 is formed in a box shape, but may be formed in a polyhedral shape, a disk shape, a cylindrical shape, or the like.

【0034】上記受光部16a部分を光が透過する構成
としたのは、光充電反応を進行させるために、負極11
をなすn型半導体部11cの表面に照射光を到達させる
際、この照射光が電池ケース16によって吸収あるいは
反射されて、n型半導体部11cの表面に到達する光エ
ネルギーが極端に低下するのを防止するためである。
The light transmitting portion 16a is configured to transmit light because the negative electrode 11
When the irradiation light reaches the surface of the n-type semiconductor portion 11c, the irradiation light is absorbed or reflected by the battery case 16, and the light energy reaching the surface of the n-type semiconductor portion 11c is extremely reduced. This is to prevent it.

【0035】さらに、撥水膜17の材料としては、多孔
性四フッ化エチレン等のフッ素系樹脂やシリコン系樹脂
等で構成するのが好ましい。なお、本実施例では膜状の
撥水膜17を用いているが、正極10の空気透過部16
b側にフッ素樹脂等により撥水処理を施し、撥水膜17
を用いずに、撥水処理した正極11を直接電池ケース1
6の空気透過部16bに密着させる構成にすることがで
きる。
The material of the water-repellent film 17 is preferably made of a fluorine-based resin such as porous tetrafluoroethylene or a silicon-based resin. In the present embodiment, the film-shaped water-repellent film 17 is used.
The b-side is subjected to a water-repellent treatment using a fluororesin or the like, so that the water-repellent film 17
The water-repellent positive electrode 11 is directly connected to the battery case 1 without using
6 can be configured to be in close contact with the air permeable portion 16b.

【0036】<第2の実施例>図4は本発明の第2の実
施例の構成を示す断面図である。この第2の実施例は、
電池ケース16の正極10側の底部16b′部分を酸素
透過性部材で構成したものである。第2の実施例の他の
構成は第1の実施例と同様である。上記電池ケース16
の正極10側の底部16b′部分を酸素透過性部材で構
成したのは、電池外部の酸素を酸素触媒を含む正極10
表面へ拡散移動させるためで、第1の実施例において電
池ケース16の空気透過部16bに多数の空気孔を形成
した趣旨と同様である。
<Second Embodiment> FIG. 4 is a sectional view showing the structure of a second embodiment of the present invention. This second embodiment is:
The bottom portion 16b 'of the battery case 16 on the side of the positive electrode 10 is formed of an oxygen-permeable member. Other configurations of the second embodiment are the same as those of the first embodiment. The battery case 16
The bottom portion 16b 'on the side of the positive electrode 10 was formed of an oxygen-permeable member because oxygen outside the battery was converted to a positive electrode 10 containing an oxygen catalyst.
This is similar to the purpose of the first embodiment in which a large number of air holes are formed in the air permeable portion 16b of the battery case 16 in order to diffuse and move to the surface.

【0037】酸素透過性部材は、エチルセルロース類,
セルロース類,アセテート類、およびブチレート類等の
材料により構成されるのが好ましいが、酸素透過性を有
する部材であればこれらに限定されるものではない。
The oxygen permeable member is made of ethyl cellulose,
It is preferable to be made of a material such as celluloses, acetates, and butyrates, but the material is not limited to these as long as the member has oxygen permeability.

【0038】以上説明したように、前記実施例に示した
構成をとることによって、従来の光空気2次電池にはな
い、空気中の酸素をエネルギー源とした放電と光エネル
ギーによる充電が可能で、充電器を必要としない省エネ
ルギー性に優れ、高エネルギー密度の光空気2次電池を
提供することができる。
As described above, by employing the configuration shown in the above embodiment, it is possible to perform discharge using oxygen in the air as an energy source and charge using light energy, which are not available in the conventional photo-air secondary battery. In addition, it is possible to provide a light air secondary battery which is excellent in energy saving and does not require a charger and has a high energy density.

【0039】そして、負極部材11aと別個にn型半導
体部11cを設けたから、活物質として優れた負極部材
11aの材質に最適なn型半導体部11cを用いること
ができ、光変換効率を向上させた光空気2次電池を得る
ことができる。さらに、負極部材11aとn型半導体部
11cとを金属層11bを介して一体に構成したので、
負極部材11aに間隔をあけてn型半導体部11cを配
設する場合に比べ、光空気2次電池の構造を簡単にする
ことができる。
Since the n-type semiconductor portion 11c is provided separately from the negative electrode member 11a, an n-type semiconductor portion 11c that is optimal for the material of the negative electrode member 11a can be used as an active material, and the light conversion efficiency can be improved. A light-air secondary battery can be obtained. Further, since the negative electrode member 11a and the n-type semiconductor portion 11c are integrally formed via the metal layer 11b,
The structure of the photo-air secondary battery can be simplified as compared with the case where the n-type semiconductor portion 11c is arranged at intervals on the negative electrode member 11a.

【0040】また特に、金属製の負極部材11aとn型
半導体部11cとの間に、金属ー半導体の界面のエネル
ギーバンドにおける障壁を低減させる金属層11bが負
極部材11aとn型半導体部11cとに電気的に接続さ
れた状態で一体に張り合わされたから、n型半導体部1
1cで光エネルギーにより生成した電気エネルギーを効
率よく負極部材11aに伝達させることができる。
Particularly, between the negative electrode member 11a made of metal and the n-type semiconductor portion 11c, a metal layer 11b for reducing the barrier in the energy band at the metal-semiconductor interface is provided between the negative electrode member 11a and the n-type semiconductor portion 11c. Are bonded together in a state of being electrically connected to the n-type semiconductor unit 1.
The electric energy generated by the light energy in 1c can be efficiently transmitted to the negative electrode member 11a.

【0041】[0041]

【発明の効果】以上説明したように、本発明の光空気2
次電池によれば、酸素触媒を有する正極と、負極と、こ
れら正極と負極とに接触する電解質と、上記正極と上記
負極と上記電解質とが収容される電池ケースとを有し、
上記負極は、金属製の負極部材と、該負極部材に金属層
を介して電気的に接続されたn型半導体部とを有する構
成にされ、上記電池ケースには、上記負極のn型半導体
部に光を入射する受光部が設けられている構成にしたか
ら、電解質中にn型半導体部を接触することで形成され
るエネルギーバンドの曲りを利用して、光エネルギー→
電気化学エネルギーへの変換を行って充電され、放電時
には、酸素による金属製の負極部材が酸化されることに
より放電される。
As described above, the light air 2 of the present invention is used.
According to the following battery, a positive electrode having an oxygen catalyst, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, and a battery case in which the positive electrode, the negative electrode, and the electrolyte are accommodated,
The negative electrode has a metal negative electrode member and an n-type semiconductor portion electrically connected to the negative electrode member via a metal layer. The battery case includes an n-type semiconductor portion of the negative electrode. Is provided with a light-receiving portion that allows light to enter, so that the light energy can be adjusted by utilizing the bending of the energy band formed by contacting the n-type semiconductor portion in the electrolyte.
It is charged by converting it to electrochemical energy, and at the time of discharging, it is discharged by oxidizing the metal negative electrode member with oxygen.

【0042】また、充電時には、n型半導体部に光エネ
ルギーを作用させ、n型半導体部の伝導帯に電子を励起
させて価電子帯にホールを生じせしめる。このホールを
上記エネルギーバンドの曲りに添って電解質側へ運び、
負極部材の表面で水酸イオンと反応させて酸素と水を生
成する。一方、伝導帯に励起された電子をエネルギーバ
ンドの曲りに添って負極部材へ移動させ、この負極部材
の表面で電解質中の水と反応して上記放電で酸化された
負極部材を還元する。従って、本発明の光空気2次電池
は、電気と光の何れのエネルギー形態でも充電可能とな
る。
At the time of charging, light energy is applied to the n-type semiconductor portion to excite electrons in the conduction band of the n-type semiconductor portion to generate holes in the valence band. Carry this hole to the electrolyte side along the bending of the energy band,
It reacts with hydroxyl ions on the surface of the negative electrode member to generate oxygen and water. On the other hand, the electrons excited in the conduction band move to the negative electrode member along the bending of the energy band, and react with water in the electrolyte on the surface of the negative electrode member to reduce the negative electrode member oxidized by the discharge. Therefore, the light-air secondary battery of the present invention can be charged in any of the energy forms of electricity and light.

【0043】また、正極に酸素触媒を用いているので、
空気中の酸素をエネルギー源(活物質)とした放電が可
能である。従って、実質的に正極活物質は空気中から簡
単に充分な量が補給でき、高エネルギー密度で、経済性
や省エネルギー性に優れた光空気2次電池を実現でき
る。また、特に、負極は、金属製の負極部材に電気的に
接続され、金属ー半導体の界面のエネルギーバンドにお
ける障壁を低減させる金属層を有し、該金属層は、負極
部材とn型半導体部との間に一体に張り合わされたたか
ら、光エネルギーによりn型半導体部で電気エネルギー
を生成させ、この電気エネルギーを金属層を通して負極
部材に伝達させることができる。このため、n型半導体
部から負極部材に伝達される電気エネルギーの伝達効率
を高めることができる。そして、n型半導体部と負極部
材とを金属層を介して一体に張り合わせたから、従来の
光化学2次電池における負極と光電極とを一体化させる
ことができ、正極と負極との単純な2極構成で、光充電
を可能にさせ、さらに、電圧調整回路や逆流防止ダイオ
ード等の機器を不要にでき、p−n接合技術等の高度の
製造技術を不要にできるから、光空気2次電池の製造作
業性を向上させることができる。
Also, since an oxygen catalyst is used for the positive electrode,
Discharge using oxygen in the air as an energy source (active material) is possible. Accordingly, a sufficient amount of the positive electrode active material can be easily replenished from the air, and a light-air secondary battery having a high energy density and excellent in economy and energy saving can be realized. In particular, the negative electrode has a metal layer electrically connected to a metal negative electrode member to reduce a barrier in an energy band at a metal-semiconductor interface, and the metal layer includes a negative electrode member and an n-type semiconductor portion. Thus, electric energy can be generated in the n-type semiconductor portion by light energy, and the electric energy can be transmitted to the negative electrode member through the metal layer. For this reason, the transmission efficiency of the electric energy transmitted from the n-type semiconductor portion to the negative electrode member can be increased. Then, since the n-type semiconductor portion and the negative electrode member are integrally bonded via the metal layer, the negative electrode and the photoelectrode in the conventional photochemical secondary battery can be integrated, and a simple two-electrode of the positive electrode and the negative electrode can be obtained. The configuration enables light charging, and further eliminates the need for devices such as a voltage adjustment circuit and a backflow prevention diode, and eliminates the need for advanced manufacturing techniques such as pn junction technology. Manufacturing workability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光空気2次電池に係る第1の実施例を
示した断面図である。
FIG. 1 is a sectional view showing a first embodiment of a light-air secondary battery according to the present invention.

【図2】図1の斜視図である。FIG. 2 is a perspective view of FIG.

【図3】本発明の光空気2次電池に係る第1の実施例及
び比較例の光空気2次電池の充放電時における正極端子
と負極端子との間の電圧の変化を示すブロック図であ
る。
FIG. 3 is a block diagram showing a change in voltage between a positive electrode terminal and a negative electrode terminal during charging and discharging of the light-air secondary batteries of the first embodiment and the comparative example of the light-air secondary battery of the present invention. is there.

【図4】本発明の光空気2次電池に係る第2の実施例を
示す断面図である。
FIG. 4 is a sectional view showing a second embodiment of the photo-air secondary battery of the present invention.

【図5】従来の光空気2次電池の等価回路を示したもの
である。
FIG. 5 shows an equivalent circuit of a conventional photo-air secondary battery.

【図6】従来型光化学2次電池の構成図を示した正面図
である。
FIG. 6 is a front view showing a configuration diagram of a conventional photochemical secondary battery.

【符号の説明】[Explanation of symbols]

10 正極 11 負極 11a 負極部材 11b 金属層 11c n型半導体部 12 電解質 13 セパレータ 16 電池ケース 16a 受光部 16b 空気透過部 16b’ 底部 DESCRIPTION OF SYMBOLS 10 Positive electrode 11 Negative electrode 11a Negative electrode member 11b Metal layer 11c N-type semiconductor part 12 Electrolyte 13 Separator 16 Battery case 16a Light receiving part 16b Air transmitting part 16b 'Bottom part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾形 努 東京都千代田区内幸町1丁目1番6号 日本電信電話株式会社内 (56)参考文献 特開 平6−325801(JP,A) 特開 平6−223889(JP,A) 特開 平6−223888(JP,A) 特開 平6−215807(JP,A) 特開 平6−215806(JP,A) 特開 平5−266932(JP,A) 特開 平5−198319(JP,A) 特開 昭52−74831(JP,A) 阿久戸 敬治,加藤 直樹,竹内 正 明,尾形 努,光空気2次電池,電子情 報通信学会技術研究報告,日本,社団法 人 電子情報通信学会,1992年 1月24 日,Vol.91/No.439,p.15− 20 加藤 直樹,阿久戸 敬治,竹内 正 明,尾形 努,GaP−Co/O2系光 空気2次電池の充放電挙動,電気化学協 会第59回大会講演要旨集,日本,社団法 人 電気化学協会,1992年 3月19日, p.222 阿久戸 敬治,加藤 直樹,竹内 正 明,尾形 努,Ti/O2系光空気2次 電池の充放電挙動−放電生成物自身の光 反応による充電−,電気化学協会第59回 大会講演要旨集,日本,社団法人 電気 化学協会,1992年 3月19日,p.222 (58)調査した分野(Int.Cl.7,DB名) H01M 14/00 H01L 31/04 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tsutomu Ogata 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation (56) References JP-A-6-325801 (JP, A) JP-A Heisei JP-A-6-223889 (JP, A) JP-A-6-223888 (JP, A) JP-A-6-215807 (JP, A) JP-A-6-215806 (JP, A) JP-A-5-266932 (JP, A A) JP-A-5-198319 (JP, A) JP-A-52-74831 (JP, A) Keiji Akudo, Naoki Kato, Masaaki Takeuchi, Tsutomu Ogata, Optical Air Secondary Battery, IEICE Technical Research Report, Japan, The Institute of Electronics, Information and Communication Engineers, January 24, 1992, Vol. 91 / No. 439, p. 15-20 Naoki Kato, Keiji Akudo, Masaaki Takeuchi, Tsutomu Ogata, Charge and Discharge Behavior of GaP-Co / O2-based Light-Air Secondary Battery, Proceedings of the 59th Annual Meeting of the Electrochemical Association, Japan, Japan Electric Corporation Chemical Society, March 19, 1992, p. 222 Keiji Akudo, Naoki Kato, Masaaki Takeuchi, Tsutomu Ogata, Charging / discharging behavior of Ti / O2-based photo-air secondary battery-Charging by photo-reaction of discharge product itself-, Proc. Of the 59th Annual Meeting of the Electrochemical Society, Japan, The Electrochemical Society, March 19, 1992, p. 222 (58) Field surveyed (Int.Cl. 7 , DB name) H01M 14/00 H01L 31/04 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸素触媒を有する正極と、負極と、これ
ら正極と負極とに接触する電解質と、上記正極と上記負
極と上記電解質とが収容される電池ケースとを有し、上
記負極は、金属製の負極部材と、該負極部材に電気的に
接続され、金属ー半導体の界面のエネルギーバンドにお
ける障壁を低減させる金属層と、該金属層に電気的に接
続されたn型半導体部とを有し、上記金属層は、負極部
材とn型半導体部との間に一体に張り合わされ、上記電
池ケースには、上記負極のn型半導体部に光を入射する
受光部が設けられていることを特徴とする光空気2次電
池。
Claims: 1. A positive electrode having an oxygen catalyst, a negative electrode, an electrolyte in contact with the positive electrode and the negative electrode, and a battery case containing the positive electrode, the negative electrode, and the electrolyte, wherein the negative electrode includes: A metal negative electrode member, a metal layer electrically connected to the negative electrode member, which reduces a barrier in an energy band at a metal-semiconductor interface, and an n-type semiconductor portion electrically connected to the metal layer. The metal layer is integrally adhered between the negative electrode member and the n-type semiconductor portion, and the battery case is provided with a light receiving portion for entering light into the n-type semiconductor portion of the negative electrode. A light-air secondary battery characterized by the above-mentioned.
【請求項2】 上記負極部材の酸化反応と酸素の還元反
応により放電され、上記n型半導体部に光エネルギーを
作用させることにより、放電で酸化した負極部材を還元
させて充電させる構成にされたことを特徴とする請求項
1記載の光空気2次電池。
2. The negative electrode member is discharged by an oxidation reaction and an oxygen reduction reaction of the negative electrode member, and by applying light energy to the n-type semiconductor portion, the negative electrode member oxidized by the discharge is reduced and charged. The light-air secondary battery according to claim 1, wherein:
JP10965893A 1993-05-11 1993-05-11 Light air secondary battery Expired - Fee Related JP3273477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10965893A JP3273477B2 (en) 1993-05-11 1993-05-11 Light air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10965893A JP3273477B2 (en) 1993-05-11 1993-05-11 Light air secondary battery

Publications (2)

Publication Number Publication Date
JPH06325801A JPH06325801A (en) 1994-11-25
JP3273477B2 true JP3273477B2 (en) 2002-04-08

Family

ID=14515877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10965893A Expired - Fee Related JP3273477B2 (en) 1993-05-11 1993-05-11 Light air secondary battery

Country Status (1)

Country Link
JP (1) JP3273477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125461B2 (en) * 2007-01-18 2013-01-23 株式会社豊田中央研究所 Lithium air battery
WO2015174131A1 (en) * 2014-05-15 2015-11-19 株式会社村田製作所 Secondary photocell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
加藤 直樹,阿久戸 敬治,竹内 正明,尾形 努,GaP−Co/O2系光空気2次電池の充放電挙動,電気化学協会第59回大会講演要旨集,日本,社団法人 電気化学協会,1992年 3月19日,p.222
阿久戸 敬治,加藤 直樹,竹内 正明,尾形 努,Ti/O2系光空気2次電池の充放電挙動−放電生成物自身の光反応による充電−,電気化学協会第59回大会講演要旨集,日本,社団法人 電気化学協会,1992年 3月19日,p.222
阿久戸 敬治,加藤 直樹,竹内 正明,尾形 努,光空気2次電池,電子情報通信学会技術研究報告,日本,社団法人 電子情報通信学会,1992年 1月24日,Vol.91/No.439,p.15−20

Also Published As

Publication number Publication date
JPH06325801A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US4452867A (en) Storage battery containing voltage reducing means
US5439756A (en) Electrical energy storage device and method of charging and discharging same
US7122873B2 (en) Hybrid solid state/electrochemical photoelectrode for hyrodrogen production
US3432354A (en) Electrochemical power supply with movable anode material
JPS6248928A (en) Photocell device
US4064326A (en) Photo-electrochemical cell containing chalcogenide redox couple and having storage capability
EP0553023B1 (en) Photochargeable air battery
JP3304006B2 (en) Photochemical secondary battery
JPH07282862A (en) Battery with gas diffusion electrode and charging and discharging method thereof
JP3273477B2 (en) Light air secondary battery
JPH09259942A (en) Photochemically hydrogenated secondary air battery
JP3301454B2 (en) Photochemical secondary battery
JP2998765B2 (en) Light air secondary battery
US4242423A (en) Optical-charging type half-cell, and photochemical battery using the same
JP3194448B2 (en) Light air secondary battery
US4259418A (en) Photoelectrochemical cell with in-situ storage using hydrogen storage electrodes
JP3196151B2 (en) Light air secondary battery
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
JPH0785895A (en) Photochemical secondary battery
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
JP3194449B2 (en) Light air secondary battery
JPH06215807A (en) Light secondary battery
US4409301A (en) Bifunctional gas diffusion electrode
JPH06223889A (en) Light-air secondary battery
JP3523506B2 (en) Rechargeable air battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees