JP3273298B2 - Carbon dioxide concentration measurement device - Google Patents

Carbon dioxide concentration measurement device

Info

Publication number
JP3273298B2
JP3273298B2 JP03736195A JP3736195A JP3273298B2 JP 3273298 B2 JP3273298 B2 JP 3273298B2 JP 03736195 A JP03736195 A JP 03736195A JP 3736195 A JP3736195 A JP 3736195A JP 3273298 B2 JP3273298 B2 JP 3273298B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
maximum value
value
light source
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03736195A
Other languages
Japanese (ja)
Other versions
JPH08233809A (en
Inventor
伸二 山森
栄弘 保坂
浩平 大野
正美 伊東
正行 井上
正規 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03736195A priority Critical patent/JP3273298B2/en
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to DE69629510T priority patent/DE69629510T2/en
Priority to EP96102772A priority patent/EP0729727A3/en
Priority to EP96102750A priority patent/EP0733341B1/en
Priority to EP03021573A priority patent/EP1374768A3/en
Priority to US08/605,845 priority patent/US5728585A/en
Publication of JPH08233809A publication Critical patent/JPH08233809A/en
Priority to US09/112,324 priority patent/US6267928B1/en
Application granted granted Critical
Publication of JP3273298B2 publication Critical patent/JP3273298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、呼気ガス中に含まれる
炭酸ガス濃度を測定する炭酸ガス濃度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration of carbon dioxide contained in exhaled gas.

【0002】[0002]

【従来の技術】一般に、呼気ガス中の炭酸ガス濃度を赤
外線を用いて測定する場合、光検出器を使用し、呼気時
の炭酸ガスによる光の吸収に応じた光量を検出して測定
するが、光源の照射強度の変動、検出部の窓の汚れ等に
よる光量の変化等の光検出器の出力電圧のドリフトを補
正するようにした装置が知られている(特公昭60−4
4614)。
2. Description of the Related Art Generally, when measuring the concentration of carbon dioxide in exhaled gas using infrared rays, a photodetector is used to detect and measure the amount of light corresponding to the absorption of light by the carbon dioxide during exhalation. A device is known which corrects a drift of an output voltage of a photodetector such as a change in irradiation intensity of a light source and a change in light amount due to a stain on a window of a detection unit (Japanese Patent Publication No. Sho 60-4).
4614).

【0003】図9、斯かる従来のドリフト補正装置を備
えた炭酸ガス濃度測定装置の構成を示すものである。図
9において、40は呼吸ガスが通過する接続管で、被検
者が一方を口に加える接続端とし、他方は2つに分岐し
て1つは開放端とされ、1つは被検者の吸気時に空気を
送り込むサーボ通風器41に接続されている。接続管4
0の中間部に一対の光を透過するガラス等の窓41a及
び41bが形成されている。窓41bの下方には光源4
2が配置され、窓41aの上方にはモータMにより回転
駆動される光透過孔を有する光断続器43が配置されて
いる。光断続器43の上方には炭酸ガスにより吸収され
る波長の光のみを吸収するフィルタ44が配置され、フ
ィルタ44の上方に光検出器45が配置されている。4
6は光検出器45の出力電圧を増幅する増幅器、47は
整流器である。48は除算器、49は対数増幅器、50
は記録装置である。また、51はFET(電界効果トラ
ンジスタ)で、サーボ通風器41の出力により吸気期間
導通する。更に52はメモリで、吸気期間の炭酸ガス濃
度「0」に相当する電圧を保持して、除算器48へ出力
する。
FIG. 9 shows a configuration of a carbon dioxide gas concentration measuring device provided with such a conventional drift correction device. In FIG. 9, reference numeral 40 denotes a connection pipe through which the respiratory gas passes, and the connection pipe is used by the subject to add one to the mouth, the other is branched into two, one is an open end, and one is the subject. Is connected to a servo ventilator 41 that feeds air at the time of air intake. Connection pipe 4
A pair of windows 41a and 41b made of glass or the like that transmit light are formed in the middle part of 0. The light source 4 is provided below the window 41b.
2 is disposed above the window 41a, and an optical interrupter 43 having a light transmitting hole that is driven to rotate by the motor M is disposed above the window 41a. Above the light interrupter 43, a filter 44 that absorbs only light having a wavelength that is absorbed by carbon dioxide is disposed, and above the filter 44, a photodetector 45 is disposed. 4
6 is an amplifier for amplifying the output voltage of the photodetector 45, and 47 is a rectifier. 48 is a divider, 49 is a logarithmic amplifier, 50
Is a recording device. Reference numeral 51 denotes an FET (field effect transistor), which conducts during an intake period by the output of the servo ventilator 41. Further, a memory 52 holds a voltage corresponding to the carbon dioxide concentration “0” during the inspiration period and outputs the voltage to the divider 48.

【0004】斯かる構成において、光源42から照射さ
れた光は、窓41b、接続管40内の呼吸ガスを透過
し、窓41aから光断続器43により断続する光として
フィルタ44を介し炭酸ガス濃度に応じた光量が光検出
器45で検出される。光検出器45の出力信号は指数関
数で与えられ、増幅器46により増幅され、整流器47
により整流される。
In such a configuration, the light emitted from the light source 42 passes through the window 41b and the respiratory gas in the connecting tube 40, and passes through the filter 44 as light intermittently transmitted from the window 41a by the light interrupter 43. Is detected by the photodetector 45. The output signal of the photodetector 45 is given as an exponential function, amplified by the amplifier 46, and output from the rectifier 47.
Is rectified.

【0005】光検出器45の出力には、フィルタ44、
窓41a、41bの汚れによる光量の変化、或いは光源
の42の光強度の変動等のドリフトが含まれる。このた
め、整流器47から出力される出力電圧からドリフト成
分を除去するため、サーボ通風器41から、吸気期間、
FET51に正の信号を出力して導通させ、メモリ52
に炭酸ガス濃度「0」に相当する電圧を保持して除算器
48に出力する。他方、吸気期間の終了時にサーボ通風
器41からの正の信号がなくなるので、FET51はオ
フとなり、整流器47の出力(呼気時の炭酸ガスに応じ
た信号)は除算器48に出力され、メモリ52に保持さ
れた炭酸ガス濃度「0」に相当する電圧により除算され
てドリフト成分が除去され、ゼロ点が較正される。除算
器48の出力は対数増幅器49に出力され、炭酸ガス濃
度に比例した出力信号を得る。
The output of the photodetector 45 includes a filter 44,
Drift such as a change in light amount due to contamination of the windows 41a and 41b or a change in light intensity of the light source 42 is included. Therefore, in order to remove the drift component from the output voltage output from the rectifier 47, the servo ventilator 41 outputs
A positive signal is output to the FET 51 to make it conductive, and the memory 52
The voltage corresponding to the carbon dioxide concentration “0” is held and output to the divider 48. On the other hand, since the positive signal from the servo ventilator 41 disappears at the end of the intake period, the FET 51 is turned off, and the output of the rectifier 47 (the signal corresponding to the carbon dioxide gas at the time of expiration) is output to the divider 48 and the memory 52 The drift component is removed by dividing by the voltage corresponding to the carbon dioxide concentration “0” held in the above, and the zero point is calibrated. The output of the divider 48 is output to a logarithmic amplifier 49 to obtain an output signal proportional to the carbon dioxide concentration.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の光検出器のドリフト補正装置を備えた炭酸ガス濃度
測定装置は、この種の光検出器としては高価なPbSe
を使用している。PbSeは応答速度は速いが、赤外線
を連続照射すると素子自身の温度が上昇し、抵抗値が減
少してドリフトが大きくなるため、呼吸周期に比較して
短い周期、例えば200Hzで連続して断続しながら検
出する必要があり、光断続器及びこれを回転駆動するモ
ータ等の駆動部を配置して、呼吸ガスを透過する光量を
検出するようにしていた。このため、装置の小形化、低
消費電力化、堅牢性に限界がありしかも高価となる不都
合があった。さらに従来の装置ではドリフトの補正を考
慮していたが、合わせて検出部における絶対光量の変化
に対する検出信号の感度変化を補正することは行われて
いなかった。従って、本発明は上記課題に鑑み、光検出
器に必要とする光を連続して断続する機構を用いること
なく、検出信号のドリフト補正及び感度補正を行うこと
ができる炭酸ガス濃度測定装置を提供することを目的と
する。さらにはドリフト補正に加え、感度を補正してよ
り正確な炭酸ガス濃度を測定できる装置を提供すること
を目的とする。
However, the above-mentioned conventional carbon dioxide gas concentration measuring apparatus provided with the drift correction device of the photodetector is expensive as this type of photodetector.
You are using Although PbSe has a fast response speed, the temperature of the element itself rises when infrared rays are continuously radiated, the resistance value decreases, and the drift increases. Therefore, it is intermittently shorter than the respiratory cycle, for example, 200 Hz. It is necessary to detect the amount of light transmitted through the respiratory gas by arranging a drive unit such as an optical interrupter and a motor for rotating the optical interrupter. For this reason, there is a problem that the size of the device is reduced, the power consumption is reduced, the robustness is limited, and the device is expensive. Furthermore, in the conventional apparatus, correction of drift was taken into consideration, but correction of a change in sensitivity of a detection signal with respect to a change in absolute light amount in the detection unit was not performed. Accordingly, the present invention has been made in view of the above problems, and provides a carbon dioxide concentration measuring apparatus capable of performing drift correction and sensitivity correction of a detection signal without using a mechanism for continuously interrupting light required for a photodetector. The purpose is to do. It is still another object of the present invention to provide an apparatus capable of measuring a carbon dioxide gas concentration more accurately by correcting sensitivity in addition to drift correction.

【0007】[0007]

【課題を解決するための手段】請求項1に係る本発明の
炭酸ガス濃度測定装置は、呼吸ガスに赤外線を照射し、
透過量に応じた信号を検出して炭酸ガス濃度を測定する
炭酸ガス濃度測定装置において、赤外線の透過量を検出
する熱検出器と、光源をオン/オフさせるスイッチ手段
SWと、熱検出器の検出信号から、現在の吸気時の最大
値を検出して記憶させ、熱検出器の検出信号から、現在
の吸気時の最大値を検出して記憶させ、次の吸気時の最
大値検出前に検出信号の最大値が記憶された最大値を越
えた場合、最大値を更新して記憶させ、記憶した最大値
を時系列的に読み出してカルマンフィルタによる処理を
施して補正値を出力し、補正値と検出信号との差を算定
して時系列的に変化する濃度濃度を求めるドリフト補正
手段と、光源を瞬時オフさせてオフ時の上記検出の信号
最小値を検出し、記憶されている上記最大値との差を算
定して炭酸ガス濃度「0」でその時点の最大受光量にお
ける基準値として記憶させ、この基準値と濃度信号の比
を算定してこの濃度信号の感度を補正して濃度成分を算
定する感度補正手段とを備え、この濃度成分に基づいて
炭酸ガス濃度を求める制御手段と、最大値及び基準値を
記憶する記憶手段とを具備するものである。
According to a first aspect of the present invention, there is provided a carbon dioxide concentration measuring apparatus which irradiates a respiratory gas with infrared rays.
In a carbon dioxide concentration measuring device for measuring a carbon dioxide concentration by detecting a signal corresponding to a transmission amount, a heat detector for detecting an infrared transmission amount, switch means SW for turning on / off a light source, and a heat detector From the detection signal, the maximum value during the current intake is detected and stored.From the detection signal of the heat detector, the maximum value during the current intake is detected and stored, and before the maximum value is detected during the next intake. When the maximum value of the detection signal exceeds the stored maximum value, the maximum value is updated and stored, the stored maximum value is read out in chronological order, processed by a Kalman filter, and a correction value is output. Drift detection means for calculating a difference between the detection signal and the detection signal, and a light source is momentarily turned off to detect a signal minimum value of the detection when the light source is off, and to store the maximum value stored therein. Calculate the difference from the Sensitivity correction means for storing a reference value at the maximum received light amount at that time as "0", calculating a ratio between the reference value and the density signal, correcting the sensitivity of the density signal and calculating a density component, It comprises a control means for obtaining the carbon dioxide concentration based on the concentration component, and a storage means for storing the maximum value and the reference value.

【0008】請求項2に係る発明は、請求項1記載の炭
酸ガス濃度測定装置において、光源を呼吸周期より長い
所定周期でオフにする。
According to a second aspect of the present invention, in the carbon dioxide concentration measuring apparatus according to the first aspect, the light source is turned off at a predetermined cycle longer than the respiratory cycle.

【0009】請求項3に係る発明は、請求項1記載の炭
酸ガス濃度測定装置において、光源を吸気に同期させて
オフにする。
According to a third aspect of the present invention, in the carbon dioxide concentration measuring apparatus according to the first aspect, the light source is turned off in synchronization with the intake.

【0010】請求項4に係る発明は、請求項1記載の炭
酸ガス濃度測定装置において、光源を補正値が所定範囲
を越えた変化をした場合にオフにする。
According to a fourth aspect of the present invention, in the carbon dioxide concentration measuring device according to the first aspect, the light source is turned off when the correction value changes beyond a predetermined range.

【0011】[0011]

【作用】請求項1に係る発明では、呼吸ガスを透過した
赤外線を受光して熱検出器により検出される検出信号か
ら、現在の吸気時の最大値を検出して記憶手段に記憶さ
せる。次の吸気時の最大値を検出する前に、熱検出器2
の検出信号の最大値が記憶された最大値を越えた場合、
記憶されている最大値を更新して大きいほうの最大値を
記憶する。このようにして記憶された最大値を時系列に
読み出して、カルマンフィルタ処理を行って補正値を得
る。この補正値を検出信号との差を算定して時系列的に
変化する濃度信号を求めるドリフト補正を行う。次に、
光源を瞬時オフさせ、オフ時の検出信号の最小値を検出
して記憶してある最大値との差を計算し、炭酸ガス濃度
「0」でその時点の最大受光量における基準値を求めて
記憶させる。この基準値と濃度成分との比を求めて、こ
の比により濃度成分の感度補正を行い、炭酸ガス濃度を
求めるようにした。
According to the first aspect of the present invention, the maximum value at the time of current inspiration is detected from the detection signal detected by the heat detector after receiving the infrared light transmitted through the breathing gas and stored in the storage means. Before detecting the maximum value at the next intake, heat detector 2
If the maximum value of the detection signal exceeds the stored maximum value,
The stored maximum value is updated and the larger maximum value is stored. The maximum value stored in this way is read out in time series, and a Kalman filter process is performed to obtain a correction value. Drift correction is performed to calculate a difference between the correction value and the detection signal to obtain a density signal that changes in a time series. next,
The light source is turned off instantaneously, the minimum value of the detection signal at the time of off is detected, the difference from the stored maximum value is calculated, and the carbon dioxide concentration “0” is used to obtain a reference value at the maximum received light amount at that time. Remember. The ratio between the reference value and the concentration component is determined, and the sensitivity of the concentration component is corrected based on the ratio to determine the carbon dioxide concentration.

【0012】請求項2に係る発明では、光源を予め定め
た一定の周期でオフにする。
In the invention according to claim 2, the light source is turned off at a predetermined constant cycle.

【0013】請求項3に係る発明では、光源を吸気に同
期させてオフにする。
In the invention according to claim 3, the light source is turned off in synchronization with the intake air.

【0014】請求項4に係る発明では、光源を補正値が
所定範囲を越えた変化をした場合にオフにする。
In the invention according to claim 4, the light source is turned off when the correction value has changed beyond a predetermined range.

【0015】[0015]

【実施例】以下、図面を参照して本発明の炭酸ガス濃度
測定装置の実施例について説明する。図1は、本発明の
実施例の構成を示すブロック図である。図2は、図1の
実施例の炭酸ガス濃度算定の処理を示すフローチャート
である。図3は、ドリフトしている検出信号に補正値で
補正を行う説明図である。図4は、感度変化した検出信
号に対する感度補正の説明図である。図5は、図1の実
施例において、一定周期で光源をオフする説明図であ
る。図6は、図1の実施例において、吸気時の検出信号
に同期して光源をオフする説明図である。図7は、図1
の実施例における補正値が感度補正基準値から予め定め
た範囲を越えた場合に光源をオフにする説明図である。
図8は、図1の実施例により得られる炭酸ガス濃度の波
形図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a carbon dioxide concentration measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention. FIG. 2 is a flowchart showing a process of calculating the concentration of carbon dioxide in the embodiment of FIG. FIG. 3 is an explanatory diagram for correcting a drifting detection signal with a correction value. FIG. 4 is an explanatory diagram of sensitivity correction for a detection signal having changed sensitivity. FIG. 5 is an explanatory diagram in which the light source is turned off at regular intervals in the embodiment of FIG. FIG. 6 is an explanatory diagram of turning off the light source in synchronization with the detection signal at the time of intake in the embodiment of FIG. FIG. 7 shows FIG.
FIG. 9 is an explanatory diagram for turning off the light source when the correction value in the embodiment of FIG. 7 exceeds a predetermined range from the sensitivity correction reference value.
FIG. 8 is a waveform diagram of the carbon dioxide gas concentration obtained by the embodiment of FIG.

【0016】実施例の説明に先立ち、本発明の原理につ
いて説明する。本発明は、呼気ガス中の炭酸ガス濃度に
応じて変化する熱量を検出する熱検出器としてサーモパ
イルを使用した。サーモパイルは、従来使用されている
PbSeに比較してドリフトが少なくしかも安価である
が、特有の性質があり、この特性に対応して用いること
が要求される。即ち、炭酸ガス濃度測定装置に必要な応
答速度は200ms以下であるが、サーモパイルの応答
速度が50ms〜200msと遅いため、従来の如く光
源の光をチョッピングする方式では、200ms以下の
応答速度を達成するのは困難である。
Prior to the description of the embodiments, the principle of the present invention will be described. In the present invention, a thermopile is used as a heat detector for detecting the amount of heat that changes according to the concentration of carbon dioxide in exhaled gas. Although the thermopile has less drift and is inexpensive than PbSe conventionally used, it has a unique property and is required to be used in accordance with this property. That is, the response speed required for the carbon dioxide concentration measurement device is 200 ms or less, but the response speed of the thermopile is as slow as 50 ms to 200 ms, so that the response speed of 200 ms or less is achieved by the conventional method of chopping the light from the light source. It is difficult to do.

【0017】しかしながら、例えば光源の赤外線量の変
化、呼気ガス検出部の窓の曇り又は汚れ、サーモパイル
自体の構造により、検出信号にドリフトが発生する。こ
の内、サーモパイル自体の構造による検出信号のドリフ
トは、使用環境温度の変化に伴って生じるので補正が必
要となる。即ち、サーモパイルは温接点と冷接点を有
し、この両接点間の熱時定数の違いにより検出信号にド
リフトが発生する。周囲温度の急激な変化に対して熱容
量の小さい温接点は速かに応答するが、容器に熱的に接
触している冷接点は熱容量が大きいため、温接点より応
答が遅れる。このため、温接点と冷接点間の温度差に応
じて出力される信号を検出する際、冷接点が熱的に周囲
温度と平衡に達するまでドリフトが生じることになる。
However, a drift occurs in the detection signal due to, for example, a change in the amount of infrared light from the light source, fogging or dirt on the window of the exhaled gas detector, and the structure of the thermopile itself. Of these, the drift of the detection signal due to the structure of the thermopile itself occurs with a change in the use environment temperature, and thus needs to be corrected. That is, the thermopile has a hot junction and a cold junction, and the detection signal drifts due to a difference in thermal time constant between the two junctions. A hot junction having a small heat capacity responds quickly to a rapid change in the ambient temperature, but a cold junction in thermal contact with the container has a large heat capacity, and thus has a slower response than the hot junction. Therefore, when detecting a signal output according to the temperature difference between the hot junction and the cold junction, drift occurs until the cold junction thermally reaches equilibrium with the ambient temperature.

【0018】また、呼気ガス検出部の窓の曇り或いは汚
れにより、透過光量が低下してサーモパイルの出力感度
が変化するので、測定した炭酸ガス濃度も変化し、安定
した測定ができない。
Further, since the amount of transmitted light is reduced and the output sensitivity of the thermopile changes due to fogging or dirt on the window of the exhaled gas detector, the measured carbon dioxide gas concentration also changes, and stable measurement cannot be performed.

【0019】従って、サーモパイルを使用するためには
検出信号のドリフト及び出力感度による変動を補正した
上で、炭酸ガス濃度を測定する必要がある。
Therefore, in order to use the thermopile, it is necessary to correct the drift of the detection signal and the fluctuation due to the output sensitivity before measuring the carbon dioxide gas concentration.

【0020】本発明では、急激な温度変化に伴い、サー
モパイルの構造に起因して検出信号にドリフトが発生し
た場合、或いは検出部の窓の曇りや光源の光量変動に伴
うサーモパイルの出力感度が変化した場合、ドリフト補
正及び感度補正を行うようにした。
In the present invention, when the detection signal drifts due to the structure of the thermopile due to a rapid temperature change, or when the output sensitivity of the thermopile changes due to fogging of the window of the detection unit or fluctuation of the light amount of the light source. In this case, drift correction and sensitivity correction are performed.

【0021】通常は、サーモパイルの出力において、各
吸気毎の最大値を検出して記憶させ、各呼気毎の炭酸ガ
スにより低下した呼気期間における出力値を検出し、最
大値と呼気時の出力値との差を算定して濃度信号を求
め、ドリフト補正を行う。しかし、このドリフト補正
は、ドリフトが緩やかに変動する場合には有効である
が、ドリフトの変動が較的速い場合には、不連続点が生
じて十分な補正ができない。
Normally, in the output of the thermopile, the maximum value for each inspiration is detected and stored, and the output value in the expiration period reduced by the carbon dioxide gas for each expiration is detected, and the maximum value and the output value at the time of expiration are detected. Is calculated, a density signal is obtained, and drift correction is performed. However, this drift correction is effective when the drift fluctuates gently. However, when the drift fluctuates relatively quickly, a discontinuous point occurs and sufficient correction cannot be performed.

【0022】従って、本発明では、カルマンフィルタに
よる補正処理を導入することにより、ドリフトの変動が
速い場合にも、変動に十分に追随して補正できるカルマ
ンフィルタを用いてドリフト補正ができるようにした。
カルマンフィルタは、リアルタイムで処理でき再新野デ
ータの追随性がよいことが知られている。
Therefore, in the present invention, by introducing a correction process using a Kalman filter, drift correction can be performed using a Kalman filter that can sufficiently follow the fluctuation even if the drift varies rapidly.
It is known that the Kalman filter can be processed in real time and has good followability of renewed data.

【0023】図3に示すカルマンフィルタにより出力さ
れる補正値に基づいて、サーモパイル出力のドリフト補
正について説明する。図3において、吸気時に検出され
る最大値をP1、P2、P3及びP4とし、例えばP2
で検出されるサーモパイルの検出信号の吸気時の最大値
をVm(図の実線上の点)とする。図の破線で示すカル
マンフィルタの最適推定量として出力される補正値VI
は、上記最大値Vmを入力データとして下記に示す式で
計算できる。
The drift correction of the thermopile output based on the correction value output by the Kalman filter shown in FIG. 3 will be described. In FIG. 3, the maximum values detected at the time of intake are P1, P2, P3 and P4, for example, P2
The maximum value at the time of inhalation of the detection signal of the thermopile detected at the time of is taken as Vm (point on the solid line in the figure). The correction value VI output as the optimal estimator of the Kalman filter indicated by the broken line in FIG.
Can be calculated by the following equation using the maximum value Vm as input data.

【0024】 VI(n+1)=VI(n) +(Vm−VI(n) )/B(n+1 ) (1)VI (n + 1) = VI (n) + (Vm−VI (n)) / B (n + 1) (1)

【0025】ここで、B(n+1 )は次式で表わされる。
B(n+1 )=(1+α・B(n))ここではあらかじめ定
めておくカルマン係数であり、αの値によりフィルタの
補正特性が変る。VI(n+1)は、現在時点のフィルタ出
力を表し、VI(n) は前の時刻のフィルタ出力を表して
いる。Vmは現在時点における検出信号の最大値であ
る。
Here, B (n + 1) is expressed by the following equation.
B (n + 1) = (1 + α · B (n)) Here, the Kalman coefficient is determined in advance, and the correction characteristic of the filter changes depending on the value of α. VI (n + 1) represents the filter output at the present time, and VI (n) represents the filter output at the previous time. Vm is the maximum value of the detection signal at the present time.

【0026】即ち、サーモパイルの現在の最大値Vmを
入力すると、上述した式(1)のカルマンフィルタの補
正値VI(n+1)が得られる。
That is, when the current maximum value Vm of the thermopile is inputted, the correction value VI (n + 1) of the Kalman filter of the above equation (1) is obtained.

【0027】この補正値は、図3に破線で示すように、
吸気時に検出される逐次時系列的に入力される最大値に
追随して漸近する。従って、この補正値と検出信号との
差を求めることにより炭酸ガス濃度に対応した濃度成分
を得ることができる。
This correction value is expressed by a broken line in FIG.
Asymptotically following the maximum value input in time series detected during inspiration. Therefore, a concentration component corresponding to the concentration of carbon dioxide can be obtained by calculating the difference between the correction value and the detection signal.

【0028】また、感度補正を行う場合は、以下のよう
にして行う。光源を瞬時にオフ/オンさせ、オフ直前の
吸気時のサーモパイルの最大値を検出して記憶保持し、
光源をオフにした時のサーモパイルの最小値を検出す
る。これら最大値と最小値との差を炭酸ガス濃度「0」
で且つその時点の最大光量における基準値として求め記
憶保持する。この基準値は、光源をオフ/オンする毎に
求めて更新する。
The sensitivity correction is performed as follows. The light source is turned off / on instantly, and the maximum value of the thermopile at the time of intake just before the off is detected and stored.
The minimum value of the thermopile when the light source is turned off is detected. The difference between these maximum and minimum values is defined as the carbon dioxide concentration "0".
Is obtained and stored as a reference value at the maximum light quantity at that time. This reference value is obtained and updated each time the light source is turned off / on.

【0029】また、既に求めて記憶された基準値と各呼
気毎に得られる濃度信号との比を求めて濃度信号の感度
補正を行って濃度成分を算定し、その濃度成分により炭
酸ガス濃度を算定する。基準値と濃度信号との比は、例
えばサーモパイルが窓の汚れにより急激な光量変化を受
けて検出信号が低下した場合にも炭酸ガス濃度が同じで
あれば一定である。従って、炭酸ガス濃度の測定中、光
源をオフ/オンすることにより、サーモパイルの出力感
度が変化した場合でも、基準値を求めて濃度信号との比
を算定し、この比に基づいて濃度信号の感度補正を行い
濃度成分を求め、その濃度成分により炭酸ガス濃度を求
めることができるので、安定した測定を行うことができ
る。
Further, the ratio of the previously obtained and stored reference value to the concentration signal obtained for each exhalation is determined, the sensitivity correction of the concentration signal is performed, the concentration component is calculated, and the carbon dioxide concentration is calculated by the concentration component. Calculate. The ratio between the reference value and the concentration signal is constant if the concentration of carbon dioxide is the same, for example, even when the detection signal decreases due to a sudden change in the amount of light due to the dirt on the window of the thermopile. Therefore, even if the output sensitivity of the thermopile changes by turning off / on the light source during the measurement of the carbon dioxide gas concentration, the reference value is obtained and the ratio with the concentration signal is calculated. Since the sensitivity correction is performed to determine the concentration component and the carbon dioxide concentration can be determined from the concentration component, stable measurement can be performed.

【0030】図4により、上記原理によるサーモパイル
の検出信号の感度補正を行う場合について説明する。光
源のオフ直前の吸気時のA点の最大値Vaを検出してメ
モリに記憶させ、光源をオフにした時のサーモパイルの
オフセット電圧である最小値Vbを検出する。次に、最
大値Vaと最小値Vbとの差を、炭酸ガス濃度「0」で
且つその時点の最大受光量における基準値Voとして
(Va−Vb)により求め記憶保持しておく。
Referring to FIG. 4, description will be given of a case where the sensitivity of the detection signal of the thermopile is corrected based on the above principle. The maximum value Va at point A at the time of intake immediately before the light source is turned off is detected and stored in the memory, and the minimum value Vb, which is the offset voltage of the thermopile when the light source is turned off, is detected. Next, the difference between the maximum value Va and the minimum value Vb is determined as (Va-Vb) as the reference value Vo at the carbon dioxide gas concentration "0" and the maximum amount of received light at that time, and is stored.

【0031】次に、現在の吸気時の点Cにおける最大値
Vcを検出すると共に、続く呼気時の炭酸ガスにより減
少した点Dにおける出力値Vdを検出する。最大値Vc
と出力値Vdとの差を算定して濃度信号Vxを(Vc−
Vd)から求める。
Next, the maximum value Vc at the point C at the time of the current inspiration is detected, and the output value Vd at the point D reduced by the carbon dioxide gas during the subsequent expiration is detected. Maximum value Vc
And the output value Vd, the density signal Vx is calculated as (Vc−
Vd).

【0032】そして、記憶された基準値Vo及び各呼気
毎に算定される濃度信号Vxの比(Vx/Vo)を求
め、この比に基づいて濃度信号の濃度補正を行い濃度成
分を求め、その濃度成分により炭酸ガス濃度を算定す
る。
Then, a ratio (Vx / Vo) of the stored reference value Vo and the density signal Vx calculated for each exhalation is obtained, and the density component of the density signal is calculated based on the ratio to obtain a density component. The carbon dioxide concentration is calculated from the concentration component.

【0033】また、窓の汚れ等による光量が低下してサ
ーモパイルの出力感度が低下した場合にも同様にして濃
度成分を求めることができる。即ち、受光量が変化して
サーモパイルの出力が低下した場合、吸気時のサーモパ
イルのE点の最大値Veを検出して記憶し、及び光源が
オフになった時のF点におけるサーモパイルのオフセッ
ト電圧である最小値Vfを夫々検出し、炭酸ガス濃度
「0」で且つその時点の最大光量における基準値V01
(Ve−Vf)より求めて記憶させておく。吸気時のG
点の最大値Vg及び続く呼気時の炭酸ガスによる減少点
Hの出力値Vhを検出して、濃度信号Vx1を(Vg−V
h)から求める。そして、基準値V01と濃度信号Vx1と
の比Vx1/V01を算定し、この比により濃度信号を感度
補正して濃度成分を求め、この濃度成分に基づいて炭酸
ガス濃度を計算する。
The density component can also be obtained in the same manner when the output sensitivity of the thermopile decreases due to a decrease in the amount of light due to a stain on the window or the like. That is, when the amount of received light changes and the output of the thermopile decreases, the maximum value Ve of the point E of the thermopile during intake is detected and stored, and the offset voltage of the thermopile at the point F when the light source is turned off. Are detected, and the reference value V01 at the maximum light quantity at the time when the carbon dioxide concentration is "0" is detected.
(Ve−Vf) and stored. G during inspiration
The maximum value Vg of the point and the output value Vh of the decrease point H due to the carbon dioxide gas at the time of subsequent exhalation are detected, and the concentration signal Vx1 is calculated as (Vg-V
h). Then, the ratio Vx1 / V01 between the reference value V01 and the concentration signal Vx1 is calculated, the sensitivity of the concentration signal is corrected based on the ratio, the concentration component is obtained, and the carbon dioxide gas concentration is calculated based on the concentration component.

【0034】上述したように、受光量が低下した場合で
も、炭酸ガス濃度が同じときの基準値と濃度信号の比は
一定、即ち、Vx/V0 =Vx1/V01(図4)であるか
ら、光源をオフ/オンして基準値と濃度信号との比を求
め、この比により濃度信号を感度補正をして濃度成分を
求め、この濃度成分に基づいて炭酸ガス濃度を算定する
ことができる。即ち、この比を求めることにより、サー
モパイルの出力が光量の変化等により出力感度が変化し
ても正確な炭酸ガス濃度を求めることができる。
As described above, even when the amount of received light decreases, the ratio between the reference value and the concentration signal when the carbon dioxide gas concentration is the same is constant, that is, Vx / V0 = Vx1 / V01 (FIG. 4). The light source is turned on / off to obtain a ratio between the reference value and the density signal, and the density signal is subjected to sensitivity correction based on the ratio to obtain a density component, and the carbon dioxide concentration can be calculated based on the density component. That is, by obtaining this ratio, an accurate carbon dioxide gas concentration can be obtained even if the output of the thermopile changes in output sensitivity due to a change in light amount or the like.

【0035】図1において、Tは呼気ガス及び吸気ガス
が流通する通気管で、所定位置の対向する部分にサファ
イア等の透明部材より成る窓W1及びW2が形成されて
いる。通気管Tは、一方の端部(図の左)が被検者の口
に挿入される挿入端となり、他方の端部(図の右側)が
大気中への開放端となる。窓W1及びW2には、呼気ガ
ス中の水蒸気等による曇りを防止する防曇加工が施され
ている。窓W1の上方付近にはランプ等の光源1が配置
され、窓W1へ光を照射する。また、窓W2の下方付近
には、前述したサーモパイルから成る熱検出器2が配置
され、光源1から、窓W1及びW2を透過して照射され
る赤外線を検出する。また、熱検出器2の受光面には、
呼気ガス中の炭酸ガスにより吸収される波長(およそ
4.3μm)のフィルタFが配置されている。
In FIG. 1, T is a ventilation pipe through which exhaled gas and inspired gas flow, and windows W1 and W2 made of a transparent member such as sapphire are formed at opposing predetermined positions. One end (left side in the figure) of the ventilation tube T is an insertion end to be inserted into the mouth of the subject, and the other end (right side in the figure) is an open end to the atmosphere. The windows W1 and W2 are subjected to anti-fogging processing for preventing fogging due to water vapor or the like in the exhaled gas. A light source 1 such as a lamp is arranged near the upper portion of the window W1 and irradiates the window W1 with light. A heat detector 2 made of the above-mentioned thermopile is arranged near the lower portion of the window W2, and detects infrared rays transmitted from the light source 1 through the windows W1 and W2. Also, on the light receiving surface of the heat detector 2,
A filter F having a wavelength (about 4.3 μm) that is absorbed by carbon dioxide in the exhaled gas is provided.

【0036】3は、例えば定電流回路から成る光源駆動
部で、スイッチSWによりオン/オフされる。スイッチ
SWは、例えばトランジスタ等の半導体スイッチで構成
され、後述する制御部6から出力される制御信号により
オフ/オン制御される。
Reference numeral 3 denotes a light source driving unit composed of, for example, a constant current circuit, which is turned on / off by a switch SW. The switch SW is composed of, for example, a semiconductor switch such as a transistor, and is turned off / on by a control signal output from a control unit 6 described later.

【0037】4は熱検出器2の検出信号を増幅する増幅
器(例えば対数増幅器)、5は増幅器4の出力をデジタ
ル信号に変換するアナログ−デジタル変換器である。上
述した制御部6は、例えばCPUから成り、後述するR
OM9に記憶された炭酸ガス濃度の測定を行う制御プロ
グラムに基づき装置の制御を行う。
Reference numeral 4 denotes an amplifier (for example, a logarithmic amplifier) for amplifying the detection signal of the heat detector 2, and reference numeral 5 denotes an analog-to-digital converter for converting the output of the amplifier 4 into a digital signal. The control unit 6 includes, for example, a CPU.
The apparatus is controlled based on a control program for measuring the concentration of carbon dioxide stored in the OM 9.

【0038】7は、例えば複数の押しボタンより成る操
作部で、光源1のオン/オフの周期期間や熱検出器2の
出力の判定に対する設定値等のパラメータの設定、所要
データの設定等を行う。
Reference numeral 7 denotes an operation unit including, for example, a plurality of push buttons. The operation unit 7 sets parameters such as a set period for ON / OFF cycle period of the light source 1 and determination of an output of the heat detector 2, and sets required data. Do.

【0039】8はRAMで、設定されたパラメータ、熱
検出器2の吸気時に検出される最大値、光源オフ時に算
定される基準値、測定された炭酸ガス濃度のデータ等を
一時的に記憶保持する。9はROMで、前述の本発明の
原理による熱検出器2の検出信号に対してドリフト補正
及び感度補正を行って炭酸ガス濃度の測定を自動的に行
う制御プログラムが予め記憶されている。
Reference numeral 8 denotes a RAM which temporarily stores and holds set parameters, a maximum value detected when the heat detector 2 is inhaled, a reference value calculated when the light source is turned off, and measured carbon dioxide concentration data. I do. Reference numeral 9 denotes a ROM in which a control program for automatically performing the drift correction and the sensitivity correction on the detection signal of the heat detector 2 according to the principle of the present invention and automatically measuring the carbon dioxide gas concentration is stored in advance.

【0040】10は、例えば複数のLED(発光ダイオ
ード)等の発光素子又はブザー等の音響素子から成る表
示部で、測定された炭酸ガス濃度を濃度変化に応じたバ
ーグラフ表示を行い、又はブザーにより濃度変化に応じ
た変調音を報知する。或いはLED及びブザーを両方備
えることもできる。両者を装備することにより、視覚及
び聴覚いずれでも被検者の呼吸状態を監視することがで
きる。
Numeral 10 denotes a display unit comprising a plurality of light emitting elements such as LEDs (light emitting diodes) or an acoustic element such as a buzzer. The display unit 10 displays the measured carbon dioxide gas concentration in a bar graph according to the change in the concentration. To notify a modulated sound corresponding to the density change. Alternatively, both an LED and a buzzer can be provided. By equipping both, it is possible to monitor the respiratory state of the subject both visually and audibly.

【0041】次に上述の構成において、図2のフローチ
ャートにより動作を説明する。測定開始時には電源スイ
ッチ(図示せず)投入と同時に光源1がオンとされる
(ステップS1)。被検者の口に挿入された通気管Tの
挿入端を介して出入する呼吸に伴う炭酸ガスの濃度変化
による透過光を熱検出器2で受光し、熱検出器2の検出
信号が大きくなった時点を吸気と認識し、検出信号から
現在の吸気時の熱検出器2の最大値を検出してRAM8
に記憶する(ステップS2)。最大値は、熱検出器2の
検出信号を、例えば時間軸で前後のデータの差分値を算
定することにより検出できる。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. At the start of the measurement, the light source 1 is turned on simultaneously with turning on a power switch (not shown) (step S1). The transmitted light due to the change in the concentration of carbon dioxide gas accompanying the respiration entering and exiting through the insertion end of the ventilation tube T inserted into the subject's mouth is received by the heat detector 2, and the detection signal of the heat detector 2 increases. Is recognized as intake air, the maximum value of the heat detector 2 at the time of current intake is detected from the detection signal, and the RAM 8
(Step S2). The maximum value can be detected by calculating a difference value between data before and after the detection signal of the heat detector 2 on the time axis, for example.

【0042】次の吸気時の最大値を検出する前に、熱検
出器2の検出信号の最大値がステップ2で記憶した最大
値を越える場合、この記憶されている最大値を更新し
て、この最大値を越えた最大値をRAM8に記憶させる
(テップS3)。
If the maximum value of the detection signal of the heat detector 2 exceeds the maximum value stored in step 2 before detecting the maximum value at the next intake, the stored maximum value is updated. The maximum value exceeding this maximum value is stored in the RAM 8 (Step S3).

【0043】制御部6は、このようにして記憶した各最
大値を逐次時系列的に読み出し、前述したカルマンフィ
ルタによる処理を施して補正値を出力する。(ステップ
S4)。
The control unit 6 sequentially reads out the stored maximum values in a time-series manner, performs the above-described processing by the Kalman filter, and outputs a correction value. (Step S4).

【0044】現在の最大値検出時点に続く熱検出器2の
検出信号とステップS4で求められた補正値との差を計
算して時系列的に変化する濃度信号を求める(ステップ
S5)。
The difference between the detection signal of the heat detector 2 following the current maximum value detection point and the correction value obtained in step S4 is calculated to obtain a time-varying density signal (step S5).

【0045】なお、通常の処理では、ステップS5から
次に説明するステップS6に移行する。一点鎖線で囲ん
だステップS20及び21については、後述する。
In the ordinary processing, the process proceeds from step S5 to step S6 described below. Steps S20 and S21 surrounded by a dashed line will be described later.

【0046】次に、光源1を瞬時オフにし(ステップS
6)、熱検出器2の光源オフ時の最小値とオフ直前の吸
気時の最大値との差を求めて、炭酸ガス濃度が「0」で
且つその時点の最大受光量における基準値として記憶す
る(ステップS7)。この基準値と呼気時の濃度信号と
の比を算定して濃度信号の感度補正を行って補正された
濃度成分を求め(ステップS8)、この濃度成分に基づ
いて炭酸ガス濃度を算定し、表示装置10に濃度データ
を送り表示する(ステップS9)。表示する際、表示装
置10を従来のバーグラフ表示装置で構成した場合、炭
酸ガス濃度は、図8に示す炭酸ガス濃度波形に応じたバ
ーグラフの長さの変化として表示される。
Next, the light source 1 is turned off instantly (step S
6) Find the difference between the minimum value of the heat detector 2 when the light source is off and the maximum value at the time of inhalation immediately before the light source is off, and store it as a reference value at the carbon dioxide concentration of “0” and the maximum amount of light received at that time (Step S7). The ratio between the reference value and the concentration signal at the time of expiration is calculated, and the sensitivity of the concentration signal is corrected to obtain a corrected concentration component (step S8). Based on this concentration component, the carbon dioxide concentration is calculated and displayed. The density data is sent to the device 10 and displayed (step S9). When displaying, when the display device 10 is configured by a conventional bar graph display device, the carbon dioxide concentration is displayed as a change in the length of the bar graph according to the carbon dioxide concentration waveform shown in FIG.

【0047】このようにして、上述した実施例は、カル
マンフィルタを導入して周囲温度の急激な変化に伴う熱
検出器2のドリフトに追随して検出信号を補正するドリ
フト補正を行い、且つ光源を瞬時にオフさせ、その時の
最小値と直前の吸気時の最大値との差を基準値とし、こ
の基準値と濃度信号の比による感度補正を行って濃度成
分を求めこの濃度成分に基いて炭酸ガス濃度を算定する
ようにしたので、正確で安定した炭酸ガス濃度を得るこ
とができる。
As described above, in the embodiment described above, the Kalman filter is introduced to perform drift correction for correcting the detection signal by following the drift of the heat detector 2 caused by a rapid change in the ambient temperature, and to change the light source. It is turned off instantaneously, the difference between the minimum value at that time and the maximum value at the time of the immediately preceding intake is set as a reference value, and a sensitivity component is corrected by a ratio between the reference value and the density signal to obtain a density component. Since the gas concentration is calculated, an accurate and stable carbon dioxide gas concentration can be obtained.

【0048】上述した図2のフローチャートは、光源を
任意にオフ/オンさせているが、図5に示すように、光
源を呼吸周期より長い一定の周期Tでオフさせるように
してもよい。周期Tは、ROM9に予め設定して記憶さ
せておくか、操作部7を介して設定するかのいずれでも
よい。周期Tを予め設定しておくことにより、自動的に
熱検出器2の検出信号の補正が可能となる。所定周期
は、例えば30秒或いは1分毎等、周囲温度の状況に応
じて設定できる。
Although the light source is arbitrarily turned off / on in the flowchart of FIG. 2 described above, the light source may be turned off at a constant cycle T longer than the respiratory cycle as shown in FIG. The cycle T may be set in advance in the ROM 9 and stored, or may be set via the operation unit 7. By setting the cycle T in advance, the detection signal of the heat detector 2 can be automatically corrected. The predetermined period can be set according to the ambient temperature, for example, every 30 seconds or every minute.

【0049】また、図6に示すように、光源1のオフの
周期は、例えば複数の吸気毎或いは1呼吸(吸気及び呼
気)毎でもよい。呼吸数はROM9に予め設定して記憶
させておくか、操作部7を介して設定するかいずれかを
とることができる。図5に示した一定周期で光源をオフ
にすると呼気時にオフとなることがあり、この時の検出
データは使用できなくなるが、吸気に同期させることに
より呼吸データが確実に補正され、測定がより安定にな
る。
As shown in FIG. 6, the cycle of turning off the light source 1 may be, for example, for each of a plurality of inspirations or for each respiration (inspiration and expiration). The respiration rate can be set in advance in the ROM 9 and stored, or can be set via the operation unit 7. When the light source is turned off at a constant period shown in FIG. 5, the light may be turned off at the time of expiration, and the detection data at this time cannot be used. However, by synchronizing with the inspiration, the respiration data is surely corrected, and the measurement becomes more difficult. Become stable.

【0050】前述の図6に示す場合に、最大値検出後、
予め定めた一定時間後にオフにする。これは、吸気時の
検出信号から最大値を検出する場合、検出される前後の
検出信号の大きさから最大値を求めるようにしているの
で、最大値を確実に検出するために所定時間を設定す
る。
In the case shown in FIG. 6, after the maximum value is detected,
It is turned off after a predetermined time. This is because when detecting the maximum value from the detection signal at the time of intake, the maximum value is obtained from the magnitude of the detection signal before and after the detection, so a predetermined time is set to reliably detect the maximum value I do.

【0051】また、図7に示すようにカルマンフィルタ
の出力である補正値の変動が所定範囲以上であるとき所
定範囲を越えた時点の補正値を感度補正基準値として記
憶する。そして感度補正基準値から所定範囲を越えた場
合に光源1をオフにすることもできる。前述した図2の
フローチャートにおいて、ステップS20及びS21を
付加することにより処理する。即ち、前述の図2のステ
ップS5でドリフト補正した補正値により濃度信号を求
める際、補正値が感度補正基準値から予め設定した所定
範囲、例えば4mmHgを越えたか否か判定し(ステップ
20)、越えている場合は、次のステップS6(図2)
へ移行して光源1をオフする。この場合、光源オフ時点
の補正値を新たな感度補正基準値としてRAM8に記憶
(ステップS21)し、ステップS20へ戻る。また、
ステップS20で、補正値が感度補正基準値を越えてい
ないと判定された場合にもステップS20に戻り、感度
補正基準値の監視を行う。
As shown in FIG. 7, when the variation of the correction value, which is the output of the Kalman filter, is greater than a predetermined range, the correction value at the time when the variation exceeds the predetermined range is stored as a sensitivity correction reference value. Then, the light source 1 can be turned off when it exceeds a predetermined range from the sensitivity correction reference value. The processing is performed by adding steps S20 and S21 in the flowchart of FIG. 2 described above. That is, when the density signal is obtained based on the correction value drift-corrected in step S5 of FIG. 2 described above, it is determined whether the correction value has exceeded a predetermined range, for example, 4 mmHg, from the sensitivity correction reference value (step 20). If it exceeds, the next step S6 (FIG. 2)
Then, the light source 1 is turned off. In this case, the correction value at the time of turning off the light source is stored in the RAM 8 as a new sensitivity correction reference value (step S21), and the process returns to step S20. Also,
If it is determined in step S20 that the correction value does not exceed the sensitivity correction reference value, the process returns to step S20 to monitor the sensitivity correction reference value.

【0052】[0052]

【発明の効果】以上説明したように請求項1記載の本発
明の炭酸ガス濃度測定装置によれば、サーモパイルから
成る熱検出器を用いることにより、従来の光検出器に必
要なチョッパ(光断続器)やこれを回転駆動するモータ
等の機構部品が不要となるので、装置の小形化が容易と
なり、堅牢性も向上すると共に安価に構成できる利点が
ある。
As described above, according to the carbon dioxide concentration measuring apparatus of the first aspect of the present invention, the use of a heat detector composed of a thermopile makes it possible to use a chopper (light intermittent) required for a conventional photodetector. This eliminates the need for a mechanical component such as a device and a motor for rotating the device, so that the size of the device can be easily reduced, the robustness can be improved, and the device can be configured at low cost.

【0053】また、ドリフト補正及び感度補正の両方を
行うことができるので、周囲温度の急激な変化に伴う検
出信号のドリフトや窓の曇り等による出力感度の変化に
対しても確実にしかも安定した炭酸ガス濃度の測定がで
きる。
Further, since both drift correction and sensitivity correction can be performed, the output signal is reliably and stably protected against a change in output sensitivity due to a drift of a detection signal due to a rapid change in ambient temperature or clouding of a window. Carbon dioxide concentration can be measured.

【0054】請求項2記載の本発明によれば、光源を所
定周期毎に自動的にオフ/オンさせることにより、周囲
温度の急激な変動に伴う出力のドリフトや窓の曇り等に
よる出力感度の変化を速やかに補正でき、安定した且つ
正確な炭酸ガス濃度の測定ができる。
According to the second aspect of the present invention, by automatically turning off / on the light source at predetermined intervals, the output sensitivity due to the rapid fluctuation of the ambient temperature and the output sensitivity due to the fogging of the window and the like can be reduced. The change can be quickly corrected, and stable and accurate measurement of the carbon dioxide concentration can be performed.

【0055】請求項3記載の本発明によれば、周囲温度
の変動や通気管の窓の曇り等に伴う熱検出器の感度変化
があっても確実に呼吸データが補正できる。
According to the third aspect of the present invention, respiration data can be reliably corrected even if there is a change in the sensitivity of the heat detector due to a change in the ambient temperature or clouding of the window of the ventilation pipe.

【0056】請求項4記載の本発明によれば、カルマン
フィルタを用いてドリフトを補正するようにしたので、
変動の速いドリフトにも追随した補正ができ、周囲温度
の変化の激しい環境でも正確な炭酸ガス濃度の測定がで
きる。
According to the present invention, the drift is corrected by using the Kalman filter.
Correction can be made to follow a rapidly changing drift, and accurate measurement of carbon dioxide concentration can be performed even in an environment where the ambient temperature changes drastically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭酸ガス濃度測定装置の構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a configuration of a carbon dioxide concentration measuring device of the present invention.

【図2】図1の実施例の処理動作を説明するフローチャ
ートである。
FIG. 2 is a flowchart illustrating a processing operation of the embodiment in FIG. 1;

【図3】図1の実施例によるドリフト補正を行うカルマ
ンフィルタの出力を示す図である。
FIG. 3 is a diagram illustrating an output of a Kalman filter that performs drift correction according to the embodiment of FIG. 1;

【図4】図1の実施例による感度補正を行う光源のオフ
を示す図である。
FIG. 4 is a diagram showing an off state of a light source for performing sensitivity correction according to the embodiment of FIG. 1;

【図5】図1の実施例における光源を一定周期でオフさ
せる説明図である。
FIG. 5 is an explanatory diagram for turning off a light source at a constant cycle in the embodiment of FIG. 1;

【図6】図1の実施例における光源を吸気毎にオフさせ
る説明図である。
FIG. 6 is an explanatory diagram for turning off a light source for each intake in the embodiment of FIG. 1;

【図7】図1の実施例における光源を感度補正基準値が
所定値以上変化した場合にオフさせる説明図である。
FIG. 7 is an explanatory diagram of turning off the light source in the embodiment of FIG. 1 when the sensitivity correction reference value changes by a predetermined value or more.

【図8】図1の実施例により得られる炭酸ガス濃度の波
形図である。
FIG. 8 is a waveform diagram of a carbon dioxide gas concentration obtained by the embodiment of FIG. 1;

【図9】従来のドリフト補正装置を備えた炭酸ガス濃度
測定装置の構成図である。
FIG. 9 is a configuration diagram of a carbon dioxide concentration measuring device provided with a conventional drift correction device.

【符号の説明】[Explanation of symbols]

1 光源 2 サーモパイル 3 光源駆動部 4 増幅器 5 アナログ/デジタル変換器 6 制御部 7 操作部 8 RAM 9 ROM 10 表示部 REFERENCE SIGNS LIST 1 light source 2 thermopile 3 light source driving unit 4 amplifier 5 analog / digital converter 6 control unit 7 operation unit 8 RAM 9 ROM 10 display unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 正美 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (72)発明者 井上 正行 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (72)発明者 杉浦 正規 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (58)調査した分野(Int.Cl.7,DB名) G01N 33/497 A61B 5/08 G01N 21/61 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masami Ito 1-31-4 Nishi-Ochiai, Shinjuku-ku, Tokyo Inside Nihon Kohden Kogyo Co., Ltd. (72) Inventor Masayuki Inoue 1-31, Nishi-Ochiai, Shinjuku-ku, Tokyo No. 4 Inside Nihon Kohden Kogyo Co., Ltd. (72) Inventor Tadashi Sugiura 1-31-4 Nishi-Ochiai Shinjuku-ku, Tokyo Nihon Kohden Kogyo Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name ) G01N 33/497 A61B 5/08 G01N 21/61

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 呼吸ガスに赤外線を照射し、透過量に応
じた信号を検出して炭酸ガス濃度を測定する炭酸ガス濃
度測定装置において、 赤外線の透過量を検出する熱検出器と、 光源をオン/オフさせるスイッチ手段SWと、 上記熱検出器の検出信号から、現在の吸気時の最大値を
検出して記憶させ、次の吸気時の最大値検出前に上記検
出信号の最大値が記憶された上記最大値を越えた場合、
最大値を更新して記憶させ、記憶した最大値を時系列的
に読み出してカルマンフィルタによる処理を施して補正
値を出力し、前記補正値を検出信号との差を算定して時
系列的に変化する濃度信号を求めるドリフト補正手段
と、光源を瞬時オフさせてオフ時の上記検出信号の最小
値を検出し、記憶されている上記最大値との差を算定し
て炭酸ガス濃度「0」でその時点の最大受光量における
基準値として記憶させ、該基準値と上記濃度信号の比を
算定して該濃度信号の感度を補正して濃度成分を算定す
る感度補正手段とを備え、該濃度成分に基づいて炭酸ガ
ス濃度を求める制御手段と、 上記最大値及び上記基準値を記憶する記憶手段とを具備
することを特徴とする炭酸ガス濃度測定装置。
An apparatus for measuring carbon dioxide concentration by irradiating a respiratory gas with infrared light and detecting a signal corresponding to the amount of transmitted light, wherein a heat detector for detecting the amount of transmitted infrared light; From the switch means SW for turning on / off and the detection signal of the heat detector, the maximum value at the time of the current intake is detected and stored, and the maximum value of the detection signal is stored before the detection of the maximum value at the next intake. If the maximum value is exceeded,
The maximum value is updated and stored, the stored maximum value is read out in chronological order, processed by a Kalman filter, a correction value is output, and the difference between the correction value and the detection signal is calculated to change in chronological order. Drift correction means for obtaining a concentration signal to be turned off, a light source is momentarily turned off, a minimum value of the detection signal at the time of off is detected, a difference from the stored maximum value is calculated, and a carbon dioxide gas concentration of "0" is calculated. Sensitivity correction means for storing a reference value at the maximum received light amount at that time, calculating a ratio between the reference value and the density signal and correcting the sensitivity of the density signal to calculate a density component; A carbon dioxide concentration measuring device comprising: control means for obtaining a carbon dioxide concentration based on the above; and storage means for storing the maximum value and the reference value.
【請求項2】 光源を呼吸周期よりも長い所定周期でオ
フにすることを特徴とする請求項1記載の炭酸ガス濃度
測定装置。
2. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off at a predetermined cycle longer than the respiratory cycle.
【請求項3】 光源を吸気に同期させてオフにすること
を特徴とする請求項1記載の炭酸ガス濃度測定装置。
3. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off in synchronization with the intake air.
【請求項4】 光源を補正値が所定範囲を越えた変化を
した場合にオフにする請求項1記載の炭酸ガス濃度測定
装置。
4. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off when the correction value changes beyond a predetermined range.
JP03736195A 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device Expired - Fee Related JP3273298B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03736195A JP3273298B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device
EP96102772A EP0729727A3 (en) 1995-02-24 1996-02-23 Capnometer
EP96102750A EP0733341B1 (en) 1995-02-24 1996-02-23 Capnometer
EP03021573A EP1374768A3 (en) 1995-02-24 1996-02-23 Capnometer
DE69629510T DE69629510T2 (en) 1995-02-24 1996-02-23 Capnometer
US08/605,845 US5728585A (en) 1995-02-24 1996-02-26 Capnometer
US09/112,324 US6267928B1 (en) 1995-02-24 1998-07-09 Capnometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03736195A JP3273298B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device

Publications (2)

Publication Number Publication Date
JPH08233809A JPH08233809A (en) 1996-09-13
JP3273298B2 true JP3273298B2 (en) 2002-04-08

Family

ID=12495407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03736195A Expired - Fee Related JP3273298B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device

Country Status (1)

Country Link
JP (1) JP3273298B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444172B2 (en) * 2015-11-13 2019-10-15 Roscid Technologies, Inc. Chilled mirror hygrometer
US20170328876A1 (en) * 2016-05-12 2017-11-16 Radiant Innovation Inc. Gas concentration detection device and detection method thereof
WO2021020063A1 (en) * 2019-08-01 2021-02-04 株式会社村田製作所 Detection device, detection method, and program
CN111141695B (en) * 2019-12-24 2022-11-25 中国船舶重工集团公司第七一八研究所 Non-dispersive infrared multi-component Freon gas detection system
JP6846584B1 (en) * 2020-01-22 2021-03-24 株式会社汀線科学研究所 Expiratory terminal concentration measuring device

Also Published As

Publication number Publication date
JPH08233809A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3273295B2 (en) Carbon dioxide concentration measurement device
US8183527B2 (en) Gas detecting method and gas detecting apparatus
JP5887133B2 (en) Apparatus and method for non-invasive measurement of body material
CA2080691C (en) Method and apparatus for measuring the concentration of absorbing substances
US8197417B2 (en) Metabolic analyzer transducer
EP2642263A2 (en) Device and method for measuring temperature using infrared array sensors
CA2019571C (en) Method and apparatus for gas analysis
DE59510722D1 (en) Analysis system for monitoring the concentration of an analyte in the blood of a patient
EP1774903A1 (en) Metabolic rate measuring apparatus
US5386833A (en) Method for calibrating a carbon dioxide monitor
FR2614990A1 (en) INFRARED FLUID ANALYZES, IN PARTICULAR A CARBON GAS DETECTOR
WO1988002889A1 (en) Improved multichannel gas analyzer and method of use
JP3273298B2 (en) Carbon dioxide concentration measurement device
JP3273299B2 (en) Carbon dioxide concentration measurement device
US20180206737A1 (en) Dual sensor
US20130292570A1 (en) System and method for performing heater-less lead selenide-based capnometry and/or capnography
US20030023180A1 (en) Respiratory analyzer and method for measuring changes in concentration of a gas component of a breathing gas mixture
JP3273297B2 (en) Carbon dioxide concentration measurement device
EP0729727A2 (en) Capnometer
JP3393354B2 (en) Carbon dioxide concentration measurement device
EP0733341B1 (en) Capnometer
JP4158314B2 (en) Isotope gas measuring device
JP3488971B2 (en) Carbon dioxide concentration measurement device
US5965887A (en) Method and apparatus for monitoring maintenance of calibration condition in respiratory gas spectrometer
JP2004309391A (en) Method and detector for detecting gas concentration

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees