JP3273297B2 - Carbon dioxide concentration measurement device - Google Patents

Carbon dioxide concentration measurement device

Info

Publication number
JP3273297B2
JP3273297B2 JP03723995A JP3723995A JP3273297B2 JP 3273297 B2 JP3273297 B2 JP 3273297B2 JP 03723995 A JP03723995 A JP 03723995A JP 3723995 A JP3723995 A JP 3723995A JP 3273297 B2 JP3273297 B2 JP 3273297B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
concentration
time
light source
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03723995A
Other languages
Japanese (ja)
Other versions
JPH08233807A (en
Inventor
伸二 山森
栄弘 保坂
浩平 大野
正美 伊東
正行 井上
正規 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kohden Corp
Original Assignee
Nihon Kohden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03723995A priority Critical patent/JP3273297B2/en
Application filed by Nihon Kohden Corp filed Critical Nihon Kohden Corp
Priority to EP03021573A priority patent/EP1374768A3/en
Priority to EP96102772A priority patent/EP0729727A3/en
Priority to DE69629510T priority patent/DE69629510T2/en
Priority to EP96102750A priority patent/EP0733341B1/en
Priority to US08/605,845 priority patent/US5728585A/en
Publication of JPH08233807A publication Critical patent/JPH08233807A/en
Priority to US09/112,324 priority patent/US6267928B1/en
Application granted granted Critical
Publication of JP3273297B2 publication Critical patent/JP3273297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、呼気ガス中に含まれる
炭酸ガス濃度を測定する炭酸ガス濃度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the concentration of carbon dioxide contained in exhaled gas.

【0002】[0002]

【従来の技術】一般に、呼気ガス中の炭酸ガス濃度を赤
外線を用いて測定する場合、光検出器を使用し、呼気時
の炭酸ガスによる光の吸収に応じた光量を検出して測定
するが、光源の照射強度の変動、検出部の窓の汚れ等に
よる光量の変化等の光検出器の出力電圧のドリフトを補
正するようにした装置が知られている(特公昭60−4
4614)。
2. Description of the Related Art Generally, when measuring the concentration of carbon dioxide in exhaled gas using infrared rays, a photodetector is used to detect and measure the amount of light corresponding to the absorption of light by the carbon dioxide during exhalation. A device is known which corrects a drift of an output voltage of a photodetector such as a change in irradiation intensity of a light source and a change in light amount due to a stain on a window of a detection unit (Japanese Patent Publication No. Sho 60-4).
4614).

【0003】図9は斯かる従来のドリフト補正装置を備
えた炭酸ガス濃度測定装置の構成を示すものである。図
9において、40は呼吸ガスが通過する接続管で、被検
者が一方を口に加える接続端とし、他方は2つに分岐し
て1つは開放端とされ、1つは被検者の吸気時に空気を
送り込むサーボ通風器41に接続されている。接続管4
0の中間部に一対の光を透過するガラス等の窓41a及
び41bが形成されている。窓41bの下方には光源4
2が配置され、窓41aの上方にはモータMにより回転
駆動される光透過孔を有する光断続器43が配置されて
いる。光断続器43の上方には炭酸ガスにより吸収され
る波長の光のみを吸収するフィルタ44が配置され、フ
ィルタ44の上方に光検出器45が配置されている。4
6は光検出器45の出力電圧を増幅する増幅器、47は
整流器である。48は除算器、49は対数増幅器、50
は記録装置である。また、51はFET(電界効果トラ
ンジスタ)で、サーボ通風器41の出力により吸気期間
導通する。更に52はメモリで、吸気期間の炭酸ガス濃
度「0」に相当する電圧を保持して、除算器48へ出力
する。
FIG. 9 shows a configuration of a carbon dioxide concentration measuring apparatus provided with such a conventional drift correction apparatus. In FIG. 9, reference numeral 40 denotes a connection pipe through which the respiratory gas passes, and the connection pipe is used by the subject to add one to the mouth, the other is branched into two, one is an open end, and one is the subject. Is connected to a servo ventilator 41 that feeds air at the time of air intake. Connection pipe 4
A pair of windows 41a and 41b made of glass or the like that transmit light are formed in the middle part of 0. The light source 4 is provided below the window 41b.
2 is disposed above the window 41a, and an optical interrupter 43 having a light transmitting hole that is driven to rotate by the motor M is disposed above the window 41a. Above the light interrupter 43, a filter 44 that absorbs only light having a wavelength that is absorbed by carbon dioxide is disposed, and above the filter 44, a photodetector 45 is disposed. 4
6 is an amplifier for amplifying the output voltage of the photodetector 45, and 47 is a rectifier. 48 is a divider, 49 is a logarithmic amplifier, 50
Is a recording device. Reference numeral 51 denotes an FET (field effect transistor), which conducts during an intake period by the output of the servo ventilator 41. Further, a memory 52 holds a voltage corresponding to the carbon dioxide concentration “0” during the inspiration period and outputs the voltage to the divider 48.

【0004】斯かる構成において、光源42から照射さ
れた光は、窓41b、接続管40内の呼吸ガスを透過
し、窓41aから光断続器43により断続する光として
フィルタ44を介し炭酸ガス濃度に応じた光量が光検出
器45で検出される。光検出器45の出力信号は指数関
数で与えられ、増幅器46により増幅され、整流器47
により整流される。
In such a configuration, the light emitted from the light source 42 passes through the window 41b and the respiratory gas in the connecting tube 40, and passes through the filter 44 as light intermittently transmitted from the window 41a by the light interrupter 43. Is detected by the photodetector 45. The output signal of the photodetector 45 is given as an exponential function, amplified by the amplifier 46, and output from the rectifier 47.
Is rectified.

【0005】光検出器45の出力には、フィルタ44、
窓41a、41bの汚れによる光量の変化、或いは光源
の42の光強度の変動等のドリフトが含まれる。このた
め、整流器47から出力される出力電圧からドリフト成
分を除去するため、サーボ通風器41から、吸気期間、
FET51に正の信号を出力して導通させ、メモリ52
に炭酸ガス濃度「0」に相当する電圧を保持して除算器
48に出力する。他方、吸気期間の終了時にサーボ通風
器41からの正の信号がなくなるので、FET51はオ
フとなり、整流器47の出力(呼気時の炭酸ガスに応じ
た信号)は除算器48に出力され、メモリ52に保持さ
れた炭酸ガス濃度「0」に相当する電圧により除算され
てドリフト成分が除去され、ゼロ点が較正される。除算
器48の出力は対数増幅器49に出力され、炭酸ガス濃
度に比例した出力信号を得る。
The output of the photodetector 45 includes a filter 44,
Drift such as a change in light amount due to contamination of the windows 41a and 41b or a change in light intensity of the light source 42 is included. Therefore, in order to remove the drift component from the output voltage output from the rectifier 47, the servo ventilator 41 outputs
A positive signal is output to the FET 51 to make it conductive, and the memory 52
The voltage corresponding to the carbon dioxide concentration “0” is held and output to the divider 48. On the other hand, since the positive signal from the servo ventilator 41 disappears at the end of the intake period, the FET 51 is turned off, and the output of the rectifier 47 (the signal corresponding to the carbon dioxide gas at the time of expiration) is output to the divider 48 and the memory 52 The drift component is removed by dividing by the voltage corresponding to the carbon dioxide concentration “0” held in the above, and the zero point is calibrated. The output of the divider 48 is output to a logarithmic amplifier 49 to obtain an output signal proportional to the carbon dioxide concentration.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の光検出器のドリフト補正装置を備えた炭酸ガス濃度
測定装置は、この種の光検出器としては高価なPbSe
を使用している。PbSeは応答速度は速いが、赤外線
を連続照射すると素子自身の温度が上昇し、抵抗値が減
少してドリフトが大きくなるため、呼吸周期に比較して
短い周期、例えば200Hzで連続して断続しながら検
出する必要があり、光断続器及びこれを回転駆動するモ
ータ等の駆動部を配置して、呼吸ガスを透過する光量を
検出するようにしていた。このため、装置の小形化、低
消費電力化、堅牢性に限界がありしかも高価となる不都
合があった。さらに従来の装置ではドリフトを補正する
のに、吸気時のある時点の炭酸ガス濃度「0」に相当す
る電圧を基準としているため、次の基準値を求めるまで
の間に大きなドリフトがあると、次の基準値の用いる時
点で補正後の信号に飛びなどの不連続が生じることとな
ってしまう。従って、本発明は上記課題に鑑み、光検出
器に必要とする光を連続して断続する機構を用いること
なく、検出信号の不連続の少ないドリフト補正及び感度
補正を行うことができる炭酸ガス濃度測定装置を提供す
ることを目的とする。
However, the above-mentioned conventional carbon dioxide gas concentration measuring apparatus provided with the drift correction device of the photodetector is expensive as this type of photodetector.
You are using Although PbSe has a fast response speed, the temperature of the element itself rises when infrared rays are continuously radiated, the resistance value decreases, and the drift increases. Therefore, it is intermittently shorter than the respiratory cycle, for example, 200 Hz. It is necessary to detect the amount of light transmitted through the respiratory gas by arranging a drive unit such as an optical interrupter and a motor for rotating the optical interrupter. For this reason, there is a problem that the size of the device is reduced, the power consumption is reduced, the robustness is limited, and the device is expensive. Further, in the conventional device, the drift is corrected based on the voltage corresponding to the carbon dioxide concentration “0” at a certain point in time during inhalation. Therefore, if there is a large drift before the next reference value is obtained, At the time when the next reference value is used, discontinuity such as jump occurs in the corrected signal. Accordingly, the present invention has been made in view of the above-described problems, and therefore, it is possible to perform drift correction and sensitivity correction with less discontinuity of a detection signal without using a mechanism for continuously interrupting light required for a photodetector. It is an object to provide a measuring device.

【0007】[0007]

【課題を解決するための手段】請求項1に係る本発明の
炭酸ガス濃度測定装置は、呼吸ガスに赤外線を照射し、
透過量に応じた信号を検出して炭酸ガス濃度を測定する
炭酸ガス濃度測定装置において、赤外線の透過量を検出
する熱検出器と、光源をオン/オフさせるスイッチ手段
SWと、熱検出器の検出信号から、現在の吸気時の最大
値を検出して記憶させ、現在と直前の吸気時の最大値と
を結ぶ直線を算定し、次の吸気時の最大値を検出するま
で延長した補正直線を求め、現在の最大値検出時点に続
く検出信号と補正直線との差を算定し、時系列的に変化
する濃度信号を求めるドリフト補正手段と、光源を瞬時
オフさせてオフ時の検出信号の最小値を検出し、記憶さ
れている最大値との差を算定して炭酸ガス濃度「0」で
その時点の最大受光量における基準値として記憶させ、
この基準値と上記濃度信号の比を算定して感度補正した
濃度成分を求める感度補正手段とを備え、この濃度成分
に基づき炭酸ガス濃度を求める制御手段と、最大値及び
上記基準値を記憶する記憶手段とを具える。
According to a first aspect of the present invention, there is provided a carbon dioxide concentration measuring apparatus which irradiates a respiratory gas with infrared rays.
In a carbon dioxide concentration measuring device for measuring a carbon dioxide concentration by detecting a signal corresponding to a transmission amount, a heat detector for detecting an infrared transmission amount, switch means SW for turning on / off a light source, and a heat detector From the detection signal, the current maximum value at the time of intake is detected and stored, a straight line connecting the current value and the maximum value at the time of the immediately preceding intake is calculated, and a correction straight line extended until the maximum value at the next intake is detected. Drift correction means for calculating the difference between the detection signal following the current maximum value detection time and the correction straight line, and calculating the concentration signal that changes in time series, and the light source is momentarily turned off to detect the off-state detection signal. Detect the minimum value, calculate the difference from the stored maximum value, and store it as the reference value at the maximum received light amount at that time with the carbon dioxide concentration “0”,
A sensitivity correcting means for calculating a ratio between the reference value and the density signal to obtain a density component corrected for sensitivity; a control means for obtaining a carbon dioxide gas concentration based on the density component; and storing a maximum value and the reference value. Storage means.

【0008】請求項2に係る発明は、請求項1記載の炭
酸ガス濃度測定装置において、光源を呼吸周期よりも長
い所定周期でオフにする。
According to a second aspect of the present invention, in the carbon dioxide concentration measuring device according to the first aspect, the light source is turned off at a predetermined cycle longer than the respiratory cycle.

【0009】請求項3に係る発明は、請求項1記載の炭
酸ガス濃度測定装置において、光源を吸気に同期させて
オフにする。
According to a third aspect of the present invention, in the carbon dioxide concentration measuring apparatus according to the first aspect, the light source is turned off in synchronization with the intake.

【0010】請求項4に係る発明は、請求項1〜3いず
れか記載の炭酸ガス濃度測定装置において、隣接する吸
気時に検出される夫々の最大値の差が所定値を越えた場
合に光源をオフにする。
According to a fourth aspect of the present invention, in the carbon dioxide concentration measuring apparatus according to any one of the first to third aspects, when the difference between the maximum values detected at the time of adjacent intake exceeds a predetermined value, the light source is switched off. Turn off.

【0011】[0011]

【作用】請求項1に係る発明では、呼吸ガスを透過した
赤外線量を熱検出器により検出し、その検出信号から現
在の吸気時の最大値を検出して記憶手段に記憶させる。
現在と直前の吸気時の最大値とを結ぶ直線を算定して補
正直線を求め、次の吸気時の最大値が検出されるまで延
長する。現在の吸気時の最大値検出時点に続く検出信号
と補正直線との差を算定し、時系列的に変化する濃度信
号を求めてドリフト補正を行う。次に、光源を瞬時オフ
させ、オフ時の検出信号の最小値を検出し、記憶されて
いる最大値との差を算定して基準値を求めて記憶手段に
記憶させ、記憶された基準値と濃度信号との比を算定し
て感度補正した濃度成分を求め、補正された濃度成分か
ら炭酸ガス濃度を求め表示を行う。
According to the first aspect of the present invention, the amount of infrared light transmitted through the respiratory gas is detected by the heat detector, and the maximum value at the time of current inspiration is detected from the detection signal and stored in the storage means.
A straight line connecting the current value and the maximum value at the time of the immediately preceding intake is calculated to obtain a correction straight line, which is extended until the maximum value at the next intake is detected. The difference between the detection signal following the maximum value detection time at the time of the current intake and the correction straight line is calculated, and the concentration correction signal that changes in time series is obtained to perform drift correction. Next, the light source is turned off instantaneously, the minimum value of the detection signal at the time of off is detected, the difference from the stored maximum value is calculated, a reference value is obtained and stored in the storage means, and the stored reference value is stored. Then, the ratio of the concentration signal to the concentration signal is calculated to determine the concentration component for which the sensitivity has been corrected, and the carbon dioxide gas concentration is determined from the corrected concentration component and displayed.

【0012】請求項2に係る発明では、光源を予め定め
た呼吸周期よりも長い一定の周期でオフにする。
In the invention according to claim 2, the light source is turned off at a constant cycle longer than a predetermined respiratory cycle.

【0013】請求項3に係る発明では、光源を吸気に同
期させてオフにする。
In the invention according to claim 3, the light source is turned off in synchronization with the intake air.

【0014】[0014]

【実施例】以下、図面を参照して本発明の炭酸ガス濃度
測定装置の実施例について説明する。図1は、本発明の
実施例の構成を示すブロック図である。図2は、図1の
実施例の炭酸ガス濃度算定の処理を示すフローチャート
である。図3は、ドリフトしている検出信号に補正直線
で補正を行う説明図である。図4は、感度変化した検出
信号に対する感度補正の説明図である。図5は、図1の
実施例において、一定周期で光源をオフする説明図であ
る。図6は、図1の実施例において、吸気時の検出信号
に同期して光源をオフする説明図である。図7は、図1
の実施例において、隣接する吸気時の最大値が所定値を
越えた場合に光源をオフにする説明図である。図8は、
図1の実施例により得られる炭酸ガス濃度の波形図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a carbon dioxide concentration measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the embodiment of the present invention. FIG. 2 is a flowchart showing a process of calculating the concentration of carbon dioxide in the embodiment of FIG. FIG. 3 is an explanatory diagram for correcting a drifting detection signal with a correction straight line. FIG. 4 is an explanatory diagram of sensitivity correction for a detection signal having changed sensitivity. FIG. 5 is an explanatory diagram in which the light source is turned off at regular intervals in the embodiment of FIG. FIG. 6 is an explanatory diagram of turning off the light source in synchronization with the detection signal at the time of intake in the embodiment of FIG. FIG. 7 shows FIG.
FIG. 13 is an explanatory diagram for turning off the light source when the maximum value at the time of adjacent intake exceeds a predetermined value in the embodiment of FIG. FIG.
FIG. 2 is a waveform diagram of a carbon dioxide concentration obtained by the embodiment of FIG. 1.

【0015】実施例の説明に先立ち、本発明の原理につ
いて説明する。本発明は、呼気ガス中の炭酸ガス濃度に
応じて変化する熱量を検出する熱検出器としてサーモパ
イル(米国デクスターリサーチセンタ社製S60など)
を使用した。サーモパイルは、従来使用されているPb
Seに比較してドリフトが少なくしかも安価であるが、
特有の性質があり、この特性に対応して用いることが要
求される。即ち、炭酸ガス濃度測定装置に必要な応答速
度は200ms以下であるが、サーモパイルの応答速度
が50ms〜200msと遅いため、従来の如く光源の
光をチョッピングする方式では、200ms以下の応答
速度を達成するのは困難である。
Prior to the description of the embodiments, the principle of the present invention will be described. The present invention provides a thermopile (such as S60 manufactured by Dexter Research Center, USA) as a heat detector that detects the amount of heat that changes according to the concentration of carbon dioxide in exhaled gas.
It was used. The thermopile is a conventional Pb
Less drift compared to Se and inexpensive,
It has a unique property and is required to be used in accordance with this property. That is, the response speed required for the carbon dioxide concentration measurement device is 200 ms or less, but the response speed of the thermopile is as slow as 50 ms to 200 ms, so that the response speed of 200 ms or less is achieved by the conventional method of chopping the light from the light source. It is difficult to do.

【0016】しかしながら、例えば光源の赤外線量の変
化、呼気ガス検出部の窓の曇り又は汚れ、サーモパイル
自体の構造により、検出信号にドリフトが発生する。こ
の内、サーモパイル自体の構造による検出信号のドリフ
トは、使用環境温度の変化に伴って生じるので補正が必
要となる。即ち、サーモパイルは温接点と冷接点を有
し、この両接点間の熱時定数の違いにより検出信号にド
リフトが発生する。周囲温度の急激な変化に対して熱容
量の小さい温接点は速かに応答するが、容器に熱的に接
触している冷接点は熱容量が大きいため、温接点より応
答が遅れる。このため、温接点と冷接点間の温度差に応
じて出力される信号を検出する際、冷接点が熱的に周囲
温度と平衡に達するまでドリフトが生じることになる。
However, a drift occurs in the detection signal due to, for example, a change in the amount of infrared light of the light source, fogging or contamination of the window of the exhaled gas detector, and the structure of the thermopile itself. Of these, the drift of the detection signal due to the structure of the thermopile itself occurs with a change in the use environment temperature, and thus needs to be corrected. That is, the thermopile has a hot junction and a cold junction, and the detection signal drifts due to a difference in thermal time constant between the two junctions. A hot junction having a small heat capacity responds quickly to a rapid change in the ambient temperature, but a cold junction in thermal contact with the container has a large heat capacity, and thus has a slower response than the hot junction. Therefore, when detecting a signal output according to the temperature difference between the hot junction and the cold junction, drift occurs until the cold junction thermally reaches equilibrium with the ambient temperature.

【0017】また、呼気ガス検出部の窓の曇り或いは汚
れにより、透過光量が低下してサーモパイルの出力感度
が変化するので、測定した炭酸ガス濃度も変化し、安定
した測定ができない。
[0017] Further, since the amount of transmitted light is reduced due to fogging or dirt on the window of the exhaled gas detection unit and the output sensitivity of the thermopile changes, the measured carbon dioxide gas concentration also changes and stable measurement cannot be performed.

【0018】従って、サーモパイルを使用するためには
検出信号のドリフト及び出力感度による変動を補正した
上で、炭酸ガス濃度を測定する必要がある。
Therefore, in order to use the thermopile, it is necessary to correct the drift of the detection signal and the fluctuation due to the output sensitivity before measuring the carbon dioxide concentration.

【0019】本発明では、急激な温度変化に伴い、サー
モパイルの構造に起因して検出信号にドリフトが発生し
た場合、或いは検出部の窓の曇りや光源の光量変動に伴
うサーモパイルの出力感度が変化した場合、ドリフト補
正及び感度補正を行うようにした。
In the present invention, when the detection signal drifts due to the structure of the thermopile due to a rapid temperature change, or when the output sensitivity of the thermopile changes due to fogging of the window of the detection unit or fluctuation of the light amount of the light source. In this case, drift correction and sensitivity correction are performed.

【0020】通常は、サーモパイルの出力において、各
吸気毎の最大値を検出して記憶させ、各呼気毎の炭酸ガ
スにより低下した呼気期間における出力値を検出し、最
大値と呼気時の出力値との差を算定して濃度信号を求
め、ドリフト補正を行う。しかし、このドリフト補正で
は、吸気時の最大値を認識する時点でドリフトが大きい
場合、前後の吸気時の最大値の差も大きくなり、不連続
となることがある。従って、本発明では、この欠点を低
減させるために、吸気時の最大値の変動を直線で近似し
て不連続の変化分を減少させるようにした。
Normally, in the output of the thermopile, the maximum value for each inspiration is detected and stored, and the output value in the expiration period reduced by the carbon dioxide gas for each expiration is detected, and the maximum value and the output value at the time of expiration are detected. Is calculated, a density signal is obtained, and drift correction is performed. However, in this drift correction, if the drift is large at the time of recognizing the maximum value at the time of intake, the difference between the maximum values at the time of intake before and after the intake becomes large, which may be discontinuous. Therefore, in the present invention, in order to reduce this drawback, the variation of the maximum value at the time of intake is approximated by a straight line to reduce the discontinuous variation.

【0021】図3に、検出信号のドリフトに対する補正
直線を示す。即ち、吸気時の各最大値検出点A、B、
C、Dを夫々直線で結び、破線で示すように次の吸気時
の最大値を検出するまで延長し、この補正直線と最大値
検出時点に続く呼気時の出力値との差を計算し、時系列
的に変化する濃度信号を求めるものである。
FIG. 3 shows a correction straight line for the drift of the detection signal. That is, the maximum value detection points A, B,
C and D are each connected by a straight line, and are extended until the maximum value at the time of the next inhalation is detected as shown by the broken line, and the difference between this correction straight line and the output value at the time of expiration following the maximum value detection time is calculated, This is for obtaining a density signal that changes in a time series.

【0022】また、補正直線は次のようにして求める。
図3において、2点間を結ぶ直線は、2点間の最大値の
差をv、2点間の時間差をとして、直線の算定式v=a
tをメモリに記憶させておくことにより計算できる。例
えばB点とC点を結ぶ直線は、吸気時の2つの最大値が
検出されるので、それらの値を記憶しておき、水平方向
の距離をB点とC点との時間差t、垂直方向の距離をB
点と点の最大値の差vが計算できるので、勾配aは(2
点間の最大値の差v)/(2点間の時間差t)となり、
補正直線を求めることができる。
The correction straight line is obtained as follows.
In FIG. 3, a straight line connecting two points is represented by v = a, where v is the maximum value difference between the two points and v is the time difference between the two points.
It can be calculated by storing t in a memory. For example, as for the straight line connecting the points B and C, two maximum values during inhalation are detected, and those values are stored, and the distance in the horizontal direction is determined by the time difference t between the points B and C, the vertical direction. Distance of B
Since the difference v between points and the maximum value of points can be calculated, the gradient a is (2
The difference v) of the maximum value between the points / (the time difference t between the two points),
A correction straight line can be obtained.

【0023】また、感度補正を行う場合は、以下のよう
にして行う。光源を瞬時にオフ/オンさせ、オフ直前の
吸気時のサーモパイルの最大値を検出して記憶保持し、
光源をオフにした時のサーモパイルの最小値を検出す
る。これら最大値と最小値との差を炭酸ガス濃度「0」
で且つその時点の最大光量としての基準値として求め記
憶保持する。この基準値は、光源をオフ/オンする毎に
求めて更新する。
The sensitivity correction is performed as follows. The light source is turned off / on instantly, and the maximum value of the thermopile at the time of intake just before the off is detected and stored.
The minimum value of the thermopile when the light source is turned off is detected. The difference between these maximum and minimum values is defined as the carbon dioxide concentration "0".
And a reference value as the maximum light quantity at that time is obtained and stored. This reference value is obtained and updated each time the light source is turned off / on.

【0024】また、既に求めて記憶された基準値と各呼
気毎に得られる濃度信号との比を算定して濃度信号の感
度補正を行い濃度成分を求め、この濃度成分に基づいて
炭酸ガス濃度を算定する。この基準値と濃度信号との比
は、例えばサーモパイルが窓の汚れにより急激な光量変
化を受けて検出信号が低下した場合にも炭酸ガス濃度が
同じであれば一定である。従って、炭酸ガス濃度の測定
中、光源をオフ/オンすることにより、サーモパイルの
出力感度が変化した場合でも、基準値を求めて濃度信号
との比を算定し、この比に基づいて濃度信号の感度補正
を行い濃度成分を求め、その濃度成分により炭酸ガス濃
度を求めることができるので、安定した測定を行うこと
ができる。
Further, the ratio between the previously obtained and stored reference value and the concentration signal obtained for each exhalation is calculated, the sensitivity of the concentration signal is corrected, the concentration component is determined, and the carbon dioxide gas concentration is determined based on the concentration component. Is calculated. The ratio between the reference value and the concentration signal is constant, for example, even when the detection signal decreases due to a sudden change in the amount of light due to the dirt on the window of the thermopile, provided that the carbon dioxide gas concentration is the same. Therefore, even if the output sensitivity of the thermopile changes by turning off / on the light source during the measurement of the carbon dioxide gas concentration, the reference value is obtained and the ratio with the concentration signal is calculated. Since the sensitivity correction is performed to determine the concentration component and the carbon dioxide concentration can be determined from the concentration component, stable measurement can be performed.

【0025】図4により、上記原理によるサーモパイル
の検出信号の感度補正を行う場合について説明する。光
源のオフ直前の吸気時のA点の最大値Vaを検出してメ
モリに記憶させ、光源をオフにした時のサーモパイルの
オフセット電圧である最小値Vbを検出する。次に、最
大値Vaと最小値Vbとの差を、炭酸ガス濃度「0」で
且つその時点の最大受光量における基準値Voとして
(Va−Vb)により求め記憶保持しておく。
Referring to FIG. 4, a case in which the sensitivity of the detection signal of the thermopile is corrected based on the above principle will be described. The maximum value Va at point A at the time of intake immediately before the light source is turned off is detected and stored in the memory, and the minimum value Vb, which is the offset voltage of the thermopile when the light source is turned off, is detected. Next, the difference between the maximum value Va and the minimum value Vb is determined as (Va-Vb) as the reference value Vo at the carbon dioxide gas concentration "0" and the maximum amount of received light at that time, and is stored.

【0026】次に、現在の吸気時の点Cにおける最大値
Vcを検出すると共に続く呼気時の炭酸ガスにより減少
した点Dにおける出力値Vdを検出する。最大値Vcと
出力値Vdとの差を算定して濃度信号Vxを(Vc−V
d)から求める。
Next, the maximum value Vc at the point C during the current inspiration is detected, and the output value Vd at the point D reduced by the carbon dioxide gas during the subsequent expiration is detected. The difference between the maximum value Vc and the output value Vd is calculated, and the density signal Vx is calculated as (Vc−V
Determined from d).

【0027】そして、記憶された基準値Vo及び各呼気
毎に算定される濃度信号Vxの比(Vx/Vo)を求
め、この比に基づいて濃度信号の感度補正を行って濃度
成分を求め、その濃度成分により炭酸ガス濃度を算定す
る。
Then, a ratio (Vx / Vo) of the stored reference value Vo and the density signal Vx calculated for each exhalation is obtained, and the density component is obtained by performing sensitivity correction of the density signal based on this ratio. The carbon dioxide concentration is calculated from the concentration component.

【0028】また、窓の汚れ等による光量が低下してサ
ーモパイルの出力感度が低下した場合にも同様にして濃
度成分を求めることができる。即ち、受光量が変化して
サーモパイルの出力が低下した場合、吸気時のサーモパ
イルのE点の最大値Veを検出して記憶し、及び光源が
オフになった時のF点におけるサーモパイルのオフセッ
ト電圧である最小値Vfを夫々検出し、炭酸ガス濃度
「0」で且つその時点の最大光量における基準値V01
(Ve−Vf)より求めて記憶させておく。吸気時のG
点の最大値Vg及び続く呼気時の炭酸ガスによる減少点
Hの出力値Vhを検出して、濃度信号Vx1を(Vg−V
h)から求める。そして、基準値V01と濃度信号Vx1と
の比Vx1/V01を算定して、この比により濃度信号を感
度補正して濃度成分を求め、この濃度成分に基づいて炭
酸ガス濃度を計算する。
The density component can be obtained in the same manner when the output sensitivity of the thermopile decreases due to a decrease in the amount of light due to a stain on the window or the like. That is, when the amount of received light changes and the output of the thermopile decreases, the maximum value Ve of the point E of the thermopile during intake is detected and stored, and the offset voltage of the thermopile at the point F when the light source is turned off. Are detected, and the reference value V01 at the maximum light quantity at the time when the carbon dioxide concentration is "0" is detected.
(Ve−Vf) and stored. G during inspiration
The maximum value Vg of the point and the output value Vh of the decrease point H due to the carbon dioxide gas at the time of subsequent exhalation are detected, and the concentration signal Vx1 is calculated as (Vg-V
h). Then, a ratio Vx1 / V01 between the reference value V01 and the concentration signal Vx1 is calculated, the sensitivity of the concentration signal is corrected based on the ratio, a concentration component is obtained, and a carbon dioxide gas concentration is calculated based on the concentration component.

【0029】上述したように、受光量が低下した場合で
も、炭酸ガス濃度が同じときの基準値と濃度信号の比は
一定、即ち、Vx/V0 =Vx1/V01(図4)であるか
ら、光源をオフ/オンして基準値と濃度信号との比を求
め、この比により濃度信号を感度補正して濃度成分を求
め、この濃度成分に基づいて炭酸ガス濃度を算定するこ
とができる。即ち、この比を求めることにより、サーモ
パイルの出力が光量の変化等により出力感度が変化して
も正確な炭酸ガス濃度を求めることができる。
As described above, even when the amount of received light decreases, the ratio between the reference value and the concentration signal when the carbon dioxide gas concentration is the same is constant, that is, Vx / V0 = Vx1 / V01 (FIG. 4). The light source is turned on / off to obtain a ratio between the reference value and the density signal, and the density signal is sensitivity-corrected based on the ratio to obtain a density component, and the carbon dioxide gas concentration can be calculated based on the density component. That is, by obtaining this ratio, an accurate carbon dioxide gas concentration can be obtained even if the output of the thermopile changes in output sensitivity due to a change in light amount or the like.

【0030】図1において、Tは呼気ガス及び吸気ガス
が流通する通気管で、所定位置の対向する部分にサファ
イア等の透明部材より成る窓W1及びW2が形成されて
いる。通気管Tは、一方の端部(図の左)が被検者の口
に挿入される挿入端となり、他方の端部(図の右側)が
大気中への開放端となる。窓W1及びW2には、呼気ガ
ス中の水蒸気等による曇りを防止する防曇加工が施され
ている。窓W1の上方付近にはランプ等の光源1が配置
され、窓W1へ光を照射する。また、窓W2の下方付近
には、前述したサーモパイルから成る熱検出器2が配置
され、光源1から、窓W1及びW2を透過して照射され
る赤外線を検出する。また、熱検出器2の受光面には、
呼気ガス中の炭酸ガスにより吸収される波長(およそ
4.3μm)のフィルタFが配置されている。
In FIG. 1, T is a ventilation pipe through which exhaled gas and inspired gas flow, and windows W1 and W2 made of a transparent member such as sapphire are formed at opposing portions at predetermined positions. One end (left side in the figure) of the ventilation tube T is an insertion end to be inserted into the mouth of the subject, and the other end (right side in the figure) is an open end to the atmosphere. The windows W1 and W2 are subjected to anti-fogging processing for preventing fogging due to water vapor or the like in the exhaled gas. A light source 1 such as a lamp is arranged near the upper portion of the window W1 and irradiates the window W1 with light. A heat detector 2 made of the above-mentioned thermopile is arranged near the lower portion of the window W2, and detects infrared rays transmitted from the light source 1 through the windows W1 and W2. Also, on the light receiving surface of the heat detector 2,
A filter F having a wavelength (about 4.3 μm) that is absorbed by carbon dioxide in the exhaled gas is provided.

【0031】3は、例えば定電流回路から成る光源駆動
部で、スイッチSWによりオン/オフされる。スイッチ
SWは、例えばトランジスタ等の半導体スイッチで構成
され、後述する制御部6から出力される制御信号により
オフ/オン制御される。
Reference numeral 3 denotes a light source driving unit formed of, for example, a constant current circuit, which is turned on / off by a switch SW. The switch SW is composed of, for example, a semiconductor switch such as a transistor, and is turned off / on by a control signal output from a control unit 6 described later.

【0032】4は熱検出器2の検出信号を増幅する増幅
器(例えば対数増幅器)、5は増幅器4の出力をデジタ
ル信号に変換するアナログ−デジタル変換器である。上
述した制御部6は、例えばCPUから成り、後述するR
OM9に記憶された炭酸ガス濃度の測定を行う制御プロ
グラムに基づき装置の制御を行う。
Reference numeral 4 denotes an amplifier (for example, a logarithmic amplifier) for amplifying the detection signal of the heat detector 2, and reference numeral 5 denotes an analog-digital converter for converting the output of the amplifier 4 into a digital signal. The control unit 6 includes, for example, a CPU.
The apparatus is controlled based on a control program for measuring the concentration of carbon dioxide stored in the OM 9.

【0033】7は、例えば複数の押しボタンより成る操
作部で、光源1のオン/オフの周期期間や熱検出器2の
出力の判定に対する設定値等のパラメータの設定、所要
データの設定等を行う。
Reference numeral 7 denotes an operation unit including, for example, a plurality of push buttons. The operation unit 7 sets parameters such as a set period for ON / OFF cycle period of the light source 1 and an output judgment of the heat detector 2, and sets required data. Do.

【0034】8はRAMで、設定されたパラメータ、熱
検出器2の吸気時に検出される最大値、光源オフ時に算
定される基準値、測定された炭酸ガス濃度のデータ等を
一時的に記憶保持する。9はROMで、前述の本発明の
原理による熱検出器2の検出信号に対してドリフト補正
及び感度補正を行って炭酸ガス濃度の測定を自動的に行
う制御プログラムが予め記憶されている。
Reference numeral 8 denotes a RAM which temporarily stores and holds set parameters, a maximum value detected when the heat detector 2 is inhaled, a reference value calculated when the light source is turned off, measured carbon dioxide concentration data, and the like. I do. Reference numeral 9 denotes a ROM in which a control program for automatically performing the drift correction and the sensitivity correction on the detection signal of the heat detector 2 according to the principle of the present invention and automatically measuring the carbon dioxide gas concentration is stored in advance.

【0035】10は、例えば複数のLED(発光ダイオ
ード)等の発光素子又はブザー等の音響素子から成る表
示部で、測定された炭酸ガス濃度を濃度変化に応じたバ
ーグラフ表示を行い、又はブザーにより濃度変化に応じ
た変調音を報知する。或いはLED及びブザーを両方備
えることもできる。両者を装備することにより、視覚及
び聴覚いずれでも被検者の呼吸状態を監視することがで
きる。
Reference numeral 10 denotes a display unit comprising, for example, a plurality of light emitting elements such as LEDs (light emitting diodes) or an acoustic element such as a buzzer, for performing a bar graph display of the measured carbon dioxide gas concentration in accordance with a change in the concentration, or a buzzer. To notify a modulated sound corresponding to the density change. Alternatively, both an LED and a buzzer can be provided. By equipping both, it is possible to monitor the respiratory state of the subject both visually and audibly.

【0036】次に上述の構成において、図2のフローチ
ャートにより動作を説明する。測定開始時には電源スイ
ッチ(図示せず)投入と同時に光源1がオンとされる
(ステップS1)。被検者の口に挿入された通気管Tの
挿入端を介して出入する呼吸に伴う炭酸ガスの濃度変化
による透過光を熱検出器2で受光し、熱検出器2の検出
信号が大きくなった時点を吸気と認識し、検出信号から
吸気時の熱検出器2の最大値を検出してRAM8に記憶
する(ステップS2)。最大値は、熱検出器2の検出信
号を、例えば時間軸で前後のデータの差分値を算定する
ことにより検出できる。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG. At the start of the measurement, the light source 1 is turned on simultaneously with turning on a power switch (not shown) (step S1). The transmitted light due to the change in the concentration of carbon dioxide gas accompanying the respiration entering and exiting through the insertion end of the ventilation tube T inserted into the subject's mouth is received by the heat detector 2, and the detection signal of the heat detector 2 increases. The maximum value of the heat detector 2 at the time of intake is detected from the detection signal and stored in the RAM 8 (step S2). The maximum value can be detected by calculating a difference value between data before and after the detection signal of the heat detector 2 on the time axis, for example.

【0037】現在と直前の吸気時の最大値を結ぶ直線を
算定し、次の吸気時の最大値を検出するまでこの直線を
延長して補正直線とする(ステップS3)。
A straight line connecting the current and previous maximum values during the intake is calculated, and this straight line is extended until a maximum value during the next intake is detected to be a correction straight line (step S3).

【0038】現在の吸気時の最大値検出時点に続く検出
信号から呼気時の出力値を検出し、ステップS3で求め
た補正直線からの差を計算して時系列的に変化する濃度
信号を求める(ステップS4)。
The output value at the time of expiration is detected from the detection signal subsequent to the current maximum value detection time at the time of inspiration, and the difference from the correction straight line obtained at step S3 is calculated to obtain a time-varying density signal. (Step S4).

【0039】次に、光源1を瞬時オフにし(ステップS
5)、熱検出器2の光源オフ時の最小値とオフ直前の吸
気時の最大値との差を求めて、炭酸ガス濃度が「0」で
且つその時点の最大受光量における基準値として記憶す
る(ステップS6)。この基準値と呼気時の濃度信号と
の比を算定して濃度信号の感度補正を行って補正された
濃度成分を求め(ステップS7)、この濃度成分に基づ
いて炭酸ガス濃度を算定し、表示装置10に濃度データ
を送り表示する(ステップS8)。表示する場合、表示
装置10を従来のバーグラフ表示装置で構成した場合、
図8に示す炭酸ガス濃度波形に応じたバーグラフの長さ
の変化として表示される。
Next, the light source 1 is momentarily turned off (step S).
5) Find the difference between the minimum value of the heat detector 2 when the light source is off and the maximum value at the time of inhalation immediately before the light source is off, and store it as a reference value for the carbon dioxide concentration of “0” and the maximum amount of light received at that time. (Step S6). The ratio between the reference value and the concentration signal at the time of expiration is calculated, and the sensitivity of the concentration signal is corrected to obtain a corrected concentration component (step S7). Based on this concentration component, the carbon dioxide gas concentration is calculated and displayed. The density data is sent to the device 10 and displayed (step S8). When displaying, when the display device 10 is configured by a conventional bar graph display device,
It is displayed as a change in the length of the bar graph according to the carbon dioxide gas concentration waveform shown in FIG.

【0040】このようにして、上述した実施例は、熱検
出器2を使用し、吸気時の最大値を結ぶ補正直線を次の
吸気時の最大値を検出するまで延長して、この補正直線
から続く呼気時の出力値の差を算定して濃度信号を求め
るドリフト補正を行い、且つ光源を瞬時にオフさせ、そ
の時の最小値と直前の吸気時の最大値との差を基準値と
し、この基準値と濃度成分の比による感度補正を行いな
がら炭酸ガス濃度を算定するようにしたので、正確で安
定した炭酸ガス濃度を得ることができる。
As described above, in the embodiment described above, the correction straight line connecting the maximum value during intake using the heat detector 2 is extended until the maximum value during the next intake is detected. Calculate the difference of the output value at the time of the following expiration and perform drift correction to obtain the concentration signal, and turn off the light source instantly, and use the difference between the minimum value at that time and the maximum value at the time of the last inspiration as a reference value, Since the carbon dioxide concentration is calculated while performing the sensitivity correction based on the ratio between the reference value and the concentration component, an accurate and stable carbon dioxide concentration can be obtained.

【0041】上記図2のフローチャートは、光源を任意
にオフ/オンさせているが、図5に示すように、光源を
一定の周期Tでオフさせるようにしてもよい。周期T
は、ROM9に予め設定して記憶させておくか、操作部
7を介して設定するかのいずれでもよい。周期Tを予め
設定しておくことにより、自動的に熱検出器2の検出信
号の補正が可能となる。所定周期は、例えば30秒或い
は1分毎等、周囲温度の状況に応じて設定できる。
Although the light source is arbitrarily turned off / on in the flowchart of FIG. 2, the light source may be turned off at a constant cycle T as shown in FIG. Period T
May be set in advance in the ROM 9 and stored, or may be set via the operation unit 7. By setting the cycle T in advance, the detection signal of the heat detector 2 can be automatically corrected. The predetermined period can be set according to the ambient temperature, for example, every 30 seconds or every minute.

【0042】また、図6に示すように、光源1のオフの
周期は、例えば複数の吸気毎或いは1呼吸(吸気及び呼
気)毎でもよい。呼吸数はROM9に予め設定して記憶
させておくか、操作部7を介して設定するかいずれかを
とることができる。図5に示した一定周期で光源をオフ
にすると呼気時にオフとなることがあり、この時の吸気
に同期させることにより基準値V0 が正確に計測され、
測定がより高精度になる。
As shown in FIG. 6, the cycle of turning off the light source 1 may be, for example, for each of a plurality of inspirations or for each respiration (inspiration and expiration). The respiration rate can be set in advance in the ROM 9 and stored, or can be set via the operation unit 7. When the light source is turned off at a constant cycle shown in FIG. 5, the light source may be turned off at the time of expiration, and the reference value V0 is accurately measured by synchronizing with the inspiration at this time,
Measurement becomes more accurate.

【0043】更に、図7に示すように、熱検出器2の検
出信号のドリフトに対して所定値を設定し、この所定値
を越えた場合に光源を瞬時オフするようにしても良い。
所定値は、例えば直前及び現在の吸気時の夫々の最大値
の差との差が、例えば4mmHgを越えると光源をオフと
する。図7において、吸気時の最大値P1とP2及びP
3とP4間が所定値を越えたものとして光源1をオフに
している。上記図5及び図6と同様に、所定値は、例え
ば操作部7を介して設定し、或いは予めROM9に記憶
された値を読み出し、制御部6によりこの所定値を監視
して光源1のオフ動作を制御する。所定値を設定するこ
とにより、周囲温度の変動の激しい環境での測定が確実
にしかも安定して行える。
Further, as shown in FIG. 7, a predetermined value may be set for the drift of the detection signal of the heat detector 2, and the light source may be turned off instantaneously when the predetermined value is exceeded.
The light source is turned off when the difference between the predetermined value and the difference between the maximum value at the time of the last intake and the current intake value, for example, exceeds 4 mmHg. In FIG. 7, the maximum values P1, P2 and P
The light source 1 is turned off on the assumption that the distance between 3 and P4 exceeds a predetermined value. 5 and 6, the predetermined value is set, for example, via the operation unit 7, or a value stored in the ROM 9 is read in advance, and the predetermined value is monitored by the control unit 6 to turn off the light source 1. Control behavior. By setting the predetermined value, measurement in an environment where the ambient temperature fluctuates greatly can be performed reliably and stably.

【0044】[0044]

【発明の効果】以上説明したように請求項1記載の本発
明の炭酸ガス濃度測定装置によれば、サーモパイルから
成る熱検出器を用いることにより、従来の光検出器に必
要なチョッパ(光断続器)やこれを回転駆動するモータ
等の機構部品が不要となるので、装置の小形化が容易と
なり、堅牢性も向上すると共に安価に構成できる利点が
ある。さらに任意の時点で光源をオン/オフさせて感度
補正が可能となる。
As described above, according to the carbon dioxide concentration measuring apparatus of the first aspect of the present invention, the use of a heat detector composed of a thermopile makes it possible to use a chopper (light intermittent) required for a conventional photodetector. This eliminates the need for a mechanical component such as a device and a motor for rotating the device, so that the size of the device can be easily reduced, the robustness can be improved, and the device can be configured at low cost. Further, the sensitivity can be corrected by turning on / off the light source at an arbitrary time.

【0045】また、ドリフト補正及び感度補正の両方を
行うことができるので、周囲温度の急激な変化に伴う検
出信号のドリフトや窓の曇り等による出力感度の変化に
対しても確実にしかも安定した炭酸ガス濃度の測定がで
きる。
Further, since both drift correction and sensitivity correction can be performed, the output signal can be reliably and stably protected against a drift in the detection signal due to a rapid change in the ambient temperature and a change in output sensitivity due to clouding of the window. Carbon dioxide concentration can be measured.

【0046】請求項2記載の本発明によれば、光源を所
定周期毎に自動的にオフ/オンさせることにより、周囲
温度の急激な変動に伴う出力のドリフトや窓の曇り等に
よる出力感度の変化を速やかに補正でき、安定した且つ
正確な炭酸ガス濃度の測定ができる。
According to the second aspect of the present invention, the light source is automatically turned off / on at predetermined intervals, so that output drift due to a rapid change in the ambient temperature and output sensitivity due to fogging of a window or the like are reduced. The change can be quickly corrected, and stable and accurate measurement of the carbon dioxide concentration can be performed.

【0047】請求項3記載の本発明によれば、周囲温度
の変動や通気管の窓の曇り等に伴う熱検出器の感度変化
があっても高精度にドリフト補正できる。
According to the third aspect of the present invention, drift correction can be performed with high accuracy even if there is a change in the sensitivity of the heat detector due to a change in the ambient temperature or fogging of the window of the ventilation pipe.

【0048】請求項4記載の本発明によれば、熱検出器
の検出信号が予め定めた設定値を越えた場合に光源をオ
フするようにしたので、周囲温度変動の激しい環境でも
安定した炭酸ガス濃度の測定が可能となる。
According to the fourth aspect of the present invention, the light source is turned off when the detection signal of the heat detector exceeds a predetermined set value. The gas concentration can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭酸ガス濃度測定装置の構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a configuration of a carbon dioxide concentration measuring device of the present invention.

【図2】図1の実施例の処理動作を説明するフローチャ
ートである。
FIG. 2 is a flowchart illustrating a processing operation of the embodiment in FIG. 1;

【図3】図1の実施例によるドリフト補正を行う補正直
線を示す図である。
FIG. 3 is a diagram showing a correction straight line for performing drift correction according to the embodiment of FIG. 1;

【図4】図1の実施例による感度補正を行う光源のオフ
を示す図である。
FIG. 4 is a diagram showing an off state of a light source for performing sensitivity correction according to the embodiment of FIG. 1;

【図5】図1の実施例における光源を一定周期でオフさ
せる説明図である。
FIG. 5 is an explanatory diagram for turning off a light source at a constant cycle in the embodiment of FIG. 1;

【図6】図1の実施例における光源を吸気毎にオフさせ
る説明図である。
FIG. 6 is an explanatory diagram for turning off a light source for each intake in the embodiment of FIG. 1;

【図7】図1の実施例における光源を最大値の差が所定
値を越えた場合にオフさせる説明図である。
FIG. 7 is an explanatory diagram for turning off the light source in the embodiment of FIG. 1 when the difference between the maximum values exceeds a predetermined value.

【図8】図1の実施例により得られる炭酸ガス濃度の波
形図である。
FIG. 8 is a waveform diagram of a carbon dioxide gas concentration obtained by the embodiment of FIG. 1;

【図9】従来のドリフト補正装置を備えた炭酸ガス濃度
測定装置の構成図である。
FIG. 9 is a configuration diagram of a carbon dioxide concentration measuring device provided with a conventional drift correction device.

【符号の説明】[Explanation of symbols]

1 光源 2 サーモパイル 3 光源駆動部 4 増幅器 5 アナログ/デジタル変換器 6 制御部 7 操作部 8 RAM 9 ROM 10 表示部 REFERENCE SIGNS LIST 1 light source 2 thermopile 3 light source driving unit 4 amplifier 5 analog / digital converter 6 control unit 7 operation unit 8 RAM 9 ROM 10 display unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 正美 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (72)発明者 井上 正行 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (72)発明者 杉浦 正規 東京都新宿区西落合1丁目31番4号 日 本光電工業株式会社内 (58)調査した分野(Int.Cl.7,DB名) G01N 33/497 A61B 5/08 G01N 21/61 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masami Ito 1-31-4 Nishi-Ochiai, Shinjuku-ku, Tokyo Inside Nihon Kohden Kogyo Co., Ltd. (72) Inventor Masayuki Inoue 1-31, Nishi-Ochiai, Shinjuku-ku, Tokyo No. 4 Inside Nihon Kohden Kogyo Co., Ltd. (72) Inventor Tadashi Sugiura 1-31-4 Nishi-Ochiai Shinjuku-ku, Tokyo Nihon Kohden Kogyo Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name ) G01N 33/497 A61B 5/08 G01N 21/61

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 呼吸ガスに赤外線を照射し、透過量に応
じた信号を検出して炭酸ガス濃度を測定する炭酸ガス濃
度測定装置において、 赤外線の透過量を検出する熱検出器と、 光源をオン/オフさせるスイッチ手段SWと、 上記熱検出器の検出信号から、現在の吸気時の最大値を
検出して記憶させ、現在と直前の吸気時の最大値とを結
ぶ直線を算定し、次の吸気時の最大値を検出するまで延
長した補正直線を求め、現在の最大値検出時点に続く検
出信号と上記補正直線との差を算定し、時系列的に変化
する濃度信号を求めるドリフト補正手段と、光源を瞬時
オフさせてオフ時の上記検出信号の最小値を検出し、上
記記憶されている最大値との差を算定して炭酸ガス濃度
「0」でその時点の最大受光量における基準値として記
憶させ、該基準値と上記濃度信号の比を算定して感度補
正した濃度成分を求める感度補正手段とを備え、該濃度
成分に基づき炭酸ガス濃度を求める制御手段と、 上記最大値及び上記基準値を記憶する記憶手段とを具え
ることを特徴とする炭酸ガス濃度測定装置。
An apparatus for measuring carbon dioxide concentration by irradiating a respiratory gas with infrared light and detecting a signal corresponding to the amount of transmitted light, wherein a heat detector for detecting the amount of transmitted infrared light; From the switch means SW for turning on / off, and the detection signal of the heat detector, the current maximum value at the time of intake is detected and stored, and a straight line connecting the current value and the maximum value at the time of previous intake is calculated. Drift correction to obtain a correction line extended until the maximum value at the time of intake is detected, calculate the difference between the detection signal following the current maximum value detection time and the correction line, and obtain a concentration signal that changes in time series Means, instantaneously turn off the light source, detect the minimum value of the detection signal at the time of off, calculate the difference between the stored maximum value, and calculate the difference in carbon dioxide gas concentration “0” at the maximum received light amount at that time. Stored as a reference value, and Control means for calculating a ratio of the concentration signal to obtain a concentration component corrected for sensitivity by calculating a ratio of the concentration signal, control means for obtaining a carbon dioxide concentration based on the concentration component, and storage means for storing the maximum value and the reference value. A carbon dioxide gas concentration measuring device comprising:
【請求項2】 光源を呼吸周期よりも長い所定周期でオ
フにすることを特徴とする請求項1記載の炭酸ガス濃度
測定装置。
2. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off at a predetermined cycle longer than the respiratory cycle.
【請求項3】 光源を吸気に同期させてオフにすること
を特徴とする請求項1記載の炭酸ガス濃度測定装置。
3. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off in synchronization with the intake air.
【請求項4】 隣接する吸気時に検出される夫々の最大
値の差が所定値を越えた場合に光源をオフすることを特
徴とする請求項1〜3いずれか記載の炭酸ガス濃度測定
装置。
4. The carbon dioxide concentration measuring device according to claim 1, wherein the light source is turned off when a difference between respective maximum values detected at the time of adjacent intake exceeds a predetermined value.
JP03723995A 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device Expired - Fee Related JP3273297B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03723995A JP3273297B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device
EP96102772A EP0729727A3 (en) 1995-02-24 1996-02-23 Capnometer
DE69629510T DE69629510T2 (en) 1995-02-24 1996-02-23 Capnometer
EP96102750A EP0733341B1 (en) 1995-02-24 1996-02-23 Capnometer
EP03021573A EP1374768A3 (en) 1995-02-24 1996-02-23 Capnometer
US08/605,845 US5728585A (en) 1995-02-24 1996-02-26 Capnometer
US09/112,324 US6267928B1 (en) 1995-02-24 1998-07-09 Capnometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03723995A JP3273297B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device

Publications (2)

Publication Number Publication Date
JPH08233807A JPH08233807A (en) 1996-09-13
JP3273297B2 true JP3273297B2 (en) 2002-04-08

Family

ID=12492069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03723995A Expired - Fee Related JP3273297B2 (en) 1995-02-24 1995-02-24 Carbon dioxide concentration measurement device

Country Status (1)

Country Link
JP (1) JP3273297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1664743A1 (en) * 2003-08-11 2006-06-07 Senseair AB A method of compensating for a measuring error and an electronic arrangement to this end
CN106841518B (en) * 2016-12-29 2019-01-25 东南大学 A kind of flue gas NOx concentration measuring method based on Kalman filtering

Also Published As

Publication number Publication date
JPH08233807A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3273295B2 (en) Carbon dioxide concentration measurement device
US8183527B2 (en) Gas detecting method and gas detecting apparatus
EP2642262B1 (en) Portable device for measuring temperature using infrared array sensor
NO951754D0 (en) Analysis system for monitoring the concentration of an analyte in the blood of a patient
JP2011517975A (en) Apparatus and method for non-invasive measurement of body material
JP3273299B2 (en) Carbon dioxide concentration measurement device
JP6113080B2 (en) System and method for performing heaterless lead selenide-based capnometry and / or capnography
JP3273298B2 (en) Carbon dioxide concentration measurement device
US20180206737A1 (en) Dual sensor
JP3273297B2 (en) Carbon dioxide concentration measurement device
US20030023180A1 (en) Respiratory analyzer and method for measuring changes in concentration of a gas component of a breathing gas mixture
EP1374768A2 (en) Capnometer
JP3393354B2 (en) Carbon dioxide concentration measurement device
US5728585A (en) Capnometer
JP3488971B2 (en) Carbon dioxide concentration measurement device
JP3588982B2 (en) Infrared detector and gas analyzer
US5965887A (en) Method and apparatus for monitoring maintenance of calibration condition in respiratory gas spectrometer
JP2004309391A (en) Method and detector for detecting gas concentration
Singh et al. NPB-75: A portable quantitative microstream capnometer
JP2000097854A (en) Respiration gas concentration measuring device
EP1070956A1 (en) Method and apparatus for monitoring maintenance of calibration condition in respiratory gas spectrometer
JP2993103B2 (en) Non-contact oral thermometer
JPH08178754A (en) Clinical thermometer
JPH08304278A (en) Infrared absorption humidity variation meter
SE543437C2 (en) Capnoscope assembly, i.e. breath analyser assembly, and a method in relation to the capnoscope assembly

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees