JP3269170B2 - Electronic component position detection method - Google Patents

Electronic component position detection method

Info

Publication number
JP3269170B2
JP3269170B2 JP07661393A JP7661393A JP3269170B2 JP 3269170 B2 JP3269170 B2 JP 3269170B2 JP 07661393 A JP07661393 A JP 07661393A JP 7661393 A JP7661393 A JP 7661393A JP 3269170 B2 JP3269170 B2 JP 3269170B2
Authority
JP
Japan
Prior art keywords
electrode
detecting
component
electronic component
processing window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07661393A
Other languages
Japanese (ja)
Other versions
JPH06288732A (en
Inventor
敦 田邊
尚三 福田
純一 秦
エミール・ボーズマ
正通 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07661393A priority Critical patent/JP3269170B2/en
Publication of JPH06288732A publication Critical patent/JPH06288732A/en
Application granted granted Critical
Publication of JP3269170B2 publication Critical patent/JP3269170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子部品実装設備にお
いて、電子部品を高速かつ高精度に実装するために必要
とされる視覚認識装置の画像方法で、処理対象物である
電子部品の電極位置を画像パターンより正確に検出し、
位置規正情報を抽出する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing method for a visual recognition device required for mounting electronic components at high speed and high accuracy in an electronic component mounting facility. Detect the position more accurately from the image pattern,
The present invention relates to a method for extracting positioning information.

【0002】[0002]

【従来の技術】近年、電子部品実装分野では電子部品を
高速かつ高精度に回路基板に実装する技術が必要とされ
ている。このため、電子部品を撮像して得られる画像パ
ターンを高速に処理して、電子部品の位置・傾きを検出
し、部品の実装時に必要となる位置規正情報を高速かつ
正確に行う画像認識技術が活用される傾向にある。ま
た、電子部品の細密化が進むにつれ電極の多ピン化がな
されている。そこで、多数の電極を有する電子部品に関
しては、個々の電極の位置を検出し、それらより最適な
位置規正情報を算出することが望まれている。
2. Description of the Related Art In recent years, in the field of electronic component mounting, a technology for mounting electronic components on a circuit board at high speed and with high precision has been required. For this reason, an image recognition technology that processes an image pattern obtained by imaging an electronic component at a high speed, detects the position and inclination of the electronic component, and performs high-speed and accurate positioning information required at the time of mounting the component. Tend to be used. In addition, as electronic components have become finer, the number of pins of electrodes has been increased. Therefore, with respect to an electronic component having a large number of electrodes, it is desired to detect the position of each electrode and calculate optimal positioning information from them.

【0003】従来、画像認識技術を活用した電子部品の
認識方法には、対象電子部品の後方から照明を当てその
シルエットを処理して、中心・傾き・電極位置などを検
出する透過認識方法や、前方から照明を当て電極より反
射された光を処理し、中心・傾き・電極位置などを検出
する反射認識方法が提案されている。
Conventionally, electronic component recognition methods utilizing image recognition technology include a transmission recognition method of illuminating a target electronic component from behind and processing a silhouette thereof to detect a center, a tilt, an electrode position, and the like. A reflection recognition method has been proposed in which light reflected from an electrode is illuminated from the front, and the center, tilt, electrode position, and the like are detected.

【0004】以下図を参照しながら従来の部品認識方法
に付いて説明する。図6は、透過認識方法の一例で、リ
ード付き電子部品61の後方より照明を当て(以下透過
照明62と記す)、リードの先端位置を検出する例を示
したものである。リード付き電子部品61に透過照明6
2を当て、ビデオカメラ63で撮像すると、画像パター
ン64を得る。リード付き電子部品61の画像パターン
65は透過照明により、そのシルエットが映し出され
る。リード付き電子部品の画像パターン65と背景の境
界を図6(c)のように検出すると、66に示すように
境界追跡の軌跡がUターンを行う位置が検出される。こ
のUターンを行う位置を検出すべき電極位置として検出
する。この透過認識方法は、シルエットを処理するため
論理が単純であり処理も高速である。
A conventional component recognition method will be described below with reference to the drawings. FIG. 6 shows an example of the transmission recognition method, in which illumination is applied from the rear of the electronic component 61 with leads (hereinafter referred to as transmission illumination 62) to detect the position of the tip of the lead. Transmitted illumination 6 on electronic components 61 with leads
2 and the image is taken by the video camera 63, an image pattern 64 is obtained. The silhouette of the image pattern 65 of the electronic component 61 with leads is projected by the transmitted illumination. When the boundary between the image pattern 65 and the background of the electronic component with leads is detected as shown in FIG. 6C, the position where the trajectory of the boundary tracking makes a U-turn is detected as shown at 66. The position where this U-turn is performed is detected as the electrode position to be detected. This transparent recognition method has a simple logic for processing silhouettes and is fast in processing.

【0005】しかし、透過認識方法では、電極が部品外
形より内側に曲げられている電子部品(以下Jリード電
子部品と記す)に関しては、電極位置を検出することが
困難である。そこで電極を直接とらえることの出来る反
射認識方法が提案された。
However, in the transmission recognition method, it is difficult to detect the electrode position of an electronic component whose electrode is bent inward from the external shape of the component (hereinafter referred to as a J-lead electronic component). Therefore, a reflection recognition method capable of directly capturing the electrodes has been proposed.

【0006】図7は、反射認識方法の一例で、Jリード
電子部品71のリード位置を検出する例を示したもので
ある。Jリード電子部品71の前方より照明(以下反射
照明と記す)72を当て、ビデオカメラ63で撮像する
と、画像パターン73を得る。Jリード電子部品71の
画像パターン74は、反射照明72の反射光が映し出さ
れるため、電極部分が明るくなっている。明るく光る電
極部分に処理ウィンドウ75を設けv方向に輝度変化を
投影し投影データ76を得る。投影データ76を1次微
分し微分データ77を算出する。微分データ77が正か
ら負に転じる位置78を検出し、その位置に電極をおお
うほどの大きさの処理ウィンドウ79を設ける。処理ウ
ィンドウ79中の輝度重心を算出し、電極位置80とす
る。あらかじめ与えられた部品寸法・電極数から隣接す
る電極に処理ウィンドウ79と同様の処理ウィンドウを
設け順次全ての電極位置を検出する。
FIG. 7 shows an example of a reflection recognition method in which the lead position of a J-lead electronic component 71 is detected. When an illumination (hereinafter referred to as “reflection illumination”) 72 is applied from the front of the J-lead electronic component 71 and an image is captured by the video camera 63, an image pattern 73 is obtained. The electrode portion of the image pattern 74 of the J-lead electronic component 71 is bright because the reflected light of the reflected illumination 72 is projected. A processing window 75 is provided in a brightly shining electrode portion, and a change in luminance is projected in the v direction to obtain projection data 76. The projection data 76 is first-order differentiated to calculate differential data 77. A position 78 where the differential data 77 turns from positive to negative is detected, and a processing window 79 large enough to cover the electrode is provided at that position. The luminance centroid in the processing window 79 is calculated and set as the electrode position 80. A processing window similar to the processing window 79 is provided for adjacent electrodes based on a given component size and number of electrodes, and all electrode positions are sequentially detected.

【0007】[0007]

【発明が解決しようとする課題】電極の多ピン化にとも
ない、図8(a),(b)に示すように電極を部品内部
に格子状に配した部品(Ball Grid Arra
y部品、以下BGA部品と記す)が登場してきた。
(a)に示すような電極配置の場合、従来同様全ての電
極位置を検出するためには、Jリード部品を認識する際
と同じ部品情報(部品寸法・電極数)だけで十分であ
る。しかし、(c)に示すような電極配置の場合は、各
電極の配列に関する情報がなければ認識が不可能であ
る。BGA部品は電極配置にいろいろなバリエーション
があるため、全てを包含するには個々の電極位置の情報
をあらかじめ教示しなければならない。そのため従来の
教示方法との整合性がとれなくなるとともに、処理時間
・データ量がかなり増加してしまう。
With the increase in the number of electrodes, a component (Ball Grid Array) in which the electrodes are arranged in a grid inside the component as shown in FIGS. 8 (a) and 8 (b).
y components, hereafter referred to as BGA components).
In the case of the electrode arrangement shown in (a), the same component information (component size and number of electrodes) as in the case of recognizing the J-lead component is sufficient to detect all electrode positions as in the related art. However, in the case of the electrode arrangement as shown in (c), recognition is impossible without information on the arrangement of each electrode. Since BGA components have various variations in electrode arrangement, it is necessary to preliminarily teach information on individual electrode positions in order to include all of them. For this reason, consistency with the conventional teaching method cannot be obtained, and the processing time and data amount increase considerably.

【0008】また位置検出方法に関しても従来法を適用
すると、図7(c)に相当する図8(d)に示すデータ
が得られ、背景とボディの境界部82に微分データ81
が正から負に転じる部分が存在するため、真の電極位置
83が検出されない。
If the conventional method is applied to the position detection method, data shown in FIG. 8D corresponding to FIG. 7C is obtained, and the differential data 81 is added to the boundary 82 between the background and the body.
Since there is a portion where turns from positive to negative, the true electrode position 83 is not detected.

【0009】本発明は、上述した従来技術の欠点を克服
し、従来と同等の部品情報で高速かつ高精度の部品認識
方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for recognizing parts at a high speed and with high accuracy using the same part information as conventional ones, overcoming the above-mentioned drawbacks of the prior art.

【0010】[0010]

【課題を解決するための手段】前記問題点を解決するた
めに本発明は、電極が部品ボディの内側に格子状に配さ
れた部品の画像パターンを得る画像入力工程と、部品外
形より大まかな部品の傾きを検出する傾き粗検出工程
と、格子状に配された電極群の内で外周に配された電極
列の大まかな位置を検出する外周電極粗検出工程と、外
周に配された電極列の大まかな位置ともとに外周に配さ
れている電極列の個々の電極位置を検出する外周電極精
検出工程と、外周に配された個々の電極位置から部品の
実装に必要な位置規正情報を算出する位置規正情報計算
工程から構成されている。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an image inputting step of obtaining an image pattern of a component in which electrodes are arranged in a grid inside a component body, and an image inputting step of obtaining an image pattern. A coarse inclination detection step for detecting the inclination of the component, a coarse outer electrode detection step for detecting a rough position of an electrode array arranged on the outer periphery in the electrode group arranged in a grid, and an electrode arranged on the outer periphery The outer electrode precision detection step of detecting the individual electrode positions of the electrode array originally arranged on the outer periphery with the rough position of the array, and the position adjustment information necessary for mounting components from the individual electrode positions arranged on the outer periphery Is calculated.

【0011】また、大まかな位置を検出する方法は、電
極列に直交する処理ウィンドウを設定する処理範囲設定
工程と、処理ウィンドウ内において電極列に平行な方向
の最大輝度を投影する最大輝度投影工程と、処理ウィン
ドウ内において電極列に平行な方向の平均輝度を投影す
る平均輝度投影工程と、最大輝度の投影データと平均輝
度の投影データの差を検出する差データ抽出工程と、得
られた差のデータから電極位置を検出する位置検出工程
から構成されている。
The method of detecting a rough position includes a processing range setting step of setting a processing window orthogonal to the electrode row, and a maximum brightness projecting step of projecting a maximum brightness in a direction parallel to the electrode row within the processing window. And an average luminance projecting step of projecting an average luminance in a direction parallel to the electrode row within the processing window; a difference data extracting step of detecting a difference between the maximum luminance projection data and the average luminance projection data; And a position detecting step of detecting an electrode position from the data of the above.

【0012】また、大まかな位置を検出する他の方法と
して、電極列に直交する処理ウィンドウを設定する処理
範囲設定工程と、処理ウィンドウ内において電極列に平
行な方向の差分和を投影する輝度差分和投影工程と、得
られた差分和の投影データから電極位置を検出する位置
検出工程から構成されている。
As another method of detecting a rough position, a processing range setting step of setting a processing window orthogonal to the electrode row, and a luminance difference projecting a sum of differences in a direction parallel to the electrode row in the processing window. It comprises a sum projection step and a position detection step of detecting an electrode position from the projection data of the obtained difference sum.

【0013】[0013]

【作用】本発明は上記手段によって、まず対象電子部品
を撮像し画像パターンを得、前記画像パターンに対して
従来技術を適用し、部品の大まかな傾きを検出する。予
め与えられている従来技術と同様の情報である電子部品
の寸法と検出された傾きを利用し格子状に配された電極
群の内で外周に位置する電極列の両端の電極位置を検出
する。次に得られた電極列の両端に位置する電極位置と
予め与えられている従来技術と同様の情報である電極間
寸法・電極数をもとに、格子状に配された電極群の内で
外周に位置する電極位置を個々に検出する。検出した電
極位置から位置規正に必要な情報を算出する。
According to the present invention, the target electronic component is first imaged by the above means to obtain an image pattern, and the prior art is applied to the image pattern to detect a rough inclination of the component. Using the dimensions of the electronic component and the detected inclination, which are the same information as the related art given in advance, the electrode positions at both ends of the electrode row located on the outer periphery in the electrode group arranged in a grid are detected. . Next, based on the electrode positions located at both ends of the obtained electrode row and the inter-electrode dimensions and the number of electrodes which are given in advance as the same information as in the prior art, the electrode group arranged in a grid is The positions of the electrodes located on the outer periphery are individually detected. The information necessary for position determination is calculated from the detected electrode position.

【0014】前記の特定の電極位置を大まかに検出する
方法としては、まず電極列に直交する処理ウィンドウを
設定する。設定した処理ウィンドウ内の最大輝度と平均
輝度を電極列と平行な方向に投影する。両投影データの
差をとると電極列と平行方向に輝度変化の少ない部分が
削除されたデータが得られる。得られたデータの最初に
現れるピークを検出することでノイズを検出すること無
く電極位置を正確に検出できる。
As a method for roughly detecting the specific electrode position, first, a processing window orthogonal to the electrode row is set. The maximum luminance and the average luminance within the set processing window are projected in a direction parallel to the electrode rows. By taking the difference between the two projection data, data is obtained in which the portion where the luminance change is small in the direction parallel to the electrode row is deleted. By detecting the first peak of the obtained data, the electrode position can be accurately detected without detecting noise.

【0015】また前記の特定の電極位置を大まかに検出
する方法の別の方法として、まず同様に処理ウィンドウ
を設定し、設定した処理ウィンドウ内の輝度の電極列に
平行方向の差分和を投影すると、電極列に平行な方向で
の変化の大きさを示したデータを得る。得られたデータ
の最初に現れるピークを検出することでノイズを検出す
ること無く電極位置を検出することができる。
As another method of roughly detecting the specific electrode position, a processing window is first set in the same manner, and the sum of the differences in the parallel direction is projected on the electrode row of the luminance within the set processing window. And data indicating the magnitude of the change in the direction parallel to the electrode row. By detecting the first peak of the obtained data, the electrode position can be detected without detecting noise.

【0016】[0016]

【実施例】本発明の一実施例として、BGA部品の電極
位置を検出する方法について図1,図4を用いて説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As one embodiment of the present invention, a method for detecting an electrode position of a BGA component will be described with reference to FIGS.

【0017】図1において第1工程は、画像パターン入
力工程11で、認識対象物であるBGA部品を、ビデオ
カメラなどの撮像手段で撮像することにより映像信号を
得る。得られた撮像信号をデジタル化し、画像パターン
とする。
In FIG. 1, a first step is an image pattern input step 11, in which a video signal is obtained by capturing an image of a BGA component to be recognized by an imaging means such as a video camera. The obtained imaging signal is digitized to be an image pattern.

【0018】第2工程は、傾き粗検出工程12で、画像
パターン41を図4(a)のSに示すように走査し、部
品ボディ部分のエッジを検出する。検出したエッジ群を
直線近似することで、BGA部品の大まかな傾き42を
検出する。
In the second step, the image pattern 41 is scanned as shown by S in FIG. 4A to detect the edge of the component body portion in the coarse tilt detection step 12. The approximate edge 42 of the BGA component is detected by linearly approximating the detected edge group.

【0019】第3工程は、外周電極粗検出工程13で、
第2工程により検出した大まかな傾きをもとに電極列検
出用処理ウィンドウ43を設け、処理ウィンドウ内の輝
度変化をv方向に投影し、投影データを解析し電極列の
位置44を得る。次に得られた電極位置44をもとに両
端電極位置検出用処理ウィンドウ45を設定し、設定さ
れた処理ウィンドウ45内の輝度変化をu方向に投影
し、投影データを解析し電極列の両端の電極位置を検出
する。
The third step is an outer electrode rough detection step 13,
An electrode row detection processing window 43 is provided based on the rough inclination detected in the second step, a change in luminance in the processing window is projected in the v direction, and the projection data is analyzed to obtain a position 44 of the electrode row. Next, based on the obtained electrode positions 44, a processing window 45 for detecting the positions of the electrodes at both ends is set, and the luminance change in the set processing window 45 is projected in the u direction, the projection data is analyzed, Is detected.

【0020】第4工程は、外周電極精検出工程14で、
第3工程により得られた外周電極列の両端位置と電極数
から電極位置を推定し、電極をおおう電極検出用処理ウ
ィンドウ47を設定する。設定した処理ウィンドウ内の
輝度重心を検出し電極位置48を得る。同様の処理を4
辺に対して行い外周に配された電極位置を全て検出す
る。
The fourth step is an outer electrode precision detection step 14,
The electrode position is estimated from both end positions of the outer peripheral electrode row and the number of electrodes obtained in the third step, and an electrode detection processing window 47 covering the electrodes is set. An electrode position 48 is obtained by detecting the luminance center of gravity within the set processing window. Perform the same processing 4
This is performed on the side, and all electrode positions arranged on the outer periphery are detected.

【0021】第5工程は、位置規正情報計算工程35
で、第4工程で得られた外周に配された電極位置からB
GA部品の中心位置・傾きを算出し、位置規正情報とし
て処理を終了する。
The fifth step is a positioning information calculation step 35.
Then, from the electrode position arranged on the outer periphery obtained in the fourth step, B
The center position / inclination of the GA component is calculated, and the processing is terminated as position regulation information.

【0022】次に上述の本発明の一実施例における外周
電極粗検出工程におけるBGA部品の電極位置を検出す
る方法について図2,図5を用いて説明する。
Next, a method of detecting the electrode position of the BGA component in the outer electrode rough detection step according to the embodiment of the present invention will be described with reference to FIGS.

【0023】図2において21は処理範囲設定工程であ
る。あらかじめ検出したBGA部品の大まかな傾きをも
とに、電極列と直交する電極検出用処理ウィンドウ51
を設定する。
In FIG. 2, reference numeral 21 denotes a processing range setting step. The electrode detection processing window 51 orthogonal to the electrode row is based on the rough inclination of the BGA component detected in advance.
Set.

【0024】22は最大輝度投影工程で、処理範囲設定
工程で設定した処理ウィンドウ内で、電極列に平行する
線上の最大輝度を投影すると最大輝度投影データ52を
得る。電極部分は最も高輝度であるため、電極部分に相
当する位置では投影データは大きくなる。
Reference numeral 22 denotes a maximum luminance projection step, in which maximum luminance projection data 52 is obtained by projecting the maximum luminance on a line parallel to the electrode row within the processing window set in the processing range setting step. Since the electrode portion has the highest luminance, the projection data becomes large at a position corresponding to the electrode portion.

【0025】23は平均輝度投影工程で、処理範囲設定
工程で設定した処理ウィンドウ内で電極列に平行する線
上の平均輝度と投影すると平均輝度投影データ53を得
る。前記最大輝度投影データ同様電極位置に相当する位
置では投影データは大きくなるが、ボディ部分と平均さ
れるため前記最大輝度投影データより小さい。
Reference numeral 23 denotes an average luminance projection step. When the projection is performed with the average luminance on a line parallel to the electrode row in the processing window set in the processing range setting step, average luminance projection data 53 is obtained. As in the case of the maximum luminance projection data, the projection data becomes large at the position corresponding to the electrode position, but is smaller than the maximum luminance projection data because it is averaged with the body part.

【0026】24は差データ抽出工程で、最大輝度投影
工程で得られる最大輝度投影データと平均輝度投影工程
で得られる平均輝度投影データの差を計算することによ
り差データ54を得る。ボディ部分に相当する位置では
最大輝度投影データも平均輝度投影データも同程度の大
きさであるが、電極位置に相当する位置では平均輝度投
影データの方が小さいため、差データは電極部分に相当
する位置だけが残る。
Numeral 24 denotes a difference data extracting step, in which difference data 54 is obtained by calculating the difference between the maximum luminance projection data obtained in the maximum luminance projection step and the average luminance projection data obtained in the average luminance projection step. At the position corresponding to the body part, the maximum luminance projection data and the average luminance projection data are almost the same size, but at the position corresponding to the electrode position, the average luminance projection data is smaller, so the difference data corresponds to the electrode part. Only the position to do remains.

【0027】25は位置検出工程である。差データ抽出
工程で得られる差データは電極部分に相当する位置のみ
のデータであるから、しきい値55を越える最初のピー
ク位置を検出することで、電極位置を検出し処理を終了
する。
Reference numeral 25 denotes a position detecting step. Since the difference data obtained in the difference data extracting step is data only at the position corresponding to the electrode portion, the electrode position is detected by detecting the first peak position exceeding the threshold value 55, and the processing is terminated.

【0028】次に上述の本発明の一実施例における外周
電極粗検出工程におけるBGA部品の電極位置を検出す
る他の方法について図3,図5を用いて説明する。
Next, another method for detecting the electrode position of the BGA component in the outer electrode rough detection step in the embodiment of the present invention will be described with reference to FIGS.

【0029】図3において31は処理範囲設定工程で、
あらかじめ検出したBGA部品の大まかな傾きをもと
に、電極列と直交する電極検出用処理ウィンドウ56を
設定する。
In FIG. 3, reference numeral 31 denotes a processing range setting step.
An electrode detection processing window 56 orthogonal to the electrode rows is set based on the rough inclination of the BGA component detected in advance.

【0030】32は輝度差分和投影工程で、処理範囲設
定工程で設定した処理ウィンドウ内で、電極列に平行す
る線上における輝度差を累算した値を投影することによ
り輝度差分和投影データ57を得る。電極部分以外は輝
度差はあまり無いため、前記輝度差分和投影データは電
極部分に相当する位置だけが高い値になる。
Reference numeral 32 denotes a luminance difference sum projection step, in which the luminance difference sum projection data 57 is projected by projecting a value obtained by accumulating the luminance difference on a line parallel to the electrode row in the processing window set in the processing range setting step. obtain. Since there is not much luminance difference except for the electrode part, only the position corresponding to the electrode part has a high value in the luminance difference sum projection data.

【0031】33は位置検出工程である。輝度差分和投
影工程で得られる輝度差分和投影データは電極部分に相
当する位置のみのデータであるから、しきい値58を越
える最初のピーク位置を検出することで、電極位置を検
出し処理を終了する。
Reference numeral 33 denotes a position detecting step. Since the luminance difference sum projection data obtained in the luminance difference sum projection process is data only at the position corresponding to the electrode portion, the electrode position is detected by detecting the first peak position exceeding the threshold value 58, and the processing is performed. finish.

【0032】[0032]

【発明の効果】本発明は上記した構成により、予め与え
られる部品情報が従来同様であっても、あらゆるパター
ンの格子状に電極が配された部品において同様の処理で
実装時に必要となる位置規正情報を高速かつ高精度に抽
出することが可能となる。また位置検出においても電極
位置以外での著しい輝度変化に影響されることがない。
よってより信頼性の高い位置検出が実現可能である。
As described above, according to the present invention, even if the component information given in advance is the same as the conventional one, it is necessary to perform the same processing for the components in which the electrodes are arranged in a grid pattern of any pattern, and the positioning is required in the same process. It is possible to extract information at high speed and with high accuracy. Also, in the position detection, there is no influence from a remarkable change in luminance other than the position of the electrode.
Therefore, more reliable position detection can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における電子部品の位置検出
方法のフローチャート
FIG. 1 is a flowchart of an electronic component position detection method according to an embodiment of the present invention.

【図2】同位置検出方法の外周電極粗検出工程における
処理方法のフローチャート
FIG. 2 is a flowchart of a processing method in an outer electrode rough detection step of the position detection method.

【図3】同位置検出方法の外周電極粗検出工程における
他の処理方法のフローチャート
FIG. 3 is a flowchart of another processing method in the outer electrode rough detection step of the position detection method.

【図4】(a)同位置検出方法における画像パターン入
力工程及び傾き粗検出工程の説明図 (b)同位置検出方法における外周電極粗検出工程の説
明図 (c)同位置検出方法における外周電極精検出工程の説
明図
FIG. 4A is an explanatory view of an image pattern input step and a coarse tilt detection step in the same position detection method. FIG. 4B is an explanatory view of a rough outer electrode detection step in the same position detection method. Explanatory drawing of the fine detection process

【図5】(a)同位置検出方法の外周電極粗検出工程に
おける処理方法の説明図 (b)同位置検出方法の外周電極粗検出工程における他
の処理方法の説明図
FIG. 5 (a) is an explanatory view of a processing method in an outer peripheral electrode coarse detection step of the same position detection method. (B) An explanatory view of another processing method in an outer peripheral electrode coarse detection step of the same position detection method.

【図6】(a)透過認識方法の構成を示す説明図 (b)同方法における画像パターンの説明図 (c)同方法による従来の電子部品の位置検出方法の説
明図
6A is an explanatory diagram showing the configuration of a transmission recognition method. FIG. 6B is an explanatory diagram of an image pattern in the method. FIG. 6C is an explanatory diagram of a conventional electronic component position detection method by the same method.

【図7】(a)反射認識方法を構成示す説明図 (b)同方法における画像パターンの説明図 (c)同方法による従来の電子部品の位置検出方法の説
明図
FIG. 7A is an explanatory diagram showing a configuration of a reflection recognition method. FIG. 7B is an explanatory diagram of an image pattern in the method. FIG. 7C is an explanatory diagram of a conventional electronic component position detection method by the same method.

【図8】(a)BGA部品の平面図 (b)BGA部品の側面図 (c)他の種類のBGA部品の平面図 (d)BGA部品に対する従来の電子部品の位置検出方
法適用の説明図
8A is a plan view of a BGA component, FIG. 8B is a side view of the BGA component, FIG. 8C is a plan view of another type of BGA component, and FIG.

【符号の説明】[Explanation of symbols]

41 BGA部品の画像パターン 42 BGA部品の大まかな傾き 43 電極列検出用処理ウィンドウ 44 電極列位置 45 両端電極位置検出用処理ウィンドウ 46 両端電極位置 47 電極検出用処理ウィンドウ 48 電極位置 51 電極検出用処理ウィンドウ 52 最大輝度投影データ 53 平均輝度投影データ 54 差データ 55 しきい値 56 電極検出用処理ウィンドウ 57 輝度差分和投影データ 58 しきい値 61 リード付き電子部品 62 透過照明 63 ビデオカメラ 64 画像パターン 65 リード付き電子部品に相当する画像パターン 66 電極位置 71 Jリード電子部品 72 反射照明 73 画像パターン 74 Jリード電子部品に相当する画像パターン 75 処理ウィンドウ 76 輝度変化投影データ 77 微分データ 78 ゼロクロス点 79 処理ウィンドウ 80 電極位置 81 微分データ 41 Image pattern of BGA part 42 Rough inclination of BGA part 43 Processing window for electrode row detection 44 Electrode row position 45 Processing window for both electrode position detection 46 Both electrode position 47 Electrode detection processing window 48 Electrode position 51 Electrode detection processing Window 52 Maximum luminance projection data 53 Average luminance projection data 54 Difference data 55 Threshold value 56 Processing window for electrode detection 57 Luminance difference sum projection data 58 Threshold value 61 Electronic component with lead 62 Transmission illumination 63 Video camera 64 Image pattern 65 Lead Image pattern 66 corresponding to electronic component with electrode 66 Electrode position 71 J-lead electronic component 72 Reflective illumination 73 Image pattern 74 Image pattern corresponding to J-lead electronic component 75 Processing window 76 Brightness change projection data 77 Differential data 78 Zero Ross point 79 processing window 80 electrode position 81 derivative data

───────────────────────────────────────────────────── フロントページの続き (72)発明者 エミール・ボーズマ 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 森本 正通 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−209200(JP,A) 特開 平5−312518(JP,A) 特開 平5−296724(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/24 H05K 13/04 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Emile Bozuma 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Masamichi Morimoto 1006 Odaka Kadoma Kadoma, Osaka Pref. In-company (56) References JP-A-6-209200 (JP, A) JP-A-5-313518 (JP, A) JP-A-5-296724 (JP, A) (58) Fields investigated (Int. . 7, DB name) G01B 11/24 H05K 13/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電極が部品ボディの内側に格子状に配さ
れた電子部品を認識対象物とし、認識対象物を撮像して
画像パターンを得る第1工程と、前記画像パターンにお
ける部品ボディの外形形状から大まかな部品の傾きを検
出する第2工程と、格子状に配された電極群のうちで外
周に配されている電極の列から大まかな電極の位置を検
出する第3工程と、第3工程により検出された大まかな
位置をもとに外周に配されている電極の個々の位置を検
出する第4工程と、第4工程により検出された外周に配
されている電極の個々の位置から部品の実装に必要な位
置規正情報を算出する第5工程から構成される、格子状
に電極が配された電子部品の位置検出方法。
1. A first step in which an electronic component whose electrodes are arranged in a grid inside a component body is a recognition target, and a first step of capturing an image of the recognition target to obtain an image pattern, and an outer shape of the component body in the image pattern A second step of detecting a rough inclination of the component from the shape, a third step of detecting a rough position of the electrode from a row of electrodes arranged on the outer periphery in the electrode group arranged in a grid, A fourth step of detecting the individual positions of the electrodes arranged on the outer periphery based on the rough positions detected in the three steps, and individual positions of the electrodes arranged on the outer periphery detected in the fourth step A method for detecting the position of an electronic component having electrodes arranged in a grid, comprising a fifth step of calculating positioning information necessary for mounting the component from the electronic component.
【請求項2】 第3工程が同位置検出方法の第1工程で
得られた画像パターンに対して、部品外周に配された電
極列に直交する処理ウィンドウを設定する第6工程と、
前記処理ウィンドウ内において前記電極列に平行する線
上の最大輝度を投影する第2工程と、処理ウィンドウ内
において電極列に平行する線上の平均輝度を投影する第
8工程と、上記第7工程より得られる最大輝度の投影デ
ータと第8工程より得られる平均輝度の投影データの差
を算出する第9工程と、第9工程より得られた差のデー
タから電極位置を検出する第10工程からなる請求項1
記載の電子部品の位置検出方法。
A third step of setting a processing window orthogonal to an electrode array arranged on the outer periphery of the image pattern obtained in the first step of the position detection method in the third step;
A second step of projecting a maximum luminance on a line parallel to the electrode row in the processing window, an eighth step of projecting an average luminance on a line parallel to the electrode row in the processing window, and the seventh step. A ninth step of calculating a difference between the maximum luminance projection data obtained and the average luminance projection data obtained in the eighth step, and a tenth step of detecting an electrode position from the difference data obtained in the ninth step. Item 1
The method for detecting the position of an electronic component described in the above.
【請求項3】 第3工程が、同位置検出方法の第1工程
で得られた画像パターンに対して部品外周に配された電
極列に直交する処理ウィンドウを設定する第11工程
と、処理ウィンドウ内において前記電極列に平行する線
上の差分和を投影する第12工程と、第12工程より得
られた差分和の投影データから電極位置を検出する第1
3工程からなる請求項1記載の位置検出方法。
3. An eleventh step of setting a processing window orthogonal to an electrode array arranged on the outer periphery of the component with respect to the image pattern obtained in the first step of the position detection method; A twelfth step of projecting a sum of differences on a line parallel to the electrode row in the first step, and a first step of detecting an electrode position from projection data of the sum of differences obtained in the twelfth step.
2. The position detecting method according to claim 1, comprising three steps.
JP07661393A 1993-04-02 1993-04-02 Electronic component position detection method Expired - Fee Related JP3269170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07661393A JP3269170B2 (en) 1993-04-02 1993-04-02 Electronic component position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07661393A JP3269170B2 (en) 1993-04-02 1993-04-02 Electronic component position detection method

Publications (2)

Publication Number Publication Date
JPH06288732A JPH06288732A (en) 1994-10-18
JP3269170B2 true JP3269170B2 (en) 2002-03-25

Family

ID=13610203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07661393A Expired - Fee Related JP3269170B2 (en) 1993-04-02 1993-04-02 Electronic component position detection method

Country Status (1)

Country Link
JP (1) JP3269170B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138463C (en) 1996-12-13 2004-02-11 松下电器产业株式会社 Electronic component and mounting method and device thereof
US6938335B2 (en) 1996-12-13 2005-09-06 Matsushita Electric Industrial Co., Ltd. Electronic component mounting method
US7147041B2 (en) 2004-05-03 2006-12-12 Parker-Hannifin Corporation Lightweight heat sink
JP2006234793A (en) * 2005-01-28 2006-09-07 Juki Corp Part position detecting method and device
JP4823782B2 (en) * 2006-06-23 2011-11-24 Juki株式会社 Component positioning method and apparatus
JP4915940B2 (en) * 2007-05-11 2012-04-11 富士機械製造株式会社 Image processing data creation method and image processing data creation device
CN105841632A (en) * 2015-12-01 2016-08-10 广东工业大学 High-precision measurement method for reflective workpiece based on machine vision

Also Published As

Publication number Publication date
JPH06288732A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US5872863A (en) Component detection method
JP3269170B2 (en) Electronic component position detection method
JPWO2004055531A1 (en) POSITION DETECTION DEVICE, POSITION DETECTION METHOD, AND ELECTRONIC COMPONENT CONVEYING DEVICE
US6639624B1 (en) Machine vision methods for inspection of leaded components
JP3098847B2 (en) Component recognition method
US6526165B1 (en) Methods and apparatuses for refining a geometric description of an object having a plurality of extensions
JPH11132737A (en) Image processing method
JP3349292B2 (en) Component position recognition device
JPH05296725A (en) Position detecting method
JPH0831497B2 (en) Spherical object position detection method and apparatus
JP2985380B2 (en) Electronic component position detection method
JPH0815240B2 (en) Displacement correction method and imposition component automatic mounting method
JPH0989525A (en) Position detecting method for lead shoulder and for lead end
JPS6311804A (en) Mark position detection system for positioning
JPH07119705B2 (en) Electronic component inspection device
JPS58129888A (en) Position detector
JP3111434B2 (en) Image processing device
CN1249847A (en) Method of checking for presence of connection balls
JPH05180618A (en) Position-recognizing method for object
JPH04196145A (en) Method of detecting pitch of lead of electronic component and number thereof
JPH06221834A (en) Inclination measurement method and device
JPH05275900A (en) Method for inspection of state of mounted part lead
Leonova et al. Application of light-optical measurement system with CCD sensor for dimensional measurements
JPH05312543A (en) Pattern matching method
JPH10105718A (en) Optical measurement method for hole position

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees