JP3267054B2 - Power storage device for solar power - Google Patents

Power storage device for solar power

Info

Publication number
JP3267054B2
JP3267054B2 JP13033794A JP13033794A JP3267054B2 JP 3267054 B2 JP3267054 B2 JP 3267054B2 JP 13033794 A JP13033794 A JP 13033794A JP 13033794 A JP13033794 A JP 13033794A JP 3267054 B2 JP3267054 B2 JP 3267054B2
Authority
JP
Japan
Prior art keywords
output
solar cell
current
generated
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13033794A
Other languages
Japanese (ja)
Other versions
JPH07336910A (en
Inventor
宏直 林
基志 近藤
建 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13033794A priority Critical patent/JP3267054B2/en
Publication of JPH07336910A publication Critical patent/JPH07336910A/en
Application granted granted Critical
Publication of JP3267054B2 publication Critical patent/JP3267054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は太陽電池発電電力の蓄電
装置、特に太陽電池で発電された電力を効率よく蓄電池
に充電する太陽電池発電電力の蓄電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device for power generated by a solar cell, and more particularly to a power storage device for power generated by a solar cell, which efficiently charges the power generated by the solar cell.

【0002】[0002]

【従来の技術】太陽電池は、光のエネルギーを電気エネ
ルギーに直接変換する素子であり、図8の電圧−電流
(V−I)特性図に示されるように、光強度の増加と共
に、発電電流および発電電圧が増加していく。
2. Description of the Related Art A solar cell is a device that directly converts light energy into electric energy. As shown in a voltage-current (VI) characteristic diagram of FIG. And the generated voltage increases.

【0003】また太陽電池には、図8からわかるよう
に、光強度を一定とした場合に、発電電圧Vが小さいう
ちは発電電流値がほぼ一定であり、発電電圧Vが所定値
を越えると発電電流が低下するという特性がある。この
ため、発電電圧と発電電流の積である電力が最大となる
所定電圧Vpが存在する。この様子が図9に示される。
太陽電池で発電された電力を効率よく蓄電池に蓄えるた
めには、この電力が最大となる点で蓄電操作を行う必要
がある。
As can be seen from FIG. 8, in a solar cell, when the light intensity is constant, the generated current value is almost constant while the generated voltage V is small, and when the generated voltage V exceeds a predetermined value. There is a characteristic that the generated current decreases. Therefore, there is a predetermined voltage Vp at which the electric power, which is the product of the generated voltage and the generated current, is maximized. This is shown in FIG.
In order to efficiently store the power generated by the solar cell in the storage battery, it is necessary to perform a power storage operation at a point where the power becomes maximum.

【0004】一方、太陽電池から発電される電力は、上
述のように光強度によって変化するほか、太陽電池の温
度によっても変化する。図10には、太陽電池の温度T
と、発生する電力が最大となる最適電圧Vpとの関係が
示される。
On the other hand, the electric power generated from the solar cell varies depending on the light intensity as described above and also varies depending on the temperature of the solar cell. FIG. 10 shows the temperature T of the solar cell.
And the optimum voltage Vp at which the generated power is maximized.

【0005】以上のように、太陽電池の動作条件によっ
て上述のVpが変化するので、蓄電操作を常に太陽電池
が発電する電力の最大点で行えるよう制御することが従
来から行われている。例えば特開平3−253234号
公報には、太陽電池と蓄電池との間にDC/DCコンバ
ータを直列に接続し、このDC/DCコンバータの入力
及び出力側の電圧と、出力側の電流、および予め決めら
れた基準電圧とからDC/DCコンバータの出力電圧を
制御する太陽光発電装置が開示されている。
As described above, since the above-described Vp varies depending on the operating conditions of the solar cell, control has been conventionally performed so that the power storage operation can always be performed at the maximum point of the power generated by the solar cell. For example, Japanese Patent Application Laid-Open No. 3-253234 discloses that a DC / DC converter is connected in series between a solar battery and a storage battery, and a voltage on an input side and an output side of the DC / DC converter, a current on an output side, and A photovoltaic power generation device that controls an output voltage of a DC / DC converter from a determined reference voltage is disclosed.

【0006】更に他の制御方式の例が図11および図1
2に示される。
FIGS. 11 and 1 show still another example of a control method.
As shown in FIG.

【0007】図11に示される例においては、図10に
示される太陽電池の特性を利用している。すなわち、メ
モリ50に図10の特性関係を記憶しておき、太陽電池
の温度Tに基づいて、メモリ50から最適電圧Vpを算
出し、この最適電圧Vpから太陽電池の発電電圧Vを減
算器52で減算する。この減算器52の出力は積分器5
4、パルス幅変調(PWM)回路56を介してパルス幅
変調された制御信号に変換されて出力され、この制御信
号によって発電電圧Vが上記最適電圧Vpと一致するよ
うに制御される。
The example shown in FIG. 11 utilizes the characteristics of the solar cell shown in FIG. That is, the characteristic relationship of FIG. 10 is stored in the memory 50, the optimum voltage Vp is calculated from the memory 50 based on the temperature T of the solar cell, and the generated voltage V of the solar cell is subtracted from the optimum voltage Vp. Subtract with. The output of the subtractor 52 is the integrator 5
4. The signal is converted into a pulse width modulated control signal via a pulse width modulation (PWM) circuit 56 and output. The control signal controls the generated voltage V to be equal to the optimum voltage Vp.

【0008】また、図12に示される例においては、太
陽電池の発電電圧V、発電電流Iのアナログ信号がA/
Dコンバータ58によりディジタル信号に変換され、A
/Dコンバータ58の電圧出力と電流出力とが乗算器6
0により乗算される。乗算器60の出力は最大値制御回
路62に入力され、乗算器60の出力が最大値になるよ
うな制御出力が最大値制御回路62から出力される。最
大値制御回路62の出力であるディジタル信号はD/A
コンバータ64によりアナログ信号に変換され、PWM
回路66を介してパルス幅変調された制御信号として出
力され、この制御信号によって乗算器60の出力が最大
値になるように制御される。
In the example shown in FIG. 12, the analog signals of the generated voltage V and the generated current I of the solar cell are A / A.
The digital signal is converted by the D converter 58 into a digital signal.
The voltage output and the current output of the / D converter 58 are multiplied by the multiplier 6
Multiplied by zero. The output of the multiplier 60 is input to the maximum value control circuit 62, and a control output such that the output of the multiplier 60 becomes the maximum value is output from the maximum value control circuit 62. The digital signal output from the maximum value control circuit 62 is D / A
The signal is converted into an analog signal by the
The signal is output as a pulse width modulated control signal via the circuit 66, and the control signal is controlled so that the output of the multiplier 60 becomes the maximum value.

【0009】なお、上記乗算器60、最大値制御回路6
2、D/Aコンバータ64はマイクロコンピュータ68
で構成されている。
The multiplier 60 and the maximum value control circuit 6
2. The D / A converter 64 is a microcomputer 68
It is composed of

【0010】[0010]

【発明が解決しようとする課題】しかし、以上のように
構成されている従来装置には、それぞれ次のような問題
点があった。
However, the conventional devices configured as described above have the following problems.

【0011】まず、特開平3−253234号公報に記
載されている従来例は、検出するべき電圧および電流が
複数存在し、かつ基準電圧を発生する手段を有するの
で、回路構成が複雑になり、コストアップになるという
問題があった。
First, the conventional example described in Japanese Patent Application Laid-Open No. 3-253234 has a complicated circuit configuration because there are a plurality of voltages and currents to be detected and a means for generating a reference voltage. There was a problem that the cost was increased.

【0012】また、図11に示される従来例は、アナロ
グ回路で構成でき、回路構成は比較的簡単にできるが、
メモリ50の誤差が大きいという問題と、センサ取り付
け場所のバラツキや電池間のバラツキにより生じる電池
の温度特性のバラツキを吸収できないという問題とがあ
った。
Further, the conventional example shown in FIG. 11 can be constituted by an analog circuit and the circuit constitution can be relatively simplified.
There is a problem that the error of the memory 50 is large and a problem that it is not possible to absorb variations in the temperature characteristics of the battery caused by variations in the sensor mounting location and variations between batteries.

【0013】更に、図12に示される従来例は、A/D
コンバータ58やマイクロコンピュータ68等を使用す
るので、回路構成が複雑となりコスト高で形状も大きく
なるという問題に加え、消費電流が大きく、一定以下の
光の下では発電量より消費電力の方が大きくなり使用す
る意味がなくなるという問題があった。
Further, the conventional example shown in FIG.
Since the converter 58, the microcomputer 68, and the like are used, in addition to the problem that the circuit configuration is complicated, the cost is large, and the shape is large, the current consumption is large, and the power consumption is larger than the power generation amount under a certain light or less. There was a problem that the meaning of use was lost.

【0014】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、太陽電池から発電された電力
を、マイコン等の高価な回路を用いずに、簡単な構成で
効率的に蓄電できる太陽電池発電電力の蓄電装置を提供
することにある。また、このような蓄電装置を備える太
陽電池を提供することも目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to efficiently generate electric power from a solar cell with a simple configuration without using an expensive circuit such as a microcomputer. An object of the present invention is to provide a power storage device of solar cell generated power that can store power. Another object is to provide a solar cell including such a power storage device.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本願の請求項1に係る発明は、太陽電池発電電力の
蓄電装置であって、太陽電池で発電される電圧を変化さ
せる変圧手段と、前記変圧手段から出力される電力を蓄
える蓄電池の充電電流を検出する電流検出手段と、前記
電流検出手段により検出される電流が最大となるように
前記変圧手段を制御する制御手段と、を備え、前記制御
手段は、所定周期で振動する周期信号を発生するディザ
回路と、前記ディザ回路から発生された周期信号の最大
値および最小値のタイミングで前記電流検出手段による
電流検出値をそれぞれサンプルホールドする一対のサン
プルホールド回路と、前記各サンプルホールド回路の出
力を比較する比較器と、前記比較器の出力信号を積分す
る積分器と、前記積分器の出力信号と前記ディザ回路か
ら発生された周期信号とを加算する加算器と、前記加算
器の出力信号をパルス幅変調し、前記変圧手段を制御す
るための制御信号を発生する変調回路と、を有し、前記
比較器が、前記周期信号の最大値のタイミングにおける
前記電流検出値が前記周期信号の最小値のタイミングに
おける前記電流検出値より大きい場合には前記積分器の
出力を増加させ、小さい場合には減少させるように信号
を出力することを特徴とする。
In order to achieve the above object, an invention according to claim 1 of the present application is a power storage device for a solar cell generated electric power, and a transformer for changing a voltage generated by the solar cell. And current control means for detecting a charging current of a storage battery that stores power output from the voltage transforming means, and control means for controlling the voltage transforming means such that the current detected by the current detecting means is maximized. Equipped , said control
The means includes a dither for generating a periodic signal oscillating at a predetermined cycle.
Circuit and a maximum of a periodic signal generated from the dither circuit.
At the timing of the current value and the minimum value
A pair of samples that sample and hold the current detection value
The output of the pull-hold circuit and the output of each sample-hold circuit
A comparator for comparing forces and integrating the output signal of the comparator.
An integrator, an output signal of the integrator and the dither circuit
An adder for adding the periodic signal generated from the adder;
The output signal of the transformer is pulse width modulated to control the transformer.
And a modulation circuit for generating a control signal for the
A comparator is provided at the timing of the maximum value of the periodic signal.
The current detection value is at the timing of the minimum value of the periodic signal.
If the current value is larger than the current detection value in
Signal to increase output and decrease if small
Is output .

【0016】[0016]

【0017】本願の請求項に係る発明は、請求項1記
載の太陽電池発電電力の蓄電装置を備えることを特徴と
する。
The invention according to claim 2 of the present application is characterized by including the power storage device of the power generated by the solar cell according to claim 1 .

【0018】[0018]

【作用】従って、請求項1に係る発明によれば、太陽電
池から発電される電力を最も効率よく蓄電池に充電する
ために、蓄電池の充電電流のみを検出し、この充電電流
が最大値となるような制御を行うので、回路構成が簡単
になり装置を小型化できる。また、回路を全てアナログ
回路で構成したことにより、マイコン等の高価な回路を
用いる必要がなく、低コストで高い信頼性が得られると
ともに、装置を小型化でき消費電流を低くおさえること
ができる。
Therefore, according to the first aspect of the present invention, only the charging current of the storage battery is detected and the charging current becomes the maximum value in order to charge the storage battery with the power generated from the solar cell most efficiently. Since such control is performed, the circuit configuration is simplified and the device can be downsized. All circuits are analog
By using circuits, expensive circuits such as microcomputers can be used.
It is not necessary to use it, and if high reliability can be obtained at low cost
In both cases, the equipment can be downsized and current consumption can be kept low.
Can be.

【0019】[0019]

【0020】請求項に係る発明によれば、太陽電池と
太陽電池発電電力の蓄電装置とを一体化できる。
According to the second aspect of the present invention, the solar cell and the power storage device for the power generated by the solar cell can be integrated.

【0021】[0021]

【実施例】以下、本発明の好適な実施例を図面に基づい
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0022】図1には、本実施例に係る太陽電池発電電
力の蓄電装置の基本構成の回路図が示される。太陽電池
10と蓄電池12との間にはチョークコイル14、ダイ
オード16、コンデンサ18、20およびスイッチ22
により構成される変圧手段23が接続されている。変圧
手段23ではチョークコイル14とスイッチ22とを組
み合わせ、スイッチ22の開閉により変圧動作が行われ
るが、その際発生するリップルはコンデンサ18、20
により除去される。また、蓄電池12と変圧手段23の
出力電圧とが逆転した場合、蓄電池12からの電流の逆
流を防止するためにダイオード16が使用されている。
なお、本実施例の変圧手段23には、いわゆる昇圧型が
使用されているが、降圧型も使用することができる。
FIG. 1 is a circuit diagram showing a basic configuration of a power storage device for solar cell power generation according to this embodiment. A choke coil 14, a diode 16, capacitors 18, 20 and a switch 22 are provided between the solar cell 10 and the storage battery 12.
Is connected. In the transformer 23, the choke coil 14 and the switch 22 are combined, and the transformer 22 performs a transformer operation by opening and closing the switch 22.
To be removed. Further, when the output voltage of the storage battery 12 and the output voltage of the transformer 23 are reversed, a diode 16 is used to prevent the current from flowing back from the storage battery 12.
Note that a so-called step-up type is used as the transformer 23 of the present embodiment, but a step-down type can also be used.

【0023】スイッチ22は、例えばバイポーラトラン
ジスタ、FET等のスイッチング素子で構成される。こ
のスイッチ22は、本発明の制御手段である制御回路2
4からの制御信号Scによりその開閉が制御される。制
御回路24は、蓄電池12の充電電流Ibにより制御信
号Scを発生するが、この充電電流Ibはシャント抵抗
26を流れる電流を電流検出手段としての電圧計28に
より測定して検出する。
The switch 22 is constituted by a switching element such as a bipolar transistor and an FET. This switch 22 is connected to a control circuit 2 which is a control means of the present invention.
4 is controlled by a control signal Sc. The control circuit 24 generates a control signal Sc based on the charging current Ib of the storage battery 12, and the charging current Ib is detected by measuring a current flowing through the shunt resistor 26 by a voltmeter 28 as current detecting means.

【0024】次に、図1の回路の動作について説明す
る。
Next, the operation of the circuit shown in FIG. 1 will be described.

【0025】上述の従来例でも説明したように、太陽電
池10で発電される電力を効率よく蓄電池12に充電す
るためには、太陽電池10の発電電力が最大になる点で
充電操作を行う必要がある。太陽電池10の発電電圧を
Vc,発電電流をIcとし、蓄電池12の充電電圧をV
bとして,充電電流は上述の通りIbなので、太陽電池
10の発電電力Pは、 P=Vc×Ic=Vb×Ib (1) となる。ここで、一般に蓄電池12においては充電電圧
Vbが充電操作中ほぼ一定になっているので、太陽電池
10の発電電力Pが最大になる点は、充電電流Ibが最
大になる点とほぼ等しくなる。またこの点では、太陽電
池10の発電電圧Vcが図9に示されたVpに一致して
いる。
As described in the above-mentioned conventional example, in order to efficiently charge the electric power generated by the solar cell 10 to the storage battery 12, it is necessary to perform a charging operation at a point where the electric power generated by the solar cell 10 is maximized. There is. The generated voltage of the solar cell 10 is Vc, the generated current is Ic, and the charging voltage of the storage battery 12 is Vc.
As b, since the charging current is Ib as described above, the generated power P of the solar cell 10 is as follows: P = Vc × Ic = Vb × Ib (1) Here, since the charging voltage Vb of the storage battery 12 is generally constant during the charging operation, the point at which the generated power P of the solar cell 10 becomes maximum is substantially equal to the point at which the charging current Ib becomes maximum. At this point, the power generation voltage Vc of the solar cell 10 matches Vp shown in FIG.

【0026】従って、本実施例においては、電圧計28
により測定される充電電流Ibが最大になるように、制
御回路24によって変圧手段23のスイッチ22の開閉
を制御している。これにより、太陽電池10の発電電力
を効率よく充電することができる。
Therefore, in this embodiment, the voltmeter 28
The control circuit 24 controls the opening and closing of the switch 22 of the transforming means 23 so that the charging current Ib measured by the above becomes maximum. Thereby, the power generated by the solar cell 10 can be charged efficiently.

【0027】図1において、蓄電池12の充電電流の値
が電流測定用電圧計28から制御回路24に入力され、
制御回路24から制御信号Scが出力されて、この制御
信号Scによりスイッチ22の開と閉との時間の比が決
定される。変圧手段23では、スイッチ22の開と閉と
の時間の比によって入出力電圧の比が決定される。
In FIG. 1, the value of the charging current of the storage battery 12 is input from the current measuring voltmeter 28 to the control circuit 24,
A control signal Sc is output from the control circuit 24, and the ratio of the time between opening and closing of the switch 22 is determined by the control signal Sc. In the transformer 23, the ratio of the input and output voltages is determined by the ratio of the time of opening and closing of the switch 22.

【0028】一方、上述の通り、蓄電池12の充電電圧
Vbは充電操作中一定なので、スイッチ22の動作によ
り太陽電池10の発電電圧Vc,発電電流Icが変化
し、充電電流Ibが最大に制御される。より具体的に
は、発電電圧Vcが上記Vpに一致するようにスイッチ
22の開と閉との時間の比が制御される。
On the other hand, as described above, since the charging voltage Vb of the storage battery 12 is constant during the charging operation, the power generation voltage Vc and the power generation current Ic of the solar cell 10 are changed by the operation of the switch 22, and the charging current Ib is controlled to the maximum. You. More specifically, the ratio of the opening and closing times of the switch 22 is controlled so that the generated voltage Vc matches the above Vp.

【0029】以上の構成によれば、蓄電池10の充電電
圧Vbに依存しない制御ができるため、太陽電池10の
電圧を自由に選ぶことができる。また、スイッチ22を
開にしておけば、回路を切替えることなくスルーとして
使えるので、シンプルで信頼性も高くなる。
According to the above configuration, since the control can be performed without depending on the charging voltage Vb of the storage battery 10, the voltage of the solar cell 10 can be freely selected. Further, if the switch 22 is opened, the circuit can be used as a through circuit without switching the circuit, so that the reliability is increased simply.

【0030】図2には、上述の制御回路24の構成のブ
ロック図が示される。図2において、充電電流Ibは、
2つのサンプルホールド回路30、32にサンプルホー
ルドされる。このサンプルホールドのタイミングは、デ
ィザ回路34によって決定される。すなわち、ディザ回
路34では所定周期で振動する周期信号が発生される。
例えば、本実施例では三角波信号が使用されている。こ
の信号の最大値と最小値のタイミングで上述のサンプル
ホールドが行われる。図2では、最大値のタイミングが
A,最小値のタイミングがBで示されるが、サンプルホ
ールド回路30には最大値のタイミングAで、サンプル
ホールド回路32には最小値のタイミングBで充電電流
Ibがそれぞれサンプルホールドされる。
FIG. 2 is a block diagram showing the configuration of the control circuit 24 described above. In FIG. 2, the charging current Ib is
The sample is held by the two sample and hold circuits 30 and 32. The timing of this sample hold is determined by the dither circuit 34. That is, the dither circuit 34 generates a periodic signal that oscillates at a predetermined cycle.
For example, in this embodiment, a triangular wave signal is used. The above-described sample hold is performed at the timing of the maximum value and the minimum value of this signal. In FIG. 2, the timing of the maximum value is indicated by A, and the timing of the minimum value is indicated by B. The charging current Ib at the timing A of the maximum value in the sample and hold circuit 30 and the timing B of the minimum value in the sample and hold circuit 32. Are sampled and held, respectively.

【0031】サンプルホールド回路30、32にサンプ
ルホールドされた充電電流Ibは、比較器36で比較さ
れ、サンプルホールド回路30のホールド値からサンプ
ルホールド回路32のホールド値が減算される。また、
比較器36の出力は積分器38により積分される。つま
り、本実施例においてはPI制御が用いられている。
The charging current Ib sampled and held by the sample and hold circuits 30 and 32 is compared by the comparator 36, and the hold value of the sample and hold circuit 32 is subtracted from the hold value of the sample and hold circuit 30. Also,
The output of the comparator 36 is integrated by an integrator 38. That is, in this embodiment, PI control is used.

【0032】積分器38の出力は、加算器40でディザ
回路34の出力信号、すなわち三角波信号と加え合わせ
られる。この加算器40の出力は、比較器42の反転端
子に入力される。また、比較器42の非反転端子には三
角波信号発信器44から三角波信号が入力され、前述の
加算器40の出力との大小によりパルス幅変調されたパ
ルス信号が比較器42から出力される。このパルス信号
がスイッチ22の制御信号Scとなる。この場合、加算
器40の出力が三角波信号より高い時にはパルス信号が
高レベルとなり、逆の時は低レベルとなるので、加算器
40の出力の高低によりパルス信号のデューティ比が決
定される。ここで比較器42と三角波信号発信器44と
は本発明の変調回路を構成する。
The output of the integrator 38 is added by the adder 40 to the output signal of the dither circuit 34, that is, the triangular wave signal. The output of the adder 40 is input to the inverting terminal of the comparator 42. Further, a triangular wave signal is input to the non-inverting terminal of the comparator 42 from the triangular wave signal transmitter 44, and a pulse signal whose pulse width is modulated by the magnitude of the output of the adder 40 is output from the comparator 42. This pulse signal becomes the control signal Sc for the switch 22. In this case, when the output of the adder 40 is higher than the triangular wave signal, the pulse signal is at a high level, and when the output is opposite, the pulse signal is at a low level. Therefore, the duty ratio of the pulse signal is determined by the level of the output of the adder 40. Here, the comparator 42 and the triangular wave signal transmitter 44 constitute a modulation circuit of the present invention.

【0033】次に、上記制御回路24の動作と変圧手段
23の制御方式とについて説明する。
Next, the operation of the control circuit 24 and the control method of the transformer 23 will be described.

【0034】上述したように、比較器42の出力である
パルス信号によりスイッチ22の開閉が制御されるが、
本実施例においては、パルス信号の高レベルの時にスイ
ッチ22が閉となり、低レベルの時に開となるように構
成しておく。この結果、加算器40の出力が高くなると
パルス信号の高レベルの時間が短くなるのでスイッチ2
2の閉じている時間も短くなって、太陽電池10の発電
電圧Vcが高くなる。反対に、加算器40の出力が低く
なるとスイッチ22の閉じている時間が長くなり、発電
電圧Vcも低くなる。
As described above, the opening and closing of the switch 22 is controlled by the pulse signal output from the comparator 42.
In the present embodiment, the switch 22 is configured to be closed when the pulse signal is at a high level and to be opened when the pulse signal is at a low level. As a result, when the output of the adder 40 becomes high, the high level time of the pulse signal becomes short.
2 is also shortened, and the power generation voltage Vc of the solar cell 10 is increased. Conversely, when the output of the adder 40 decreases, the time during which the switch 22 is closed increases, and the power generation voltage Vc also decreases.

【0035】また、加算器40では積分器38の出力に
ディザ回路34の出力信号が加え合わせられているの
で、その出力はディザ回路34の出力信号と同じ周期で
振動している。このため、制御信号Scであるパルス信
号のデューティ比も同様に振動し、太陽電池10の発電
電圧Vcも同じ周期で振動する。この結果、充電電流I
bもディザ回路34の出力信号と同じ周期で振動するこ
とになる。この様子が図3に示される。
Since the output signal of the dither circuit 34 is added to the output of the integrator 38 in the adder 40, the output oscillates at the same cycle as the output signal of the dither circuit 34. Therefore, the duty ratio of the pulse signal, which is the control signal Sc, also oscillates, and the power generation voltage Vc of the solar cell 10 oscillates in the same cycle. As a result, the charging current I
b also oscillates in the same cycle as the output signal of the dither circuit 34. This is shown in FIG.

【0036】一方、比較器36では、サンプルホールド
回路30のサンプルホールド値から、サンプルホールド
回路32のサンプルホールド値が減算されるので、ディ
ザ回路34の出力信号の最大値のタイミングAにおける
充電電流Ibと最小値のタイミングBにおける充電電流
Ibとの大小によってその出力信号の正負が決まる。す
なわち比較器36の出力は、充電電流Ibが太陽電池1
0の発電電圧Vcの増加とともに増加する時は正にな
り、減少する時は負になる。
On the other hand, the comparator 36 subtracts the sample-and-hold value of the sample-and-hold circuit 32 from the sample-and-hold value of the sample-and-hold circuit 30, so that the charging current Ib at the timing A of the maximum value of the output signal of the dither circuit 34 is obtained. The sign of the output signal is determined by the magnitude of the charging current Ib at the timing B of the minimum value. That is, the output of the comparator 36 indicates that the charging current Ib is
It becomes positive when it increases with an increase in the generated voltage Vc of 0, and becomes negative when it decreases.

【0037】前述した図9によれば、発電電圧Vcが最
適値Vpより低い場合には充電電流Ibが発電電圧Vc
の増加とともに増加し、発電電圧Vcが最適値Vpより
高い場合には充電電流Ibは発電電圧Vcが増加すると
減少する。従って、以下発電電圧Vcが最適値Vpより
低い場合と高い場合に分けて説明する。
According to FIG. 9 described above, when the generated voltage Vc is lower than the optimum value Vp, the charging current Ib is reduced to the generated voltage Vc.
When the generated voltage Vc is higher than the optimum value Vp, the charging current Ib decreases as the generated voltage Vc increases. Therefore, the case where the power generation voltage Vc is lower than the optimum value Vp and the case where it is higher than the optimum value Vp will be described separately.

【0038】図4には、図9に示された発電電圧対発電
電力の関係のうち、発電電圧Vcが最適値Vpより低い
場合が示される。発電電力Pは、発電電圧Vcが高くな
ると増加し、充電電流Ibも増加するが、反対に発電電
圧Vcが低くなると充電電流Ibは減少する。
FIG. 4 shows a case where the generated voltage Vc is lower than the optimum value Vp in the relationship between the generated voltage and the generated power shown in FIG. The generated power P increases as the generated voltage Vc increases, and the charging current Ib also increases. Conversely, as the generated voltage Vc decreases, the charging current Ib decreases.

【0039】ディザ回路34からは、図5(a)に示さ
れるような周期信号が発生され、これが加算器40で積
分器38の出力に加算される。この結果、図3に示され
るように、充電電流Ibも同じ周期で振動することにな
るが、前述のように加算器40の出力の高低と発電電圧
Vcの高低とは同じタイミングなので、ディザ回路34
の出力信号の最大値、最小値のタイミングA,Bと充電
電流Ibの極大、極小のタイミングとは一致している。
この様子が図5(b)に示される。図5(b)では、充
電電流Ibが増加傾向にある場合が示されているが、減
少傾向にある場合でも、ディザ回路34の出力信号の最
大値、最小値のタイミングA,Bと充電電流Ibの極
大、極小との関係は同様である。
The dither circuit 34 generates a periodic signal as shown in FIG. 5A, which is added to the output of the integrator 38 by the adder 40. As a result, as shown in FIG. 3, the charging current Ib also oscillates in the same cycle. However, since the level of the output of the adder 40 and the level of the generated voltage Vc are the same as described above, the dither circuit 34
The timings A and B of the maximum value and the minimum value of the output signal of FIG. 4 coincide with the maximum and minimum timings of the charging current Ib.
This state is shown in FIG. FIG. 5B shows a case where the charging current Ib is increasing. However, even when the charging current Ib is decreasing, the timings A and B of the maximum value and the minimum value of the output signal of the dither circuit 34 and the charging current are shown. The relationship between Ib maximum and minimum is the same.

【0040】比較器36ではタイミングAにおける充電
電流IbからタイミングBにおける充電電流Ibが減算
される。上記説明の通り、充電電流IbはタイミングA
で極大、タイミングBで極小となるので、比較器36の
出力は、図5(c)に示されるように常に正となる。こ
れは、図5(b)に示されるような充電電流Ibが増加
傾向にある場合に限られず、減少傾向にある場合でも同
じ結果になる。この結果、積分器38の出力は、図5
(d)に示されるように増加して行く。
In the comparator 36, the charging current Ib at the timing B is subtracted from the charging current Ib at the timing A. As described above, the charging current Ib is at the timing A
At the timing B, the output of the comparator 36 is always positive as shown in FIG. This is not limited to the case where the charging current Ib is increasing as shown in FIG. 5B, and the same result is obtained even when the charging current Ib is decreasing. As a result, the output of the integrator 38 is
It increases as shown in (d).

【0041】この積分器38の出力にディザ回路34の
出力が加算器40で加算された様子が図5(e)に示さ
れる。加算器40の出力はディザ回路34の出力信号と
同じ周期で振動しながら増加している。
FIG. 5E shows that the output of the dither circuit 34 is added to the output of the integrator 38 by the adder 40. The output of the adder 40 increases while oscillating at the same cycle as the output signal of the dither circuit 34.

【0042】以上の結果、太陽電池10の発電電圧Vc
もディザ回路34の出力信号と同じ周期で振動しながら
増加し、最適値Vpに向かって上昇して行く。この様子
が図5(f)に示される。この時、発電電圧Vcは最適
値Vpより低いので、充電電流Ibも、図3に示される
ように、発電電圧Vcに伴って振動しながら増加し、そ
の最大値Imaxに向かって上昇して行く。
As a result, the generated voltage Vc of the solar cell 10
Also increases while oscillating at the same cycle as the output signal of the dither circuit 34, and increases toward the optimum value Vp. This state is shown in FIG. At this time, since the generated voltage Vc is lower than the optimum value Vp, the charging current Ib also increases while oscillating with the generated voltage Vc and increases toward the maximum value Imax, as shown in FIG. .

【0043】次に、図9に示された発電電圧対発電電力
の関係のうち、発電電圧Vcが最適値Vpより高い場合
について説明する。図6にはこの場合が示されており、
発電電力Pは、発電電圧Vcが高くなると減少し、充電
電流Ibも減少するが、反対に発電電圧Vcが低くなる
と充電電流Ibは増加する。
Next, of the relationship between the generated voltage and the generated power shown in FIG. 9, the case where the generated voltage Vc is higher than the optimum value Vp will be described. FIG. 6 illustrates this case.
The generated power P decreases as the generated voltage Vc increases, and the charging current Ib also decreases. Conversely, the charging current Ib increases as the generated voltage Vc decreases.

【0044】図7(a)には、図5aと同じディザ回路
34の出力信号が示され、図7(b)にはこの出力信号
と同じ周期で振動する充電電流Ibが示される。ただ
し、図7(b)では、ディザ回路34の出力信号の最大
値のタイミングAで充電電流Ibが極小となり、最小値
のタイミングBで極大となっていることが図5(b)と
異なる点である。なお、図7(b)では、充電電流Ib
が増加傾向にある場合が示されているが、減少傾向にあ
る場合でも同様である点は図5(b)と同じである。
FIG. 7A shows an output signal of the same dither circuit 34 as in FIG. 5A, and FIG. 7B shows a charging current Ib oscillating at the same cycle as the output signal. However, FIG. 7B is different from FIG. 5B in that the charging current Ib is minimized at the timing A of the maximum value of the output signal of the dither circuit 34 and is maximized at the timing B of the minimum value. It is. In FIG. 7B, the charging current Ib
FIG. 5B shows a case in which is increasing, but the same applies to a case in which it is decreasing.

【0045】この結果、比較器36では、充電電流Ib
の極小値から極大値を減算することになり、比較器36
の出力は図7(c)に示されるように常に負となる。従
って、図5(c)とは逆の結果になっている。
As a result, in the comparator 36, the charging current Ib
The maximum value is subtracted from the minimum value of
Is always negative as shown in FIG. 7 (c). Therefore, the result is opposite to that of FIG.

【0046】この比較器36の出力が積分器38で積分
されるので、図7(d)に示されるように、積分器38
の出力は減少して行く。
Since the output of the comparator 36 is integrated by the integrator 38, as shown in FIG.
Output decreases.

【0047】積分器38の出力には、ディザ回路34の
出力が加算器40で加算されるが、その様子が図7
(e)に示される。加算器40の出力はディザ回路34
の出力信号と同じ周期で振動しながら減少している。
The output of the dither circuit 34 is added to the output of the integrator 38 by the adder 40, as shown in FIG.
It is shown in (e). The output of adder 40 is a dither circuit 34
And decreases while oscillating at the same cycle as the output signal.

【0048】以上の結果、太陽電池10の発電電圧Vc
もディザ回路34の出力信号と同じ周期で振動しながら
減少し、最適値Vpに向かって低下して行く。この様子
が図7(f)に示される。この時、発電電圧Vcは最適
値Vpより高いので、充電電流Ibは、図3に示される
ように、発電電圧Vcに伴って振動しながら増加し、そ
の最大値Imaxに向かって上昇して行く。
As a result, the generated voltage Vc of the solar cell 10
Also decreases while oscillating at the same cycle as the output signal of the dither circuit 34, and decreases toward the optimum value Vp. This is shown in FIG. At this time, since the generated voltage Vc is higher than the optimum value Vp, the charging current Ib increases while oscillating with the generated voltage Vc and increases toward the maximum value Imax, as shown in FIG. .

【0049】以上の説明の通り、発電電圧Vcが最適値
Vpより低い場合も高い場合も、本実施例の制御方式に
より、常に発電電圧Vcが最適値Vpに近付くように制
御され、充電電流Ibも最大値Imaxに収束して行く
事がわかる。この様子が、図3に示される。尚、図9に
示されるように、最適値Vpの付近では、発電電圧Vc
が変化しても発電電力Pはあまり変化しない。この結
果、図3に示されるように、充電電流IbがImaxに
近付くと、その振幅は小さくなる。
As described above, regardless of whether the generated voltage Vc is lower or higher than the optimum value Vp, the control method of this embodiment controls the generated voltage Vc to always approach the optimum value Vp, and the charging current Ib Also converge to the maximum value Imax. This is shown in FIG. Note that, as shown in FIG. 9, the power generation voltage Vc near the optimum value Vp.
Does not change much. As a result, as shown in FIG. 3, when the charging current Ib approaches Imax, its amplitude decreases.

【0050】以上説明した実施例では、装置を全てアナ
ログで構成しているので、装置を小型化することができ
る。このため太陽電池10の各セルに1個づつ蓄電装置
を装備することができる。このようにすると、太陽電池
10の各セルごとに最適な制御が可能となり、より効率
的な運転が可能となる。
In the embodiment described above, since the devices are all constituted by analog, the size of the device can be reduced. For this reason, each cell of the solar cell 10 can be provided with one power storage device. In this manner, optimal control can be performed for each cell of the solar cell 10, and more efficient operation can be performed.

【0051】[0051]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、蓄電池の充電電流のみを検出し、この充電
電流が最大値となるように制御する構成としたので、蓄
電池の電圧を読む方法に比べて回路構成が簡単になり信
頼性が向上するとともにコストを低くすることができ
る。また、全てアナログ回路で構成したので、マイコン
等の高価な回路を用いる必要がなく、低コストで高い信
頼性が得られる。更に、装置を小型化でき消費電流を低
くおさえることができるので、光が弱い時等には特に有
利である。
As described above, according to the first aspect of the present invention, only the charging current of the storage battery is detected and the control is performed so that this charging current becomes the maximum value. The circuit configuration is simpler than that of the method of reading, and the reliability can be improved and the cost can be reduced. In addition, since all were configured with analog circuits, the microcomputer
It is not necessary to use expensive circuits such as
Reliability is obtained. Furthermore, the device can be downsized and current consumption can be reduced.
This is especially useful when the light is weak.
It is profitable.

【0052】[0052]

【0053】また、請求項記載の発明によれば、太陽
電池の制御をきめ細かく実施することができる。
Further, according to the second aspect of the present invention, the control of the solar cell can be performed finely.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による太陽電池発電電力の蓄電
装置の基本構成を示す回路図である。
FIG. 1 is a circuit diagram illustrating a basic configuration of a power storage device of solar cell generated power according to an embodiment of the present invention.

【図2】図1の実施例の制御回路を示すブロック図であ
る。
FIG. 2 is a block diagram showing a control circuit of the embodiment of FIG.

【図3】図1の実施例における蓄電池充電電流の制御の
説明図である。
3 is an explanatory diagram of control of a storage battery charging current in the embodiment of FIG.

【図4】発電電圧Vcが最適値Vpより低い場合の発電
電圧対発電電力の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the generated voltage and the generated power when the generated voltage Vc is lower than an optimum value Vp.

【図5】本発明の制御方法の説明図である。FIG. 5 is an explanatory diagram of a control method according to the present invention.

【図6】発電電圧Vcが最適値Vpより高い場合の発電
電圧対発電電力の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the generated voltage and the generated power when the generated voltage Vc is higher than an optimum value Vp.

【図7】本発明の制御方法の説明図である。FIG. 7 is an explanatory diagram of a control method according to the present invention.

【図8】太陽電池の電圧−電流特性図である。FIG. 8 is a voltage-current characteristic diagram of a solar cell.

【図9】太陽電池の電圧−電力特性図である。FIG. 9 is a voltage-power characteristic diagram of a solar cell.

【図10】太陽電池の電池温度−電力最大電圧特性図で
ある。
FIG. 10 is a battery temperature-power maximum voltage characteristic diagram of a solar cell.

【図11】従来の太陽電池の発電電圧制御方式を示すブ
ロック図である。
FIG. 11 is a block diagram showing a conventional power generation voltage control method for a solar cell.

【図12】従来の太陽電池の発電電力制御方式を示すブ
ロック図である。
FIG. 12 is a block diagram illustrating a conventional power generation control method for a solar cell.

【符号の説明】[Explanation of symbols]

10 太陽電池 12 蓄電池 22 スイッチ 23 変圧手段 24 制御回路 28 電圧計 30、32 サンプルホールド回路 34 ディザ回路 36、42 比較器 38 積分器 40 加算器 44 三角波信号発信器 DESCRIPTION OF SYMBOLS 10 Solar cell 12 Storage battery 22 Switch 23 Transformer 24 Control circuit 28 Voltmeter 30, 32 Sample hold circuit 34 Dither circuit 36, 42 Comparator 38 Integrator 40 Adder 44 Triangular wave signal transmitter

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−253451(JP,A) 特開 平3−18911(JP,A) 特開 平6−78474(JP,A) 特開 昭56−91633(JP,A) 特表 平3−500959(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/12 H02J 7/34 - 7/36 G05F 1/67 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-253451 (JP, A) JP-A-3-18911 (JP, A) JP-A-6-78474 (JP, A) JP-A-56- 91633 (JP, A) Special Table 3-500959 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 7/ 00-7/12 H02J 7 /34-7/36 G05F 1/67

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 太陽電池発電電力の蓄電装置であって、 太陽電池で発電される電圧を変化させる変圧手段と、 前記変圧手段から出力される電力を蓄える蓄電池の充電
電流を検出する電流検出手段と、 前記電流検出手段により検出される電流が最大となるよ
うに前記変圧手段を制御する制御手段と、 を備え、前記制御手段は、 所定周期で振動する周期信号を発生するディザ回路と、 前記ディザ回路から発生された周期信号の最大値および
最小値のタイミングで前記電流検出手段による電流検出
値をそれぞれサンプルホールドする一対のサンプルホー
ルド回路と、 前記各サンプルホールド回路の出力を比較する比較器
と、 前記比較器の出力信号を積分する積分器と、 前記積分器の出力信号と前記ディザ回路から発生された
周期信号とを加算する加算器と、 前記加算器の出力信号をパルス幅変調し、前記変圧手段
を制御するための制御信号を発生する変調回路と、を有
し、 前記比較器が、前記周期信号の最大値のタイミングにお
ける前記電流検出値が前記周期信号の最小値のタイミン
グにおける前記電流検出値より大きい場合には前記積分
器の出力を増加させ、小さい場合には減少させるように
信号を出力する ことを特徴とする太陽電池発電電力の蓄
電装置。
1. A power storage device for generating electric power of a solar cell, comprising: a voltage converting means for changing a voltage generated by the solar cell; and a current detecting means for detecting a charging current of the storage battery for storing electric power output from the voltage converting means. When, and a control means for current detected by said current detecting means to control said transformer means so as to maximize the control means comprises a dither circuit for generating a periodic signal oscillating at a predetermined period, the The maximum value of the periodic signal generated from the dither circuit and
Current detection by the current detection means at the timing of the minimum value
A pair of sample holes that sample and hold the values
And a comparator for comparing the output of each of the sample and hold circuits.
When, an integrator for integrating the output signal of the comparator, is generated the output signal of the integrator from the dither circuit
An adder for adding a periodic signal, and an output signal of the adder, which performs pulse width modulation,
A modulation circuit for generating a control signal for controlling the
And the comparator detects the timing of the maximum value of the periodic signal.
The detected current value is the minimum value of the periodic signal.
If the current is greater than the current detection value in the
Increase the output of the vessel and decrease it if it is small
A power storage device for solar cell generated power, which outputs a signal .
【請求項2】 請求項1記載の太陽電池発電電力の蓄電
装置を備えることを特徴とする太陽電池
2. A solar cell comprising: a power storage device of the solar cell power generation according to claim 1, wherein.
JP13033794A 1994-06-13 1994-06-13 Power storage device for solar power Expired - Fee Related JP3267054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13033794A JP3267054B2 (en) 1994-06-13 1994-06-13 Power storage device for solar power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13033794A JP3267054B2 (en) 1994-06-13 1994-06-13 Power storage device for solar power

Publications (2)

Publication Number Publication Date
JPH07336910A JPH07336910A (en) 1995-12-22
JP3267054B2 true JP3267054B2 (en) 2002-03-18

Family

ID=15031964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13033794A Expired - Fee Related JP3267054B2 (en) 1994-06-13 1994-06-13 Power storage device for solar power

Country Status (1)

Country Link
JP (1) JP3267054B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445943B1 (en) 1994-09-15 2002-09-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US6611141B1 (en) 1998-12-23 2003-08-26 Howmedica Leibinger Inc Hybrid 3-D probe tracked by multiple sensors
US6687531B1 (en) 1994-09-15 2004-02-03 Ge Medical Systems Global Technology Company, Llc Position tracking and imaging system for use in medical applications
WO2006101107A1 (en) * 2005-03-22 2006-09-28 Sankyo Kobunshi Co., Ltd. Charging apparatus
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7725162B2 (en) 2000-01-27 2010-05-25 Howmedica Leibinger Inc. Surgery system
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US7881770B2 (en) 2000-03-01 2011-02-01 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US8007448B2 (en) 2004-10-08 2011-08-30 Stryker Leibinger Gmbh & Co. Kg. System and method for performing arthroplasty of a joint and tracking a plumb line plane
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8382765B2 (en) 2007-08-07 2013-02-26 Stryker Leibinger Gmbh & Co. Kg. Method of and system for planning a surgery
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
KR101400092B1 (en) 2013-07-26 2014-05-28 (주)에너지와공조 Apparatus and method of charging battery using solar cell
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05013962A (en) * 2003-06-17 2006-08-11 Ecosol Solar Technologies Ltd A two stage energy storage device.
JP4791689B2 (en) 2003-10-06 2011-10-12 パナソニック株式会社 Power supply
WO2006001088A1 (en) * 2004-06-24 2006-01-05 Firac International Co., Ltd. Solar cell-type charger
JP2008159867A (en) * 2006-12-25 2008-07-10 Nippon Telegr & Teleph Corp <Ntt> Solar cell power generator
TWI388103B (en) * 2008-06-19 2013-03-01 Macroblock Inc Photovoltaic circuit
JP4653202B2 (en) * 2008-09-05 2011-03-16 日本電信電話株式会社 Charging circuit and charging method
JP5499654B2 (en) 2009-11-20 2014-05-21 ソニー株式会社 Power storage control device and power storage control method
JP5569044B2 (en) 2010-03-03 2014-08-13 ソニー株式会社 Power control apparatus, power control method, and power supply system
JP5591641B2 (en) 2010-09-17 2014-09-17 ローム株式会社 Charging circuit, control IC thereof, and electronic device using the same
CN106774610A (en) * 2017-01-06 2017-05-31 青岛天盈华智科技有限公司 A kind of MPPT control method and its device

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US8473026B2 (en) 1994-09-15 2013-06-25 Ge Medical Systems Global Technology Company System for monitoring a position of a medical instrument with respect to a patient's body
US6687531B1 (en) 1994-09-15 2004-02-03 Ge Medical Systems Global Technology Company, Llc Position tracking and imaging system for use in medical applications
US6694167B1 (en) 1994-09-15 2004-02-17 Ge Medical Systems Global Technology Company, Llc System for monitoring a position of a medical instrument with respect to a patient's head
US6738656B1 (en) 1994-09-15 2004-05-18 Ge Medical Systems Global Technology Company, Llc Automatic registration system for use with position tracking an imaging system for use in medical applications
US6445943B1 (en) 1994-09-15 2002-09-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
US8105339B2 (en) 1997-12-12 2012-01-31 Sofamor Danek Holdings, Inc. Image guided spinal surgery guide system and method for use thereof
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
US6611141B1 (en) 1998-12-23 2003-08-26 Howmedica Leibinger Inc Hybrid 3-D probe tracked by multiple sensors
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US8548565B2 (en) 1999-10-28 2013-10-01 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8290572B2 (en) 1999-10-28 2012-10-16 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US7725162B2 (en) 2000-01-27 2010-05-25 Howmedica Leibinger Inc. Surgery system
US7881770B2 (en) 2000-03-01 2011-02-01 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US8634897B2 (en) 2000-04-07 2014-01-21 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US8320653B2 (en) 2000-06-14 2012-11-27 Medtronic Navigation, Inc. System and method for image based sensor calibration
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8046052B2 (en) 2002-11-19 2011-10-25 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8401616B2 (en) 2002-11-19 2013-03-19 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8467853B2 (en) 2002-11-19 2013-06-18 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US11707363B2 (en) 2003-01-30 2023-07-25 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US11684491B2 (en) 2003-01-30 2023-06-27 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US8706185B2 (en) 2003-10-16 2014-04-22 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7818044B2 (en) 2003-10-17 2010-10-19 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8549732B2 (en) 2003-10-17 2013-10-08 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US8359730B2 (en) 2003-10-17 2013-01-29 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US8271069B2 (en) 2003-10-17 2012-09-18 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7971341B2 (en) 2003-10-17 2011-07-05 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US8007448B2 (en) 2004-10-08 2011-08-30 Stryker Leibinger Gmbh & Co. Kg. System and method for performing arthroplasty of a joint and tracking a plumb line plane
WO2006101107A1 (en) * 2005-03-22 2006-09-28 Sankyo Kobunshi Co., Ltd. Charging apparatus
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US8467851B2 (en) 2005-09-21 2013-06-18 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US8382765B2 (en) 2007-08-07 2013-02-26 Stryker Leibinger Gmbh & Co. Kg. Method of and system for planning a surgery
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8731641B2 (en) 2008-12-16 2014-05-20 Medtronic Navigation, Inc. Combination of electromagnetic and electropotential localization
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
KR101400092B1 (en) 2013-07-26 2014-05-28 (주)에너지와공조 Apparatus and method of charging battery using solar cell
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11801024B2 (en) 2015-10-28 2023-10-31 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient

Also Published As

Publication number Publication date
JPH07336910A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
JP3267054B2 (en) Power storage device for solar power
US5003454A (en) Power supply with improved power factor correction
US6020729A (en) Discrete-time sampling of data for use in switching regulators
US5932994A (en) Solar cell power source device
US6429621B1 (en) Solar power charging system
US9071127B2 (en) Direct current voltage conversion circuit having multiple operational configurations
US5804950A (en) Input current modulation for power factor correction
US8085011B1 (en) Boost regulator using synthetic ripple regulation
WO1995022092A1 (en) Boost converter power supply with reduced losses, control circuit and method therefor
US10461236B2 (en) Thermoelectric generator
EP0383815A1 (en) Current mode converter with controlled slope compensation
KR20010002302A (en) Power Factor Compensation Controller
US6577110B2 (en) DC-to-DC converter with constant ripple current regulation for continuous and discontinuous conduction mode operation
JP2946091B2 (en) Switching regulator
JP2009207239A (en) Charging controller for solar cells
CN116633139B (en) Power converter, ramp signal generator thereof and ramp signal generating method
JP3293683B2 (en) DC power supply
US20120013312A1 (en) Power Control Device and Method thereof
JP3809923B2 (en) Solar battery charger
JP4108313B2 (en) Solar cell power generation system
JP3488348B2 (en) DC power supply device combined with solar cell and control method thereof
EP1489716B1 (en) A battery-charger device with improved stability
FR2737946A1 (en) Control device for controlling supply to asynchronous alternating current machine, e.g. AC motor
JPH05130743A (en) Power supply apparatus
JP3233180B2 (en) Inverter control circuit of instantaneous voltage drop compensator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees