JP3264862B2 - Transfer cable - Google Patents

Transfer cable

Info

Publication number
JP3264862B2
JP3264862B2 JP15290597A JP15290597A JP3264862B2 JP 3264862 B2 JP3264862 B2 JP 3264862B2 JP 15290597 A JP15290597 A JP 15290597A JP 15290597 A JP15290597 A JP 15290597A JP 3264862 B2 JP3264862 B2 JP 3264862B2
Authority
JP
Japan
Prior art keywords
cable
wire
disconnection
resistance value
shielding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15290597A
Other languages
Japanese (ja)
Other versions
JPH10326526A (en
Inventor
孝 田中
恭数 安藤
俊秋 伊東
哲 門口
昌広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Toenec Corp
Original Assignee
Chubu Electric Power Co Inc
Sumitomo Electric Industries Ltd
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Sumitomo Electric Industries Ltd, Toenec Corp filed Critical Chubu Electric Power Co Inc
Priority to JP15290597A priority Critical patent/JP3264862B2/en
Publication of JPH10326526A publication Critical patent/JPH10326526A/en
Application granted granted Critical
Publication of JP3264862B2 publication Critical patent/JP3264862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は架空配電線の無停電
バイパス工法などで使用される移動用ケーブルとそのケ
ーブルにおける遮蔽層の断線検知方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving cable used in an uninterruptible bypass method for overhead distribution lines and a method for detecting a disconnection of a shielding layer in the cable.

【0002】[0002]

【従来の技術】移動用ケーブルには、保安上の観点とケ
ーブル性能確保の観点から外部半導電層の上に遮蔽層が
施されている。通常、この遮蔽層は0.12mmφ〜0.20mmφ
程度の細径銅線(金属素線)を織り込んだ編組構造とさ
れ、使用中にケーブルに加わる繰り返しの曲げ、張力、
捻回などの外力に耐え得るよう構成されている。例え
ば、図7(A)に示すように、複数の細径銅線15を束ね
て1単位とした集合体16と綿糸17とを用い、集合体16を
一方向に配列し、これと交差する方向に綿糸17を織り込
んだ交織編組を採用するケースが多い。
2. Description of the Related Art A mobile cable is provided with a shielding layer on an outer semiconductive layer from the viewpoint of security and ensuring the performance of the cable. Usually, this shielding layer is 0.12mmφ ~ 0.20mmφ
It has a braided structure in which a small-diameter copper wire (metal wire) is woven, and the repeated bending, tension,
It is configured to withstand external forces such as twisting. For example, as shown in FIG. 7 (A), a plurality of small-diameter copper wires 15 are bundled to form a unit 16 and a cotton yarn 17, and the aggregates 16 are arranged in one direction and intersect therewith. In many cases, a weaving braid in which cotton yarn 17 is woven in the direction is used.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の構造の
移動用ケーブルは遮蔽層における金属素線の断線を効果
的に検知できないという問題があった。
However, the conventional moving cable has a problem that the breaking of the metal element wire in the shielding layer cannot be effectively detected.

【0004】遮蔽層の金属素線が全て断線すると、断線
箇所から遠方は非接地となり大変危険である。そのた
め、一部の金属素線に断線が生じた段階でこれを検知す
ることが望まれる。現在のところ、この断線を検知する
には遮蔽層の抵抗値を測定し、導通金属素線の減少状況
を抵抗値の経時変化から推定する方法が最も実用的であ
る。
[0004] If all the metal wires of the shielding layer are broken, the portion far from the broken portion is not grounded, which is very dangerous. Therefore, it is desired to detect the disconnection of some of the metal wires at the stage where the disconnection has occurred. At present, the most practical method for detecting this disconnection is to measure the resistance value of the shielding layer and estimate the state of decrease in the conductive metal wires from the change with time in the resistance value.

【0005】ところが、図7(B)に示すように、遮蔽
層における細径銅線15の1本が断線しても、隣接する細
径銅線を介して導通路が形成されるため抵抗値はほとん
ど変化しない。ある集合体における全ての金属素線が断
線してようやくそれに見合う抵抗値が僅かに増加するに
すぎない。その上、実際にはケーブルが屈曲,捻回など
の外力を受けると編組構造に乱れを生じ、隣接する集合
体同士もケーブル長手方向のどこかで接触することにな
る。そのため、ほぼ全ての集合体が断線するまで遮蔽層
の導通路が維持され、抵抗値の増加を検知するのが極め
て難しい。もちろん、遮蔽層の素線断線に伴って導通路
が減少して抵抗が増加するケースもありうる。その場合
でも抵抗値の変化は僅かで、現場でこれを精密に測定す
ることは難しい。
However, as shown in FIG. 7B, even if one of the small diameter copper wires 15 in the shielding layer is broken, a conduction path is formed via the adjacent small diameter copper wire, so that the resistance value is low. Hardly changes. All the metal wires in a certain assembly are broken, and the resistance value corresponding thereto only slightly increases. In addition, actually, when the cable is subjected to an external force such as bending or twisting, the braided structure is disturbed, and adjacent assemblies come into contact with each other somewhere in the longitudinal direction of the cable. Therefore, the conduction path of the shielding layer is maintained until almost all the assemblies are disconnected, and it is extremely difficult to detect an increase in the resistance value. Of course, there may be a case where the conduction path decreases and the resistance increases due to the disconnection of the wire of the shielding layer. Even in such a case, the change in the resistance value is slight, and it is difficult to accurately measure the resistance value on site.

【0006】従って、本発明の主目的は、遮蔽層の金属
素線の断線が部分的に発生した段階でも容易に検知でき
る移動用ケーブルとその断線検知方法とを提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a moving cable and a disconnection detecting method which can easily detect even when a disconnection of a metal wire of a shielding layer occurs partially.

【0007】[0007]

【課題を解決するための手段】本発明は導通チェックに
より断線の判断ができる断線検知線を金属素線の集合体
の各々に複合することで上記の目的を達成する。すなわ
ち、本発明移動用ケーブルは、金属素線の集合体が織り
込まれた編組構造の遮蔽層を具える移動用ケーブルにお
いて、集合体の各々に絶縁被覆を有する少なくとも1本
の断線検知線を複合することを特徴とする。
According to the present invention, the above object is attained by combining a disconnection detection line, which can determine a disconnection by a continuity check, with each of a set of metal wires. That is, the moving cable according to the present invention is a moving cable having a braided structure shielding layer in which an aggregate of metal wires is woven, wherein at least one disconnection detection wire having an insulating coating on each of the aggregates is combined. It is characterized by doing.

【0008】遮蔽層は金属素線の集合体が織り込まれた
構造である。例えば、複数の集合体を一方向に配列し、
この集合体に交差する方向に綿糸などの天然繊維やポリ
アミド樹脂などの合成繊維を織り込むことで交織編組を
構成したものが挙げられる。
The shielding layer has a structure in which an aggregate of metal wires is woven. For example, a plurality of aggregates are arranged in one direction,
One in which natural fibers such as cotton yarn or synthetic fibers such as polyamide resin are woven in a direction intersecting with the aggregate to form a cross-woven braid.

【0009】集合体は金属素線を並列したり、束ねた
り、より合わせたりすることで形成する。金属素線とし
ては細径の銅線が好適である。
The aggregate is formed by arranging, bundling, or twisting metal wires. A thin copper wire is suitable as the metal wire.

【0010】遮蔽層の断線検知は断線検知線の導通チェ
ックにより行う。断線検知線は導体に絶縁被覆を具える
ものであれば特に材質・構造は問わない。この検知線が
断線した場合に、隣接する金属素線を介して導通路を形
成しないものであればよい。例えば、エナメル線などが
好ましい。特に、JIS 3202などの規格品が好適である。
また、断線検知線と金属素線との複合の仕方も特に限定
されない。金属素線と共に束ねたりより合わせたりすれ
ばよい。
The disconnection of the shielding layer is detected by checking the continuity of the disconnection detection line. The material for detecting the disconnection is not particularly limited as long as the conductor has an insulating coating. When the detection line is broken, it is sufficient if a conduction path is not formed via the adjacent metal element wire. For example, an enameled wire is preferable. In particular, standard products such as JIS 3202 are suitable.
Further, the method of combining the disconnection detection line and the metal element wire is not particularly limited. What is necessary is just to bundle and twist together with a metal strand.

【0011】断線検知線の外径は、金属素線と同時かよ
り早く断線するように最適な値を選択する。断線検知線
の外径をd、金属線の外径をDとしたとき、d/Dを
0.5〜2.0とすることが好ましい。ケーブル使用中
の外力による遮蔽層の断線は、延性破断によるものと疲
労破断によるものとが混在している。延性破断に対して
はdの値が小さいほど、疲労破断に対してはdが大きい
ほど断線し易くなる。延性破断が支配的な使用条件では
d/Dを0.5以上とし、疲労破断が支配的な使用条件
ではd/Dを2.0以下とする。
The outer diameter of the disconnection detection wire is selected to be an optimum value so that the wire is disconnected at the same time as or earlier than the metal wire. When the outer diameter of the disconnection detection wire is d and the outer diameter of the metal wire is D, d / D is preferably 0.5 to 2.0. The disconnection of the shielding layer due to the external force during use of the cable includes both the one caused by ductile rupture and the one caused by fatigue rupture. The smaller the value of d for ductile rupture and the larger d for fatigue rupture, the easier the disconnection. The d / D is set to 0.5 or more in a use condition where ductile fracture is dominant, and is set to 2.0 or less in a use condition where fatigue fracture is dominant.

【0012】また、本発明の断線検知方法は、上記のケ
ーブルの一端において、断線検知線よりも抵抗値が大き
く、かつそれぞれの抵抗値が等しい抵抗体を各断線検知
線に直列に接続し、これらの抵抗体を並列に接続して一
端測定点を形成し、ケーブルの他端において、断線検知
線を並列に接続し他端測定点を形成して、一端測定点と
他端測定点との間の抵抗値を測定し、その抵抗値から断
線検知線の断線本数を判定することを特徴とする。
Further, according to the disconnection detecting method of the present invention, at one end of the cable, a resistor having a larger resistance value and an equal resistance value than the disconnection detection line is connected in series to each disconnection detection line, These resistors are connected in parallel to form a measurement point at one end, and at the other end of the cable, a disconnection detection line is connected in parallel to form a measurement point at the other end. The resistance value is measured between them, and the number of disconnection of the disconnection detection line is determined from the resistance value.

【0013】この抵抗体の抵抗値は単位長のケーブルに
おける断線検知線の抵抗値よりも3桁程度大きいものが
好ましい。
It is preferable that the resistance value of the resistor is about three digits larger than the resistance value of the disconnection detection line in the unit length cable.

【0014】また、他端測定点をケーブル他端の導体に
接続して、ケーブル一端の導体と一端測定点との間の抵
抗値を測定してもよい。この場合、ケーブルの一端側の
みで断線検知を行うことができる。
Further, the resistance value between the conductor at one end of the cable and the measurement point at one end may be measured by connecting the measurement point at the other end to the conductor at the other end of the cable. In this case, disconnection detection can be performed only at one end of the cable.

【0015】さらに、断線検知線と抵抗体との接続にコ
ネクタを用いることが望ましい。これにより断線検知線
と抵抗体との接続を容易にすることができ、1セットの
抵抗体で複数のケーブルの断線検知を行うことができ
る。
Further, it is desirable to use a connector for connection between the disconnection detection line and the resistor. This facilitates connection between the disconnection detection line and the resistor, and disconnection detection of a plurality of cables can be performed with one set of the resistor.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明ケーブルの構造を示す概略斜視図で
ある。図示のように、本発明ケーブルはコア1の上に遮
蔽層2を具え、その上にシース3を具える。コア1は中
心から順に、導体,内部半導電層,絶縁層,外部半導電
層(いずれも図示せず)で構成される。
Embodiments of the present invention will be described below. FIG. 1 is a schematic perspective view showing the structure of the cable of the present invention. As shown, the cable of the invention comprises a shielding layer 2 on a core 1 and a sheath 3 thereon. The core 1 is composed of a conductor, an inner semiconductive layer, an insulating layer, and an outer semiconductive layer (all not shown) in order from the center.

【0017】ここで、遮蔽層2は錫メッキ軟銅線4(白
細線)、エナメル線5(黒線)および綿糸6(白太線)
の編組構造となっている。金属素線となる複数の錫メッ
キ軟銅線4と少なくとも1本のエナメル線5とを束ねて
集合体7を形成し、この集合体7を1単位とする。そし
て、編組における右回りまたは左回りの一方に前記集合
体7を配列し、他方に綿糸6を配列して両者6,7を織
り込むことで交織編組を形成する。遮蔽層中には「一つ
の集合体に複合されたエナメル線の本数×集合体の本
数」のエナメル線が織り込まれることになる。金属素線
の総断面積はケーブル遮蔽層に誘起する電流を大地に流
すために必要な値を選択すれば良い。
Here, the shielding layer 2 is made of a tin-plated soft copper wire 4 (white thin wire), an enamel wire 5 (black wire) and a cotton yarn 6 (thick white wire).
It has a braided structure. A plurality of tin-plated soft copper wires 4 serving as metal wires and at least one enamel wire 5 are bundled to form an aggregate 7, and the aggregate 7 is defined as one unit. Then, the aggregate 7 is arranged in one of the clockwise and counterclockwise directions in the braid, and the cotton yarns 6 are arranged in the other, and the two are woven together to form a cross-woven braid. In the shielding layer, enamel wires of “the number of enamel wires combined into one aggregate × the number of aggregates” are woven. The total cross-sectional area of the metal wires may be selected to be a value necessary for flowing the current induced in the cable shielding layer to the ground.

【0018】ケーブルが外力を受けて遮蔽層における金
属素線の断線が進展すると、それに伴ってエナメル線5
も断線する。エナメル線5は絶縁被覆を有するため、断
線しても隣接する金属素線を介して導通路を形成するこ
とがない。そのため、各エナメル線5の導通チェックを
行えば確実に金属素線の断線を検知できる。この導通チ
ェックは精密な抵抗測定と異なり、現場でも容易に実施
できる。
When the cable is subjected to an external force and the breaking of the metal element wire in the shielding layer progresses, the enameled wire 5
Also breaks. Since the enamel wire 5 has an insulating coating, a conductive path is not formed via an adjacent metal element wire even if the wire is disconnected. Therefore, if the continuity check of each enamel wire 5 is performed, disconnection of the metal element wire can be reliably detected. This continuity check can be easily performed on site, unlike a precise resistance measurement.

【0019】具体的には、図2に示すように、抵抗体22
をエナメル線21(断線検知線)に接続して測定すること
が好ましい。すなわち、ケーブル20の一端から引き出し
た各エナメル線21に抵抗体22を接続し、これらを並列に
接続して一端測定点23を形成する。ここで用いる抵抗体
22は、それぞれ同じ抵抗値で、かつエナメル線21よりも
十分抵抗値が大きいものを用いる。一方、ケーブル他端
からも引き出した各エナメル線21も並列に接続して他端
測定点24を形成する。そして、一端測定点23と他端測定
点24との間にテスタ25を接続して抵抗値の変化を読み取
る。
More specifically, as shown in FIG.
Is preferably connected to the enamel wire 21 (disconnection detection wire) for measurement. That is, the resistor 22 is connected to each enamel wire 21 drawn out from one end of the cable 20, and these are connected in parallel to form a measurement point 23 at one end. Resistor used here
For 22, those having the same resistance value and sufficiently larger resistance value than the enamel wire 21 are used. On the other hand, the enamel wires 21 drawn from the other end of the cable are also connected in parallel to form a measurement point 24 at the other end. Then, a tester 25 is connected between the one-end measurement point 23 and the other-end measurement point 24 to read a change in the resistance value.

【0020】移動用ケーブルは数m〜数十m程度の単位
長で使用されるケースが大多数である。また、通常の移
動用ケーブルの導体素線は0.18〜2.0mmφ程度
の外径である。従って、断線検知線1本当りの抵抗値は
数mΩ/単位長〜数十mΩ/単位長程度となる。
In most cases, the moving cable is used in a unit length of several meters to several tens of meters. In addition, the conductor wire of a normal moving cable has an outer diameter of about 0.18 to 2.0 mmφ. Therefore, the resistance value per disconnection detection line is about several mΩ / unit length to several tens mΩ / unit length.

【0021】ここで、前記の抵抗体を用いず、単にケー
ブル両端のエナメル線を並列に一括接続して、これら両
端の抵抗値を測定し、その抵抗値の変化からエナメル線
の断線本数を判断することも考えられるが実際上は難し
い。この場合、測定対象となる抵抗値が余りにも小さ
く、簡易なテスタ程度しか持ち合わせていない実フィー
ルドでは測定誤差が大きくなるためである。
Here, the enamel wires at both ends of the cable are simply connected together in parallel without using the resistor, and the resistance values at both ends are measured, and the number of enamel wire breaks is determined from the change in the resistance value. But it is actually difficult. In this case, the resistance value to be measured is too small, and the measurement error increases in a real field having only a simple tester.

【0022】そこで、図2に示したように、各エナメル
線21に抵抗体22を接続してこれらを並列にすることで、
簡易なテスタでも十分測定可能なレベルの抵抗値(数Ω
〜数百Ω)とする。これにより、断線チェックに要する
測定回数を1本のケーブルにつき1回にすることができ
る。
Therefore, as shown in FIG. 2, a resistor 22 is connected to each enameled wire 21 and they are connected in parallel.
A resistance value (several Ω) that can be measured sufficiently with a simple tester
To several hundred Ω). As a result, the number of measurements required for the disconnection check can be reduced to one for one cable.

【0023】例えば、19本のエナメル線を有するケー
ブルについて、各エナメル線に200Ωの抵抗体を接続
した場合、エナメル線の断線本数nと並列抵抗Rとの関
係は R=200/(19−n) (Ω) で表される。
For example, for a cable having 19 enameled wires, if a resistor of 200Ω is connected to each enameled wire, the relationship between the number n of broken enameled wires and the parallel resistance R is R = 200 / (19−n) ) (Ω).

【0024】このnとRとの関係の一例を示すと次のよ
うになる。 n(本) 0 1 2 3 … 17 18 19 R(Ω) 10.5 11.1 11.8 12.5 … 100 200 ∞ この程度の値ならば簡易なテスタでもほとんど誤差なく
測定可能であり、抵抗値の変化からエナメル線の断線本
数を判定することができる。
An example of the relationship between n and R is as follows. n (book) 0 1 2 3 ... 17 18 19 R (Ω) 10.5 11.1 11.8 12.5 ... 100 200 な ら ば With this value, a simple tester can measure with almost no error. The number of disconnections can be determined.

【0025】なお、抵抗体の抵抗値(例えば200Ω)
はエナメル線(mΩオーダ)と比べて十分大きいため、
測定上エナメル線の存在は無視できる。すなわち、本発
明方法は実質的には断線検知線の太さを問わず同じ抵抗
体を適用することができる。断線検知線に接続する抵抗
体は少なくとも断線検知線の抵抗値よりも3桁程度大き
い抵抗値を有するものが望ましい。入手の容易さを考慮
すると1Ω程度の抵抗値を有するものが好適である。
The resistance value of the resistor (for example, 200Ω)
Is sufficiently larger than the enameled wire (mΩ order)
The existence of the enamel wire can be ignored in the measurement. That is, in the method of the present invention, the same resistor can be applied regardless of the thickness of the disconnection detection line. The resistor connected to the disconnection detection line desirably has a resistance value that is at least about three orders of magnitude greater than the resistance value of the disconnection detection line. Considering availability, those having a resistance value of about 1Ω are preferable.

【0026】また、図3に示すように、ケーブル30の導
体31を返り線として用いればケーブル31の一端側のみで
断線チェックを行うことができる。すなわち、ケーブル
30の他端(図3の左側)におけるエナメル線32を一括し
た他端測定点をケーブル導体31の他端に接続する。そし
て、ケーブルの一端では各エナメル線32に接続した抵抗
体33を一括化して一端測定点34を形成し、この一端測定
点34とケーブル導体31の一端との間にテスタ35を接続し
て抵抗値の変化を測定すればよい。
As shown in FIG. 3, if the conductor 31 of the cable 30 is used as a return line, a disconnection check can be performed only at one end of the cable 31. That is, the cable
The other end measurement point where the enameled wires 32 at the other end of 30 (the left side in FIG. 3) are collectively connected to the other end of the cable conductor 31. At one end of the cable, the resistor 33 connected to each enameled wire 32 is collectively formed to form a measuring point 34 at one end, and a tester 35 is connected between the measuring point 34 at one end and one end of the cable conductor 31 to form a resistor. The change in the value may be measured.

【0027】さらに、図4に示すように、図3の構成に
加えてケーブル40の一端側(図4の右側)における各エ
ナメル線42と抵抗体43との接続にコネクタ46を用いる
と、両者42,43 の接続を容易に行えると共に、複数のケ
ーブルの導通チェックを1セットの抵抗体で行うことが
できる。
Further, as shown in FIG. 4, when a connector 46 is used to connect each enameled wire 42 and the resistor 43 at one end (right side in FIG. 4) of the cable 40 in addition to the configuration shown in FIG. The connection of 42 and 43 can be easily performed, and the continuity of a plurality of cables can be checked with one set of resistors.

【0028】このように、全ての金属素線が断線に至る
前に遮蔽層に生じた断線を検知することができる。すな
わち、集合体単位で断線が生じた場合、その集合体に複
合されていたエナメル線だけが断線され、他の集合体の
エナメル線は断線していないため、金属素線の断線が部
分的に生じた段階で遮蔽層に生じた断線を把握すること
ができる。
As described above, it is possible to detect the disconnection that has occurred in the shielding layer before all the metal wires are disconnected. In other words, when a wire break occurs in the aggregate unit, only the enamel wire that was composited in the aggregate is broken, and the enamel wires in other aggregates are not broken, so the break in the metal element wire is partially The disconnection that has occurred in the shielding layer at the stage where it has occurred can be grasped.

【0029】そして、断線検知線を金属素線よりも早く
断線するような材質・外径とし、この検知線の断線を検
知すれば、近い将来金属素線の断線が発生することを予
期することができる。
Further, if the disconnection detection wire is made of a material and an outer diameter that can be disconnected earlier than the metal wire, and if the detection wire is detected to be disconnected, it is expected that the metal wire will be disconnected in the near future. Can be.

【0030】(試験例)上記構造のケーブルに屈曲試験
を行い、遮蔽層における金属素線の断線状況とエナメル
線の断線状況とを調べた。試験方法は、図5に示すよう
に、ケーブル10の所定長(斜線部)を固定し、この固定
箇所を回転軸11に支持して、ケーブルの端部に10kg
の重り12を取り付ける。そして、回転軸11を中心にケー
ブルを180°の範囲で往復回転させ、半径50mmの
曲げをケーブル10に繰り返し与えて、曲げ回数と遮蔽層
の抵抗変化との関係を調べることとした。さらに、各エ
ナメル線の導通チェックを行い、曲げ回数とエナメル線
の断線本数との関係も調べた。
(Test Example) A bending test was performed on the cable having the above-described structure, and the state of disconnection of the metal wires and the state of disconnection of the enameled wire in the shielding layer were examined. As shown in FIG. 5, the test method is such that a predetermined length (shaded portion) of the cable 10 is fixed, the fixed portion is supported on the rotating shaft 11, and 10 kg is attached to the end of the cable.
Attach weight 12 of. Then, the cable was reciprocated in the range of 180 ° around the rotating shaft 11, and a cable having a radius of 50 mm was repeatedly applied to the cable 10 to examine the relationship between the number of times of bending and the resistance change of the shielding layer. Furthermore, the conduction of each enameled wire was checked, and the relationship between the number of bendings and the number of broken enameled wires was also examined.

【0031】試験ケーブルの遮蔽層は12本の集合体と
12本の綿糸とを交織編組したものとした。各集合体は
0.18mmφの錫メッキ軟銅線11本と0.18mm
φのエナメル線1本とを束ねて構成される。すなわち、
遮蔽層中には合計12本のエナメル線が織り込まれてい
る。ここでのd/D(dはエナメル線の外径,Dは錫メ
ッキ軟銅線の外径)は1である。
[0031] The shielding layer of the test cable was a cross-woven braid of 12 aggregates and 12 cotton yarns. Each assembly consisted of 11 0.18mmφ tinned annealed copper wires and 0.18mm
It is constructed by bundling one φ enameled wire. That is,
A total of 12 enameled wires are woven into the shielding layer. Here, d / D (d is the outer diameter of the enameled wire, D is the outer diameter of the tin-plated soft copper wire) is 1.

【0032】試験結果を図6のグラフに示す。右上がり
の曲線が曲げ回数と遮蔽層の抵抗変化との関係を示し、
ステップ状の線が曲げ回数と検知線(エナメル線)の断
線数との関係を示している。同グラフに示すように、屈
曲回数の増加に伴って遮蔽層の抵抗が増加し、錫メッキ
軟銅線の断線本数が増加していることがわかる。それに
伴ってエナメル線の断線本数も増加している。このよう
に、錫メッキ軟銅線の断線本数の増加とエナメル線の断
線数の増加がほぼ追従するため、予め定めたエナメル線
の断線本数を基準としてケーブルの寿命を判断すれば良
い。
The test results are shown in the graph of FIG. The upward-sloping curve shows the relationship between the number of bendings and the change in resistance of the shielding layer,
The step-shaped line indicates the relationship between the number of times of bending and the number of disconnections of the detection line (enameled line). As shown in the graph, it can be seen that the resistance of the shielding layer increases with an increase in the number of times of bending, and the number of broken tin-plated copper wires increases. Accordingly, the number of broken enameled wires has also increased. As described above, since the increase in the number of broken tin-plated annealed copper wires and the increase in the number of broken enameled wires substantially follow, the life of the cable may be determined based on the predetermined number of broken enameled wires.

【0033】[0033]

【発明の効果】以上説明したように、本発明ケーブルに
よれば、断線検知線の導通チェックを行うことで容易に
遮蔽層に発生した金属素線の断線を検知することができ
る。特に、金属素線が部分的に断線した段階で断線を検
知することができ、ケーブルの寿命判断を的確に行うこ
とができる。
As described above, according to the cable of the present invention, it is possible to easily detect the disconnection of the metal element wire generated in the shielding layer by checking the continuity of the disconnection detection line. In particular, the disconnection can be detected when the metal element wire is partially disconnected, and the life of the cable can be accurately determined.

【0034】また、断線検知線の外径をd、金属線の外
径をDとしたとき、d/Dを0.5〜2.0とすること
で、金属素線よりも早く検知線を断線し易くし、遮蔽層
に生じる断線を予測することができる。
When the outer diameter of the disconnection detection wire is d and the outer diameter of the metal wire is D, by setting d / D to 0.5 to 2.0, the detection wire can be formed earlier than the metal wire. Disconnection can be easily performed, and disconnection occurring in the shielding layer can be predicted.

【0035】さらに、本発明方法によれば、容易に遮蔽
層の断線チェックを行うことができる。特に、簡易なテ
スタ程度の機器でも正確に遮蔽層の断線を判断すること
ができる。
Further, according to the method of the present invention, the disconnection check of the shielding layer can be easily performed. In particular, the disconnection of the shielding layer can be accurately determined even with a simple tester.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明ケーブルの構成を示す概略斜視図であ
る。
FIG. 1 is a schematic perspective view showing a configuration of a cable of the present invention.

【図2】本発明断線検知方法の説明図である。FIG. 2 is an explanatory diagram of a disconnection detection method of the present invention.

【図3】ケーブル導体を返り線として用いる本発明断線
検知方法の説明図である。
FIG. 3 is an explanatory diagram of a disconnection detection method of the present invention using a cable conductor as a return line.

【図4】抵抗体の接続にコネクタを用いる本発明断線検
知方法の説明図である。
FIG. 4 is an explanatory diagram of a disconnection detection method of the present invention using a connector for connecting a resistor.

【図5】ケーブルの屈曲試験方法を示す説明図である。FIG. 5 is an explanatory view showing a bending test method of a cable.

【図6】屈曲試験の結果を示すグラフである。FIG. 6 is a graph showing a result of a bending test.

【図7】(A)は移動用ケーブルにおける遮蔽層の編組
構造を示す模式平面図、(B)は同遮蔽層の一部の金属
素線に断線が生じた状態を示す模式平面図である。
FIG. 7A is a schematic plan view showing a braided structure of a shielding layer in a moving cable, and FIG. 7B is a schematic plan view showing a state in which some of the metal wires of the shielding layer are broken. .

【符号の説明】[Explanation of symbols]

1 コア 2 遮蔽層 3 シース 4 錫メッキ軟銅
線 5 エナメル線 6 綿糸 7 集合体 10,20,30,40
ケーブル 11 回転軸 12 重り 15 細径銅線 16 集合体 17
綿糸 21,32,42 エナメル線 22,33,43 抵抗体 23,34,44
一端測定点 24 他端測定点 25,35,45 テスタ 31,41 導体
DESCRIPTION OF SYMBOLS 1 Core 2 Shielding layer 3 Sheath 4 Tin-plated soft copper wire 5 Enamel wire 6 Cotton thread 7 Assembly 10,20,30,40
Cable 11 Rotating shaft 12 Weight 15 Fine copper wire 16 Assembly 17
Cotton yarn 21,32,42 Enamel wire 22,33,43 Resistor 23,34,44
One end measurement point 24 The other end measurement point 25,35,45 Tester 31,41 conductor

フロントページの続き (72)発明者 田中 孝 大阪市此花区島屋一丁目1番3号 住友 電気工業株式会社大阪製作所内 (72)発明者 安藤 恭数 名古屋市東区東新町1番地 中部電力株 式会社内 (72)発明者 伊東 俊秋 長野市柳町18番地 中部電力株式会社内 (72)発明者 門口 哲 名古屋市港区千年三丁目1番32号 株式 会社トーエネック内 (72)発明者 山田 昌広 川崎市川崎区小田栄2丁目1番1号 昭 和電線電纜株式会社内 (56)参考文献 特開 平7−29427(JP,A) 特開 平8−315645(JP,A) 特開 昭59−226420(JP,A) 特開 昭63−307611(JP,A) 特開 平10−125141(JP,A) 特開 昭61−224212(JP,A) 実開 平6−45215(JP,U) 実開 昭51−63986(JP,U) 実開 昭63−77219(JP,U) 実開 昭56−112820(JP,U) 実開 昭61−53824(JP,U) 実開 昭63−56521(JP,U) 実公 昭42−2024(JP,Y1) (58)調査した分野(Int.Cl.7,DB名) H01B 7/04 H01B 7/17 H01B 7/32 Continued on the front page (72) Inventor Takashi Tanaka 1-3-1 Shimaya, Konohana-ku, Osaka-shi Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Yasunori Ando 1-Higashi Shinmachi, Higashi-ku, Nagoya Chubu Electric Power Company (72) Inventor Toshiaki Ito 18 Yanagicho, Nagano City Inside Chubu Electric Power Co., Inc. (72) Inventor Tetsu Kadoguchi 3-132, Minato-ku, Nagoya-shi Toenec Co., Ltd. (72) Inventor Masahiro Yamada Kawasaki, Kawasaki City 2-1-1, Sakae Oda-ku, Showa Electric Wire & Cable Co., Ltd. (56) References JP-A-7-29427 (JP, A) JP-A-8-315645 (JP, A) JP-A-59-226420 ( JP, A) JP-A-63-307611 (JP, A) JP-A-10-125141 (JP, A) JP-A-61-224212 (JP, A) Fully open 6-45215 (JP, U) Fully open Sho-51-63986 (JP, U) Sho-sho 63-77219 (JP, U) Sho-sho 56-112820 (JP, U) Sho-sho 61-53824 (JP, U) Sho-sho 63-56521 ( P, U) Akira real public 42-2024 (JP, Y1) (58 ) investigated the field (Int.Cl. 7, DB name) H01B 7/04 H01B 7/17 H01B 7/32

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属素線の集合体が織り込まれた編組構
造の遮蔽層を具える移動用ケーブルにおいて、 前記集合体の各々には、絶縁被覆を有する少なくとも1
本の断線検知線が複合されていることを特徴とする移動
用ケーブル。
1. A moving cable comprising a shielding layer having a braided structure in which an aggregate of metal wires is woven, wherein each of the aggregates has at least one insulating coating.
A moving cable comprising a combination of two disconnection detection lines.
【請求項2】 断線検知線の外径をd、金属線の外径を
Dとしたとき、 d/Dを0.5〜2.0としたことを特徴とする請求項
1記載の移動用ケーブル。
2. The moving device according to claim 1, wherein d / D is 0.5 to 2.0, where d is the outer diameter of the disconnection detection wire and D is the outer diameter of the metal wire. cable.
【請求項3】 請求項1記載のケーブルの一端におい
て、断線検知線よりも抵抗値が大きく、かつそれぞれの
抵抗値が等しい抵抗体を各断線検知線に直列に接続し、
これらの抵抗体を並列に接続して一端測定点を形成し、 ケーブルの他端において、断線検知線を並列に接続し他
端測定点を形成して、 一端測定点と他端測定点との間の抵抗値を測定し、その
抵抗値から断線検知線の断線本数を判定することを特徴
とする移動用ケーブルの断線検知方法。
3. An end of the cable according to claim 1, wherein a resistor having a higher resistance value than the disconnection detection line and having the same resistance value is connected in series to each disconnection detection line.
These resistors are connected in parallel to form a measurement point at one end, and at the other end of the cable, a disconnection detection line is connected in parallel to form a measurement point at the other end. A method for detecting a disconnection of a moving cable, comprising: measuring a resistance value between the two and determining a disconnection number of the disconnection detection line from the resistance value.
JP15290597A 1997-05-26 1997-05-26 Transfer cable Expired - Lifetime JP3264862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15290597A JP3264862B2 (en) 1997-05-26 1997-05-26 Transfer cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15290597A JP3264862B2 (en) 1997-05-26 1997-05-26 Transfer cable

Publications (2)

Publication Number Publication Date
JPH10326526A JPH10326526A (en) 1998-12-08
JP3264862B2 true JP3264862B2 (en) 2002-03-11

Family

ID=15550708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15290597A Expired - Lifetime JP3264862B2 (en) 1997-05-26 1997-05-26 Transfer cable

Country Status (1)

Country Link
JP (1) JP3264862B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916081B1 (en) 2007-05-07 2009-09-25 Fed Mogul Systems Prot Group S ELECTROMAGNETIC PROTECTIVE SHEATH IN TEXTILE.
JP7039211B2 (en) * 2017-08-14 2022-03-22 日本電波株式会社 High-voltage power supply for compound cable disconnection prediction device and electrostatic coating device
JP7232389B2 (en) * 2019-09-25 2023-03-03 株式会社プロテリアル Cables for moving parts and life prediction system
CN111755165A (en) * 2020-06-23 2020-10-09 昆山键讯电子有限公司 Cable conductor free of electromagnetic interference
JP7151754B2 (en) * 2020-11-20 2022-10-12 株式会社オートネットワーク技術研究所 Cable with abnormality sign detection function and wire abnormality sign detection device

Also Published As

Publication number Publication date
JPH10326526A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US7752830B2 (en) Electronic elongation-sensing rope
US8969724B2 (en) Elastic signal transmission cable
US3958455A (en) Force transducer for strain gage
US6289742B1 (en) Method and apparatus for detecting damage to a sheath of a synthetic fiber rope
KR100731570B1 (en) Contact-Connecting Safety-Monitored Synthetic Fiber Ropes
CN1124377C (en) Synthetic fiber rope
KR102625041B1 (en) sensor device
US20180011044A1 (en) Non-destructive wear monitoring system for synthetic ropes and textiles
JP3264862B2 (en) Transfer cable
JP2005166450A (en) Cable for dynamo-electric brake
JP2022179553A5 (en) Electric wire abnormality prediction device
US3950984A (en) Force transducer for strain gage
US4684293A (en) Cable for fastening structures and method of detecting damage to corrosion-preventive layer thereof
JP2020169886A (en) Sensor device, cable with sensor, and composite cable
JP7232389B2 (en) Cables for moving parts and life prediction system
JP2000173361A (en) Mobile cable
JP2001072383A (en) Wire rope with self-diagnosing function
JPH10125141A (en) Cable with deterioration judging function
CN219457185U (en) Power cord, electrical connection device and electrical appliance
CN211505764U (en) Lightning resistance performance inspection and evaluation device for optical fiber composite overhead ground wire
WO2023145803A1 (en) Cable equipped with function for detecting indicator of fault and system for detecting indicator of fault in electric wire
WO2023145510A1 (en) Cable with abnormality sign detection function
JPH0295273A (en) Detecting method for conductor disconnection of electric wire/cable
JP4235303B2 (en) Thermal fuse
JPH11120832A (en) Moving cable

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term