JP3263511B2 - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JP3263511B2
JP3263511B2 JP34355393A JP34355393A JP3263511B2 JP 3263511 B2 JP3263511 B2 JP 3263511B2 JP 34355393 A JP34355393 A JP 34355393A JP 34355393 A JP34355393 A JP 34355393A JP 3263511 B2 JP3263511 B2 JP 3263511B2
Authority
JP
Japan
Prior art keywords
powder
cof
battery
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34355393A
Other languages
Japanese (ja)
Other versions
JPH07169466A (en
Inventor
睦 矢野
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP34355393A priority Critical patent/JP3263511B2/en
Publication of JPH07169466A publication Critical patent/JPH07169466A/en
Application granted granted Critical
Publication of JP3263511B2 publication Critical patent/JP3263511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ二次電池に係
わり、詳しくはCoOOHからなる3次元網目構造(導
電性のマトリックス)の形成時間(熟成時間)の短縮化
により後工程たる化成処理工程などに早期に移行し得る
ペースト式ニッケル正極を備えたアルカリ二次電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery, and more particularly to a chemical conversion treatment step which is a post-process by shortening the formation time (ripening time) of a three-dimensional network structure (conductive matrix) made of CoOOH. The present invention relates to an alkaline secondary battery provided with a paste-type nickel positive electrode that can be shifted to an earlier stage.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ニッケ
ル−カドミウム二次電池、ニッケル−水素化物二次電池
などの正極としてニッケル極を用いたアルカリ二次電池
では、一般に焼結式ニッケル正極が用いられているが、
近年、電池の製造工程の容易化及び電池の高容量化等を
図るべくペースト式ニッケル極が提案され、また一部実
用化されている。このペースト式ニッケル極は、正極活
物質である粒状の水酸化ニッケルを含むスラリーをパン
チングメタル等の2次元多孔質構造を有する導電性基体
(多孔性集電体)又はスポンジ状若しくは繊維状の3次
元構造を有する導電性基体(本明細書ではこれらも多孔
性集電体に含める。)に充填することにより作製されて
いた。
2. Description of the Related Art Generally, a sintered nickel positive electrode is used in an alkaline secondary battery using a nickel electrode as a positive electrode, such as a nickel-cadmium secondary battery and a nickel-hydride secondary battery. Has been
In recent years, a paste-type nickel electrode has been proposed for the purpose of facilitating the battery manufacturing process and increasing the capacity of the battery, and some of them have been put to practical use. This paste-type nickel electrode is prepared by coating a slurry containing granular nickel hydroxide as a positive electrode active material with a conductive substrate (porous current collector) having a two-dimensional porous structure such as a punching metal or a sponge-like or fibrous material. It was produced by filling a conductive substrate having a dimensional structure (these are also included in the porous current collector in this specification).

【0003】しかしながら、このペースト式ニッケル正
極では、かなりの大きさの孔径を有する多孔性集電体の
多孔内に活物質が充填されることとなるため、多孔性集
電体から離間して存在する活物質と多孔性集電体との間
の抵抗は、多孔性集電体の近くに位置する活物質と多孔
性集電体との間の抵抗に比し大きくなる。このため、ペ
ースト式ニッケル正極には、全ての活物質が多孔性集電
体に接して位置する焼結式ニッケル正極に比し、活物質
の利用率が低いという問題が有った。
However, in this paste-type nickel positive electrode, the active material is filled in the pores of the porous current collector having a considerably large pore size, and thus the paste-type nickel positive electrode is separated from the porous current collector. The resistance between the active material and the porous current collector becomes larger than the resistance between the active material located near the porous current collector and the porous current collector. For this reason, the paste type nickel positive electrode has a problem that the active material utilization is lower than that of the sintered nickel positive electrode in which all the active materials are located in contact with the porous current collector.

【0004】この問題を解決するべく、アルカリ電解液
に可溶なCoO粉末をスラリーに添加して正極を作製す
る方法が提案されている(特開昭61−138458号
公報及び特開昭62−256366号公報)。この方法
によれば、水酸化ニッケルの各粒子間に存在するCoO
粉末がアルカリ電解液に溶解してHCoOO- となり、
その後β−Co(OH)2 として析出するという溶解、
析出反応を経て均一なβ−Co(OH)2 層が各水酸化
ニッケル粒子の表面に形成される。そして、このβ−C
o(OH)2 層は、その後の充電により正極電位が貴に
なると酸化されてCoOOHに変化し、導電性の高いC
oOOHからなる3次元網目構造が形成されるので、多
孔性集電体から離間したところに位置する活物質と多孔
性集電体との間の抵抗が小さくなり、活物質の利用率を
高めることができる。なお、従来、上記CoO粉末とし
ては、平均粒径1μm程度のものが一般に用いられてい
た。これは、CoO粉末の平均粒径が1μmを越えて大
きくなるとアルカリ電解液に対する溶解度が小さくな
り、一方1μm未満に小さくなると、凝集して二次粒子
を生成し易いため、同様にアルカリ電解液に対する溶解
度が小さくなるからである。
In order to solve this problem, there has been proposed a method of producing a positive electrode by adding CoO powder soluble in an alkaline electrolyte to a slurry (JP-A-61-138458 and JP-A-62-138458). No. 256366). According to this method, the CoO existing between the particles of nickel hydroxide is used.
Powder was dissolved in the alkaline electrolyte HCoOO - next,
Dissolution, which is then precipitated as β-Co (OH) 2 ,
Through the precipitation reaction, a uniform β-Co (OH) 2 layer is formed on the surface of each nickel hydroxide particle. And this β-C
The o (OH) 2 layer is oxidized when the positive electrode potential becomes noble by subsequent charging and changes to CoOOH, and C 2
Since a three-dimensional network structure made of oOOH is formed, the resistance between the active material located away from the porous current collector and the porous current collector is reduced, and the utilization rate of the active material is increased. Can be. Conventionally, as the CoO powder, a powder having an average particle size of about 1 μm has been generally used. This is because when the average particle size of the CoO powder exceeds 1 μm, the solubility in the alkaline electrolyte decreases, and when the average particle size of the CoO powder decreases to less than 1 μm, the particles easily aggregate to form secondary particles. This is because the solubility is reduced.

【0005】しかしながら、平均粒径が1μmのCoO
粉末を用いてもアルカリ電解液への溶解量が十分な量で
あるとはいい難く、この結果活物質の利用率を十分に高
めることができる程度にCoOOHからなる3次元網目
構造を形成するには、電池組立後に1日以上放置して熟
成する必要がある。このため、その後の化成処理等の後
工程に早期に移行することができないという問題が有っ
た。
However, CoO having an average particle size of 1 μm
Even if the powder is used, it is difficult to say that the amount dissolved in the alkaline electrolyte is sufficient. As a result, a three-dimensional network structure composed of CoOOH is formed to such an extent that the utilization rate of the active material can be sufficiently increased. Must be aged for at least one day after battery assembly. For this reason, there was a problem that it was not possible to shift to a subsequent step such as a chemical conversion treatment at an early stage.

【0006】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、短時間の熟成で正
極中にβ−Co(OH)2 を形成することができるた
め、化成処理等の後工程に早期に移行し得る、ペースト
式ニッケル正極を備えたアルカリ二次電池を提供するに
ある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to form β-Co (OH) 2 in a positive electrode by aging for a short time. An object of the present invention is to provide an alkaline secondary battery provided with a paste-type nickel positive electrode, which can promptly shift to a post-process such as treatment.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ二次電池(以下「本発明電池」
と称する。)は、水酸化ニッケルを主成分とする活物質
粉末と、アルカリ電解液に可溶なCo化合物と、水に増
粘剤を溶解させて得た増粘剤溶液とを混練して得たスラ
リーを多孔性集電体の多孔内に充填し、乾燥固化させて
なるペースト式ニッケル正極を、電池缶内に収納し、こ
の電池缶内に前記アルカリ電解液を注液して前記Co化
合物をβ−Co(OH)2 として前記活物質粉末の表面
に析出させ、次いで化成処理により前記β−Co(O
H)2 を酸化してCoOOHからなる3次元網目構造を
前記多孔内に形成させてなる正極を備えたアルカリ二次
電池において、前記Co化合物として、平均粒径2μm
以下のCoF2 粉末が、当該CoF2 粉末と前記活物質
粉末との総量に対して3〜15重量%用いられてなる。
In order to achieve the above object, an alkaline secondary battery according to the present invention (hereinafter referred to as "battery of the present invention")
Called. ) Is a slurry obtained by kneading an active material powder mainly composed of nickel hydroxide, a Co compound soluble in an alkaline electrolyte, and a thickener solution obtained by dissolving a thickener in water. Is filled in the pores of a porous current collector, and a paste-type nickel positive electrode obtained by drying and solidifying is stored in a battery can, and the alkaline electrolyte is poured into the battery can to convert the Co compound into β. —Co (OH) 2 is deposited on the surface of the active material powder, and then the β-Co (O
H) In an alkaline secondary battery provided with a positive electrode formed by oxidizing 2 to form a three-dimensional network structure of CoOOH in the pores, the Co compound has an average particle diameter of 2 μm.
The following CoF 2 powder is used in an amount of 3 to 15% by weight based on the total amount of the CoF 2 powder and the active material powder.

【0008】本発明におけるCoF2 粉末の添加量が、
CoF2 粉末と活物質粉末との総量に対して3〜15重
量%に規制されるのは、同添加量が3重量%未満の場合
は、化成処理によりCoOOHからなる3次元網目構造
が十分に形成されないため、活物質の利用率が低下し、
一方同添加量が15重量%を越えた場合は、CoF2
末の量が多くなり過ぎて相対的に活物質の量が減少する
ため、活物質の利用率が低下し、いずれの場合も正極利
用率の高い電池が得られないからである。
In the present invention, the amount of CoF 2 powder added is
The reason why the amount is limited to 3 to 15% by weight based on the total amount of the CoF 2 powder and the active material powder is that if the addition amount is less than 3% by weight, the three-dimensional network structure composed of CoOOH is sufficiently formed by the chemical conversion treatment. Because it is not formed, the utilization rate of the active material decreases,
On the other hand, when the addition amount exceeds 15% by weight, the amount of CoF 2 powder becomes too large and the amount of active material relatively decreases, so that the utilization rate of the active material decreases. This is because a battery with a high utilization rate cannot be obtained.

【0009】特に、電池容量の低下が小さくサイクル寿
命の長い電池を得る上で、CoF2粉末の添加量を、C
oF2 粉末と活物質粉末との総量に対して8〜12重量
%に規制することが好ましい。CoF2 粉末の添加量が
8重量%未満の場合は、充分に発達した3次元網目構造
が形成され難いため、また同添加量が12重量%を越え
た場合は、活物質量の減少が容量低下をもたらすため、
いずれの場合も充放電サイクル初期における電池容量が
多少低下する。
In particular, in order to obtain a battery with a small decrease in battery capacity and a long cycle life, the amount of CoF 2 powder to be added should be C
It is preferable to regulate the amount to 8 to 12% by weight based on the total amount of the oF 2 powder and the active material powder. If the amount of CoF 2 powder is less than 8% by weight, a well-developed three-dimensional network structure is difficult to be formed, and if the amount exceeds 12% by weight, the decrease in the amount of active material To bring down
In any case, the battery capacity at the beginning of the charge / discharge cycle is slightly reduced.

【0010】また、CoF2 粉末の平均粒径が2μm以
下に規制されるのは、CoF2 粉末の平均粒径が2μm
を越えると、CoF2 粉末のアルカリ電解液に対する溶
解度が小さくなるため、またペースト調製時にCoF2
粉末と水酸化ニッケル粉末とが均一に混合されずにCo
2 粉末が偏在するため、熟成後化成処理を行っても充
分発達した3次元網目構造が形成されず、いずれの場合
も高い活物質の利用率を実現することができないからで
ある。
The reason why the average particle size of CoF 2 powder is restricted to 2 μm or less is that the average particle size of CoF 2 powder is 2 μm or less.
Exceeds, CoF 2 since solubility CoF 2 powder alkaline electrolyte is reduced, also the time of paste preparation
Powder and nickel hydroxide powder are not uniformly mixed
This is because the F 2 powder is unevenly distributed, so that a sufficiently developed three-dimensional network structure is not formed even when a chemical conversion treatment is performed after aging, and a high active material utilization rate cannot be realized in any case.

【0011】[0011]

【作用】CoF2 はCoOに比べてアルカリ電解液に対
する溶解度が大きいので、CoF2 がHCoOO- とな
り、次いでβ−Co(OH)2 として水酸化ニッケルの
粒子表面に析出するという溶解、析出反応、すなわち熟
成が短時間裡に終了する。その結果、その後の化成処理
などの後工程に早期に移行することが可能となる。
Since the solubility of CoF 2 in an alkaline electrolyte is higher than that of CoO, CoF 2 becomes HCoOO and then precipitates as β-Co (OH) 2 on the surface of nickel hydroxide particles. That is, aging is completed in a short time. As a result, it is possible to early shift to a subsequent process such as a subsequent chemical conversion treatment.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0013】(実施例1)単3型(AAサイズ)のアル
カリ二次電池(本発明電池)を作製した。
Example 1 AA type (AA size) alkaline secondary batteries (batteries of the present invention) were prepared.

【0014】〔正極〕膨化防止剤及び酸素過電圧上昇剤
としての水酸化カドミウムを3重量%含有する水酸化ニ
ッケルからなる活物質粉末と、後工程(後述の化成処理
工程)でCoOOHに化学変化して導電剤として機能す
る平均粒径1μmのCoF2 粉末とを重量比で9:1の
割合で混合したものを、増粘剤(正極作製後は結着剤と
しての働きを有する)としてのカルボキシメチルセルロ
ースの0.5重量%水溶液に分散させてスラリーを調製
した。次いで、このスラリーを、多孔度が95%で平均
孔径が200μmのニッケルメッキ金属多孔体に充填し
た後、乾燥、成型して正極を作製した。なお、CoF2
粉末の平均粒径は、レーザ回折式粒度分布計により測定
した。
[Positive Electrode] An active material powder composed of nickel hydroxide containing 3% by weight of cadmium hydroxide as a swelling inhibitor and an oxygen overvoltage increasing agent, and chemically converted into CoOOH in a subsequent step (a chemical conversion step described later). Of CoF 2 powder having an average particle size of 1 μm, which functions as a conductive agent, and is mixed at a weight ratio of 9: 1, and the mixture is mixed with carboxy as a thickener (having a function as a binder after the preparation of the positive electrode). A slurry was prepared by dispersing in a 0.5% by weight aqueous solution of methylcellulose. Next, this slurry was filled into a nickel-plated metal porous body having a porosity of 95% and an average pore diameter of 200 μm, and then dried and molded to produce a positive electrode. Note that CoF 2
The average particle size of the powder was measured by a laser diffraction type particle size distribution meter.

【0015】〔負極〕負極活物質としての酸化カドミウ
ム100重量部と、補強剤としてのナイロン繊維1重量
部とを、結着剤としてのヒドロキシプロピルセルロース
5重量部の水溶液に分散させてスラリーを調製した。次
いで、このスラリーを導電性の芯体に塗布した後乾燥す
ることにより負極を作製した。
[Negative electrode] A slurry is prepared by dispersing 100 parts by weight of cadmium oxide as a negative electrode active material and 1 part by weight of nylon fiber as a reinforcing agent in an aqueous solution of 5 parts by weight of hydroxypropyl cellulose as a binder. did. Next, the slurry was applied to a conductive core and dried to prepare a negative electrode.

【0016】〔アルカリ電解液〕KOHとNaOHとL
iOHとを重量比8:1:1で混合し、水に溶かして比
重1.30のアルカリ電解液を調製した。
[Alkaline electrolyte] KOH, NaOH and L
iOH was mixed at a weight ratio of 8: 1: 1 and dissolved in water to prepare an alkaline electrolyte having a specific gravity of 1.30.

【0017】〔電池の作製〕以上の正負両極及びアルカ
リ電解液を用いて単3型の本発明電池BA1を作製し
た。なお、セパレータとしては、ポリアミド不織布を使
用し、これに先のアルカリ電解液を含浸させた。
[Preparation of Battery] AA type battery BA1 of the present invention was prepared using the above positive and negative electrodes and an alkaline electrolyte. In addition, a polyamide nonwoven fabric was used as a separator, and this was impregnated with the alkaline electrolyte.

【0018】図1は作製した本発明電池BA1を模式的
に示す断面図であり、図示の本発明電池BA1は、正極
1、負極2、これら両電極を離間するセパレータ3、正
極リード4、負極リード5、正極外部端子6、負極缶7
などからなる。正極1及び負極2は、アルカリ電解液を
注入されたセパレータ3を介して渦巻き状に巻き取られ
た状態で負極缶7内に収容されており、正極1は正極リ
ード4を介して正極外部端子6に、また負極2は負極リ
ード5を介して負極缶7に接続され、電池内部で生じた
化学エネルギーを電気エネルギーとして外部へ取り出し
得るようになっている。
FIG. 1 is a cross-sectional view schematically showing a battery BA1 of the present invention produced. The battery BA1 of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3 for separating these two electrodes, a positive electrode lead 4, and a negative electrode. Lead 5, positive external terminal 6, negative can 7
Etc. The positive electrode 1 and the negative electrode 2 are housed in a negative electrode can 7 in a state of being spirally wound through a separator 3 into which an alkaline electrolyte is injected, and the positive electrode 1 is connected to a positive electrode external terminal via a positive electrode lead 4. 6, and the negative electrode 2 is connected to a negative electrode can 7 via a negative electrode lead 5, so that chemical energy generated inside the battery can be extracted to the outside as electric energy.

【0019】(比較例1)CoF2 粉末の代わりに平均
粒径1μmのCoO粉末を用いたこと以外は実施例1と
同様にして、正極を作製した。次いで、この正極を用い
たこと以外は実施例1と同様にして、単3型の比較電池
BC1を作製した。
Comparative Example 1 A positive electrode was manufactured in the same manner as in Example 1 except that CoO powder having an average particle size of 1 μm was used instead of CoF 2 powder. Next, an AA type comparative battery BC1 was produced in the same manner as in Example 1 except that this positive electrode was used.

【0020】〔熟成期間と活物質の利用率との関係〕本
発明電池BA1及び比較電池BC1について、熟成前又
は25°Cで所定期間熟成後に0.1Cの電流で16時
間充電した後、1Cの電流で放電終止電圧0.8Vまで
放電するという充放電工程を10回繰り返した。これ
は、化成処理を施して正極中にCoOOHからなる3次
元網目構造を形成するとともに、放電容量の安定化を図
るためである。そして、放電容量が安定した10回目の
放電時に各電池の放電容量を測定した後、下記算出式に
基づいて活物質の利用率を算出し、熟成時間と活物質の
利用率との関係を調べた。結果を図2に示す。
[Relationship between aging period and utilization rate of active material] The battery BA1 of the present invention and the comparative battery BC1 were charged at a current of 0.1 C for 16 hours before aging or after aging for a predetermined period at 25 ° C., and then charged at 1 C for 1 hour. The charging / discharging step of discharging to a discharge end voltage of 0.8 V with the above current was repeated 10 times. This is because a three-dimensional network structure made of CoOOH is formed in the positive electrode by performing a chemical conversion treatment, and the discharge capacity is stabilized. Then, after measuring the discharge capacity of each battery at the tenth discharge when the discharge capacity is stabilized, the utilization rate of the active material is calculated based on the following formula, and the relationship between the aging time and the utilization rate of the active material is examined. Was. The results are shown in FIG.

【0021】活物質の利用率(%) =10回目の放電容量
(mAh) ×100 /活物質重量(g) ×単位重量当たりの理論
容量〔285(mAh/g) 〕
Active material utilization (%) = 10th discharge capacity
(mAh) × 100 / weight of active material (g) × theoretical capacity per unit weight [285 (mAh / g)]

【0022】図2は、各電池の放電特性を、縦軸に各電
池の活物質の利用率(%)を、また横軸に熟成時間
(h)をとって示したグラフであり、同図に示すように
本発明電池BA1では6時間熟成すれば活物質の利用率
が96%まで上昇しているのに対して、比較電池BC1
では24時間熟成しないと活物質の利用率が96%まで
上昇しない。このことから、CoF2 粉末を用いること
により、短時間裡にβ−Co(OH)2 が正極中に形成
されることが分かる。
FIG. 2 is a graph showing the discharge characteristics of each battery, the ordinate representing the utilization rate (%) of the active material of each battery, and the abscissa representing the aging time (h). As shown in the figure, in the battery BA1 of the present invention, the utilization rate of the active material increased to 96% after aging for 6 hours, whereas the comparative battery BC1
In this case, the utilization rate of the active material does not increase to 96% without aging for 24 hours. This indicates that the use of CoF 2 powder allows β-Co (OH) 2 to be formed in the positive electrode in a short time.

【0023】<CoF2 粉末の平均粒径と活物質の利用
率との関係>上記CoF2 粉末の平均粒径を0.5μ
m、2μm、2.5μm、3μm、4μm又は5μmと
したこと以外は実施例1と同様にして、本発明電池及び
比較電池を作製した。次いで、6時間熟成した後、先と
同じ条件で10回充放電し10回目の各電池の活物質の
利用率を前記算出式から求め、CoF2 粉末の平均粒径
と活物質の利用率との関係を調べた。結果を図3に示
す。なお、図3には、先の図2に示した本発明電池BA
1(CoF2 粉末の平均粒径:1μm)の活物質の利用
率も、比較の便宜のために示してある。
[0023] <Relationship between CoF 2 powder having an average particle diameter and the utilization of the active material of> 0.5 [mu] average particle diameter of the CoF 2 powder
m, 2 μm, 2.5 μm, 3 μm, 4 μm or 5 μm, in the same manner as in Example 1, to produce a battery of the present invention and a comparative battery. Next, after aging for 6 hours, 10 times of charging and discharging were performed under the same conditions as above, and the utilization rate of the active material of each battery at the 10th time was obtained from the above formula, and the average particle size of CoF 2 powder, the utilization rate of the active material, The relationship was investigated. The results are shown in FIG. FIG. 3 shows the battery BA of the present invention shown in FIG.
The utilization ratio of the active material of No. 1 (average particle size of CoF 2 powder: 1 μm) is also shown for convenience of comparison.

【0024】図3は、各電池の放電特性を、縦軸に活物
質の利用率(%)を、また横軸にCoF2 粉末の平均粒
径(μm)をとって示したグラフであり、同図に示すよ
うにCoF2 粉末の平均粒径を2μm以下とした場合
に、活物質の利用率を高くすることができ、優れた放電
特性を示すアルカリ二次電池が得られることが分かる。
したがって、CoF2 粉末の平均粒径は2μm以下に規
制する必要がある。
FIG. 3 is a graph showing the discharge characteristics of each battery, the ordinate indicating the utilization rate (%) of the active material, and the abscissa indicating the average particle size (μm) of the CoF 2 powder. As shown in the figure, when the average particle size of the CoF 2 powder is 2 μm or less, the utilization rate of the active material can be increased, and an alkaline secondary battery having excellent discharge characteristics can be obtained.
Therefore, it is necessary to regulate the average particle size of the CoF 2 powder to 2 μm or less.

【0025】<CoF2 粉末及びCoO粉末のアルカリ
水溶液に対する溶解度と攪拌時間との関係>25°Cの
雰囲気下で、平均粒径がそれぞれ1μm、2μm又は5
μmのCoF2 粉末及び平均粒径が1μmのCoO粉末
をKOH溶液中に添加して所定時間攪拌し、CoF2
末及びCoO粉末のアルカリ水溶液に対する溶解量(ア
ルカリ水溶液1リットル当たりのCo2+の量)を求め、
CoF2 粉末及びCoO粉末のアルカリ水溶液に対する
溶解度と攪拌時間との関係を調べた。結果を図4に示
す。
<Relationship between Solubility of CoF 2 Powder and CoO Powder in Alkaline Aqueous Solution and Stirring Time> Under an atmosphere of 25 ° C., the average particle diameter is 1 μm, 2 μm or 5 μm, respectively.
μF CoF 2 powder and CoO powder having an average particle size of 1 μm were added to a KOH solution and stirred for a predetermined time to dissolve the CoF 2 powder and CoO powder in an alkaline aqueous solution (the amount of Co 2+ per liter of alkaline aqueous solution ) . Amount)
The relationship between the solubility of CoF 2 powder and CoO powder in an aqueous alkaline solution and the stirring time was examined. FIG. 4 shows the results.

【0026】図4は、上記各平均粒径のCoF2 粉末及
びCoO粉末のアルカリ水溶液に対する溶解量を、縦軸
にCoF2 粉末及びCoO粉末のアルカリ水溶液に対す
る溶解量(mg/リットル)を、また横軸に攪拌時間
(h)をとって示したグラフであり、同図に示すように
平均粒径が2μm以下のCoF2 粉末は攪拌時間の長さ
に関わらず平均粒径が1μmのCoO粉末よりアルカリ
水溶液に対する溶解量が多くなっているが、平均粒径が
5μmのCoF2 粉末は攪拌時間の長さに関わらず平均
粒径が1μmのCoO粉末よりアルカリ水溶液への溶解
量が少なくなっていることが分かる。
FIG. 4 shows the amounts of CoF 2 powder and CoO powder having the above average particle sizes dissolved in an aqueous alkaline solution, the ordinate represents the amounts of CoF 2 powder and CoO powder dissolved in an aqueous alkaline solution (mg / liter), and The horizontal axis is a graph showing stirring time (h). As shown in the figure, CoF 2 powder having an average particle diameter of 2 μm or less is CoO powder having an average particle diameter of 1 μm regardless of the length of stirring time. Although the amount of dissolution in an alkaline aqueous solution is larger, the amount of CoF 2 powder having an average particle size of 5 μm is smaller than that of a CoO powder having an average particle size of 1 μm regardless of the length of stirring time. You can see that there is.

【0027】このようにCoF2 粉末の平均粒径が2μ
mを超えるとアルカリ水溶液への溶解度が小さくなるこ
と等に起因して、CoF2 粉末の平均粒径が2μmを超
えると前記図3に示すように活物質の利用率が低下する
のである。
As described above, the average particle size of the CoF 2 powder is 2 μm.
When the average particle diameter of CoF 2 powder exceeds 2 μm, the utilization rate of the active material decreases as shown in FIG.

【0028】〈CoF2 粉末の添加量と活物質の利用率
との関係〉CoF2 粉末の添加量を、無添加(0重量
%)、1重量%、2重量%、3重量%、5重量%、7重
量%、10重量%、13重量%、15重量%、16重量
%又は18重量%(重量%は水酸化カドミウムを3重量
%含有する活物質粉末とCoF2 粉末との総量を100
重量%としたときの比率であり、以下に登場する重量%
も同義である。)としたこと以外は実施例1と同様にし
て、本発明電池及び比較電池を作製した。また、上記と
同様にして添加量を変え、且つ、CoF2 粉末の平均粒
径を、それぞれ2μm、0.75μm又は0.5μmと
したこと以外は実施例1と同様にして、本発明電池及び
比較電池を作製した。次いで、各電池を6時間熟成した
後、先と同じ条件で10サイクル充放電を繰り返し10
サイクル目の各電池の活物質の利用率を前記算出式から
求め、CoF2 粉末の添加量と活物質の利用率との関係
を調べた。結果を図5に示す。
<Relationship between the amount of CoF 2 powder added and the utilization rate of the active material> The amount of CoF 2 powder added was determined to be 0% by weight, 1% by weight, 2% by weight, 3% by weight, and 5% by weight. %, 7% by weight, 10% by weight, 13% by weight, 15% by weight, 16% by weight or 18% by weight (% by weight is the total amount of the active material powder containing 3% by weight of cadmium hydroxide and the CoF 2 powder.
It is the ratio assuming weight%, and the weight% appearing below
Is also synonymous. ), And a battery of the present invention and a comparative battery were prepared in the same manner as in Example 1. The battery of the present invention was prepared in the same manner as in Example 1 except that the addition amount was changed in the same manner as described above, and that the average particle size of the CoF 2 powder was 2 μm, 0.75 μm, or 0.5 μm, respectively. A comparative battery was manufactured. Next, after aging each battery for 6 hours, 10 cycles of charging and discharging were repeated under the same conditions as above.
The utilization rate of the active material of each battery at the cycle was determined from the above formula, and the relationship between the amount of CoF 2 powder added and the utilization rate of the active material was examined. FIG. 5 shows the results.

【0029】図5は、各電池の放電特性を、縦軸に活物
質の利用率(%)を、また横軸にCoF2 粉末の添加量
(重量%)をとって示したグラフであり、同図に示すよ
うにCoF2 粉末の粒径に関わらずその添加量を3〜1
5重量%とした場合に、活物質の利用率を大きくするこ
とができ、放電特性に優れたアルカリ二次電池が得られ
ることが分かる。したがって、CoF2 粉末の添加量
は、CoF2 粉末と活物質粉末との総量に対して3〜1
5重量%の範囲に規制する必要がある。
FIG. 5 is a graph showing the discharge characteristics of each battery, the ordinate indicating the utilization rate (%) of the active material, and the abscissa indicating the amount of CoF 2 powder added (% by weight). As shown in the figure, the addition amount is 3 to 1 regardless of the particle size of the CoF 2 powder.
It can be seen that when the content is 5% by weight, the utilization rate of the active material can be increased, and an alkaline secondary battery having excellent discharge characteristics can be obtained. Therefore, the amount of CoF 2 powder, to the total amount of CoF 2 powder and active material powder 3-1
It is necessary to regulate to the range of 5% by weight.

【0030】〈CoF2 粉末の添加量と100サイクル
目の電池容量残存率との関係〉CoF2 粉末の好適な添
加範囲を見出すべく、以下の試験を行った。
<Relationship between the amount of CoF 2 powder added and the remaining capacity of the battery at the 100th cycle> The following test was conducted in order to find a suitable range of addition of CoF 2 powder.

【0031】上記CoF2 の添加量を3重量%、4重量
%、6重量%、8重量%、10重量%、12重量%、1
4重量%又は16重量%としたこと以外は実施例1と同
様にして、本発明電池を作製した。また、上記と同様に
して添加量を変え、且つ、CoF2 の平均粒径を、それ
ぞれ2μm、0.75μm又は0.5μmとしたこと以
外は実施例1と同様にして、本発明電池を作製した。こ
れらの各電池を6時間熟成した後、先と同じ条件で充放
電サイクル試験を行って各電池の100サイクル目の電
池容量残存率を求め、CoF2 粉末の添加量と電池容量
残存率との関係を調べた。結果を図6に示す。なお、1
00サイクル目の電池容量残存率とは、1サイクル目の
電池容量に対する100サイクル目の電池容量の比率で
ある。
The amount of CoF 2 added was 3% by weight, 4% by weight, 6% by weight, 8% by weight, 10% by weight, 12% by weight,
A battery of the present invention was produced in the same manner as in Example 1 except that the content was 4% by weight or 16% by weight. A battery of the present invention was produced in the same manner as in Example 1 except that the amount of addition was changed in the same manner as described above, and that the average particle size of CoF 2 was 2 μm, 0.75 μm, or 0.5 μm, respectively. did. After aging each of these batteries for 6 hours, a charge / discharge cycle test was performed under the same conditions as above to determine the remaining capacity of the battery at the 100th cycle, and the relationship between the amount of CoF 2 powder added and the remaining capacity of the battery was determined. Investigated the relationship. FIG. 6 shows the results. In addition, 1
The remaining battery capacity at the 00th cycle is the ratio of the battery capacity at the 100th cycle to the battery capacity at the 1st cycle.

【0032】図6は、各電池のサイクル特性を、縦軸に
100サイクル目の電池容量残存率(%)を、また横軸
にCoF2 粉末の添加量(重量%)をとって示したグラ
フであり、同図に示すようにCoF2 粉末の平均粒径に
関わらずCoF2 粉末の添加量を8〜12重量%とした
場合に、100サイクル目の電池容量残存率を大きくす
ることができ、サイクル特性が優れたアルカリ二次電池
が得られることが分かる。したがって、CoF2 粉末の
添加量は、CoF2 粉末と活物質粉末との総量に対して
8〜12重量%の範囲であることが好ましい。
FIG. 6 is a graph showing the cycle characteristics of each battery, the ordinate represents the battery capacity remaining rate (%) at the 100th cycle, and the abscissa represents the amount of CoF 2 powder added (% by weight). , and the when the added amount of CoF 2 powder regardless average particle size of CoF 2 powder as shown in the drawing and 8-12 wt%, it is possible to increase the battery residual capacity ratio of the 100th cycle It can be seen that an alkaline secondary battery having excellent cycle characteristics can be obtained. Therefore, the amount of CoF 2 powder added is preferably in the range of 8 to 12% by weight based on the total amount of CoF 2 powder and active material powder.

【0033】叙上の実施例では、本発明を単3型電池に
適用する場合を例に挙げて説明したが、本発明電池はそ
の形状に特に制限はなく、扁平型、角型など、他の種々
の形状のアルカリ二次電池に適用し得るものである。
In the above embodiment, the case where the present invention is applied to an AA type battery is described as an example. However, the shape of the battery of the present invention is not particularly limited, and other shapes such as a flat type, a square type, etc. The present invention can be applied to alkaline rechargeable batteries of various shapes.

【0034】[0034]

【発明の効果】CoF2 粉末はアルカリ電解液に対する
溶解度が大きいので、熟成時間が短くて済む。このた
め、化成処理等の後工程に早期に移行することが可能と
なる。
As the CoF 2 powder has a high solubility in an alkaline electrolyte, the aging time can be shortened. For this reason, it is possible to early shift to a post-process such as a chemical conversion treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単3型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of an AA battery of the present invention.

【図2】本発明電池及び比較電池の各熟成時間(h)と
活物質の利用率(%)との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between each aging time (h) of the battery of the present invention and a comparative battery and the utilization rate (%) of an active material.

【図3】CoF2 粉末の平均粒径(μm)と活物質の利
用率(%)との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an average particle size (μm) of CoF 2 powder and a utilization rate (%) of an active material.

【図4】攪拌時間(h)とCoO粉末及びCoF2 粉末
のアルカリ水溶液に対する溶解量(mg/リットル)と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the stirring time (h) and the amounts of CoO powder and CoF 2 powder dissolved in an aqueous alkali solution (mg / liter).

【図5】CoF2 粉末の添加量(重量%)と活物質の利
用率(%)との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of CoF 2 powder added (% by weight) and the utilization rate (%) of an active material.

【図6】CoF2 粉末の添加量(重量%)と電池容量残
存率(%)との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the amount of CoF 2 powder added (% by weight) and the remaining battery capacity (%).

【符号の説明】[Explanation of symbols]

BA1 本発明電池 1 正極 2 負極 3 セパレータ BA1 Battery of the present invention 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭53−51449(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 H01M 4/32 H01M 4/62 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiko Saito 2-5-5-Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-53-51449 (JP, A) (58) ) Surveyed field (Int.Cl. 7 , DB name) H01M 4/52 H01M 4/32 H01M 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化ニッケルを主成分とする活物質粉末
と、アルカリ電解液に可溶なCo化合物と、水に増粘剤
を溶解させて得た増粘剤溶液とを混練して得たスラリー
を多孔性集電体の多孔内に充填し、乾燥固化させてなる
ペースト式ニッケル正極を、電池缶内に収納し、この電
池缶内に前記アルカリ電解液を注液して前記Co化合物
をβ−Co(OH)2 として前記活物質粉末の表面に析
出させ、次いで化成処理により前記β−Co(OH)2
を酸化してCoOOHからなる3次元網目構造を前記多
孔内に形成させてなる正極を備えたアルカリ二次電池に
おいて、前記Co化合物として、平均粒径2μm以下の
CoF2 粉末が、当該CoF2 粉末と前記活物質粉末と
の総量に対して3〜15重量%用いられていることを特
徴とするアルカリ二次電池。
An active material powder comprising nickel hydroxide as a main component, a Co compound soluble in an alkaline electrolyte, and a thickener solution obtained by dissolving a thickener in water. The obtained slurry is filled in the pores of a porous current collector, and a paste-type nickel positive electrode obtained by drying and solidifying is stored in a battery can, and the alkaline electrolyte is poured into the battery can to form the Co compound. Is precipitated on the surface of the active material powder as β-Co (OH) 2 , and then converted to β-Co (OH) 2 by a chemical conversion treatment.
In alkaline secondary battery comprising a positive electrode comprising a three-dimensional network structure consisting of CoOOH is oxidized to form the porous inside of, as the Co compound, the average particle size 2μm or less of CoF 2 powder, the CoF 2 powder And 3 to 15% by weight based on the total amount of the active material powder and the alkaline material.
【請求項2】水酸化ニッケルを主成分とする活物質粉末
と、アルカリ電解液に可溶なCo化合物と、水に増粘剤
を溶解させて得た増粘剤溶液とを混練して得たスラリー
を多孔性集電体の多孔内に充填し、乾燥固化させてなる
ペースト式ニッケル正極を、電池缶内に収納し、この電
池缶内に前記アルカリ電解液を注液して前記Co化合物
をβ−Co(OH)2 として前記活物質粉末の表面に析
出させ、次いで化成処理により前記β−Co(OH)2
を酸化してCoOOHからなる3次元網目構造を前記多
孔内に形成させてなる正極を備えたアルカリ二次電池に
おいて、前記Co化合物として、平均粒径2μm以下の
CoF2 粉末が、当該CoF2 粉末と前記活物質粉末と
の総量に対して8〜12重量%用いられていることを特
徴とするアルカリ二次電池。
2. A method comprising kneading an active material powder containing nickel hydroxide as a main component, a Co compound soluble in an alkaline electrolyte, and a thickener solution obtained by dissolving a thickener in water. The obtained slurry is filled in the pores of a porous current collector, and a paste-type nickel positive electrode obtained by drying and solidifying is stored in a battery can, and the alkaline electrolyte is poured into the battery can to form the Co compound. Is precipitated on the surface of the active material powder as β-Co (OH) 2 , and then converted to β-Co (OH) 2 by a chemical conversion treatment.
In alkaline secondary battery comprising a positive electrode comprising a three-dimensional network structure consisting of CoOOH is oxidized to form the porous inside of, as the Co compound, the average particle size 2μm or less of CoF 2 powder, the CoF 2 powder And 8 to 12% by weight based on the total amount of the active material powder and the alkaline material.
JP34355393A 1993-12-15 1993-12-15 Alkaline secondary battery Expired - Fee Related JP3263511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34355393A JP3263511B2 (en) 1993-12-15 1993-12-15 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34355393A JP3263511B2 (en) 1993-12-15 1993-12-15 Alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH07169466A JPH07169466A (en) 1995-07-04
JP3263511B2 true JP3263511B2 (en) 2002-03-04

Family

ID=18362417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34355393A Expired - Fee Related JP3263511B2 (en) 1993-12-15 1993-12-15 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3263511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527594B2 (en) * 1995-11-16 2004-05-17 松下電器産業株式会社 Alkaline storage battery and method of manufacturing the same
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
JP4608128B2 (en) 2000-11-15 2011-01-05 パナソニック株式会社 Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same

Also Published As

Publication number Publication date
JPH07169466A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
EP0571630B1 (en) Method for production of nickel plate and alkali storage battery
JP3433076B2 (en) Non-sintered nickel electrode for sealed alkaline storage batteries
JP3263511B2 (en) Alkaline secondary battery
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP4458725B2 (en) Alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP4458713B2 (en) Alkaline storage battery
JP3286445B2 (en) Method for producing paste-type nickel positive electrode
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3744642B2 (en) Nickel-metal hydride storage battery and method for manufacturing the same
JP3454641B2 (en) Cadmium negative electrode for alkaline storage battery and method for producing the same
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP4049484B2 (en) Sealed alkaline storage battery
JP3384109B2 (en) Nickel plate
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2796674B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2600825B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2595664B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees