JP3262994B2 - High hardness stainless steel with excellent hardenability - Google Patents

High hardness stainless steel with excellent hardenability

Info

Publication number
JP3262994B2
JP3262994B2 JP27277396A JP27277396A JP3262994B2 JP 3262994 B2 JP3262994 B2 JP 3262994B2 JP 27277396 A JP27277396 A JP 27277396A JP 27277396 A JP27277396 A JP 27277396A JP 3262994 B2 JP3262994 B2 JP 3262994B2
Authority
JP
Japan
Prior art keywords
hardness
stainless steel
workability
quenching
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27277396A
Other languages
Japanese (ja)
Other versions
JPH10121209A (en
Inventor
裕樹 池田
辰郎 磯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP27277396A priority Critical patent/JP3262994B2/en
Publication of JPH10121209A publication Critical patent/JPH10121209A/en
Application granted granted Critical
Publication of JP3262994B2 publication Critical patent/JP3262994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高硬度を有するス
テンレス鋼で問題となる焼入性を改善し、特に高周波焼
入に適する高硬度ステンレス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high hardness stainless steel which improves hardenability, which is a problem in stainless steel having high hardness, and is particularly suitable for induction hardening.

【0002】[0002]

【従来の技術】一般に耐食性と耐摩耗性が必要な耐食軸
受やシャフトなどの用途向けに高硬度を有するSUS4
40C等の高C−16Cr系マルテンサイトステンレス
鋼やSUS420J2といった中C−13Cr系マルテ
ンサイトステンレス鋼が使用されている。この中でSU
S440Cは通常の焼入焼戻で58HRC(653HV
相当)以上の高硬度が得られるが、焼鈍状態で粗大共晶
炭化物が多く加工性が劣る問題がある。これに対しSU
S420J2はSUS440Cに比べるとC,Crとも
低いため、共晶炭化物が無く焼鈍状態での加工性は良好
であるが、逆に焼入焼戻状態での硬さが低いため耐摩耗
性が劣り、寿命が短くなるという問題点がある。以上の
ような従来のマルテンサイトステンレス鋼に対し、焼入
焼戻状態での高硬度と粗大共晶炭化物を低減して焼鈍状
態の良好な加工性とを両立させた0.7C−13Cr系
のマルテンサイトステンレス鋼が開発されている。
2. Description of the Related Art Generally, SUS4 having high hardness for applications such as corrosion-resistant bearings and shafts that require corrosion resistance and wear resistance.
High C-16Cr martensitic stainless steel such as 40C and medium C-13Cr martensitic stainless steel such as SUS420J2 are used. SU in this
S440C is 58HRC (653HV) by normal quenching and tempering.
(Equivalent) or higher, but there is a problem that in the annealed state, there are many coarse eutectic carbides and workability is poor. In contrast, SU
Since S420J2 is lower in both C and Cr than SUS440C, there is no eutectic carbide and the workability in the annealed state is good, but on the contrary, the hardness in the quenched and tempered state is low, so the wear resistance is inferior. There is a problem that the life is shortened. Compared to the conventional martensitic stainless steel as described above, a 0.7C-13Cr-based alloy that achieves both high hardness in a quenched and tempered state and good workability in an annealed state by reducing coarse eutectic carbides. Martensitic stainless steel has been developed.

【0003】しかし、近年熱処理や工程といったプロセ
スコストを低減させるため、インラインで熱処理できる
高周波焼入れへの転換要求が強くなっているが、前述の
鋼種は基本的にクロム系炭化物にて強度を確保している
ため、マトリックス中への炭化物の固溶が遅くて焼入性
が悪く、高周波焼入れのような短時間加熱処理では通常
焼入焼戻処理で得られる高硬度を確保できないという問
題点が生じている。
However, in recent years, there has been a strong demand for conversion to induction hardening, in which in-line heat treatment can be performed in order to reduce process costs such as heat treatment and processes. However, the above-mentioned steel types are basically made of chromium carbide to secure strength. Therefore, the solid solution of carbides in the matrix is slow and hardenability is poor, and the short-time heat treatment such as induction hardening cannot secure the high hardness normally obtained by quenching and tempering. ing.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決してプロセスコストの低減を可能にする、焼鈍
状態での良好な加工性を有したまま、焼入性を改善し、
高周波焼入処理でも58HRC(653HV)以上が得
られるよう高周波焼入性を大幅に改善した高硬度ステン
レス鋼を提供することである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and enables a reduction in process cost, while improving hardenability while maintaining good workability in an annealed state.
An object of the present invention is to provide a high-hardness stainless steel in which induction hardening is greatly improved so that 58 HRC (653 HV) or more can be obtained even by induction hardening.

【0005】[0005]

【課題を解決するための手段】発明者らは焼入硬さを決
定する最も主要な成分の炭素の一部を同じ固溶型元素で
ある窒素に置換すると、クロム炭化物の組成がクロム炭
窒化物となりクロム炭化物単体の場合よりも非常に微細
分散でき、加えてより低温で且つ短時間にその微細炭窒
化物の固溶を促進させるためMn,Ni量を最適に制御
してA1 変態点を低下させると共に焼入硬化能を高める
Bを数十ppm程度添加することを併せることで、本成
分系の焼入性を大幅に改善し、かつC+Nの総量を制御
することにより、高周波焼入処理においても硬さが58
HRC(653HV)以上を確保できることを見いだし
た。さらに、炭化物が微細分散していることにより、界
面の剥離などによる割れ起点となり難く、焼鈍時の加工
性も確保できる。
Means for Solving the Problems The inventors of the present invention replace the carbon, which is the most important component for determining the quench hardness, with nitrogen, which is the same solid solution type element, and the composition of chromium carbide becomes chromium carbonitride. things and becomes very can finely dispersed than chromium carbide alone, in addition more Mn for promoting the solid solution of low temperature and short time its fine carbonitrides, and optimally control the Ni amount a 1 transformation point In addition to adding tens of ppm of B, which improves the quench hardening ability while reducing the quenching, the hardenability of this component system is greatly improved, and the induction hardening is achieved by controlling the total amount of C + N. 58 hardness in processing
It has been found that HRC (653HV) or more can be secured. Furthermore, since the carbides are finely dispersed, the carbides are less likely to be crack initiation points due to separation at the interface, and workability during annealing can be ensured.

【0006】その発明の要旨とするところは、 (1)重量%で、C:0.40〜0.70%、Si:
0.5%以下、Mn:0.5〜2.0%、Ni:0.2
5〜1.0%、Cr:11〜14%、Mo:1.5%以
下、N:0.05〜0.30%、B:0.001〜0.
015%、残部をFe及び不可避的不純物よりなること
を特徴とする焼入性に優れた高硬度ステンレス鋼。但
し、C+N:0.55〜0.85% (2)上記成分範囲に加えてV、W、Tiを単独で0.
50%以下、または複合で合計0.70%以下を含有す
ることを特徴とする焼入性に優れた高硬度ステンレス鋼
である。
The gist of the invention is as follows: (1) By weight%, C: 0.40 to 0.70%, Si:
0.5% or less, Mn: 0.5 to 2.0%, Ni: 0.2
5 to 1.0%, Cr: 11 to 14%, Mo: 1.5% or less, N: 0.05 to 0.30%, B: 0.001 to 0.
High hardness stainless steel with excellent hardenability, characterized by comprising 015%, the balance being Fe and unavoidable impurities. However, C + N: 0.55 to 0.85% (2) In addition to the above component ranges, V, W, and Ti alone are added in 0.1%.
It is a high hardness stainless steel excellent in hardenability, characterized by containing 50% or less, or a combined total of 0.70% or less.

【0007】[0007]

【発明の実施の形態】以下に、本発明鋼の各化学成分の
添加量の限定理由を示す。Cは、焼入後の硬さを上昇さ
せると共にA1 変態点を低下させるのに有効な元素であ
る。しかし多量に添加すると焼鈍状態での粗大な共晶炭
化物が存在して加工性を著しく損ねる。0.40%未満
では所定の窒素を添加しても焼入焼戻硬さ58HRC
(653HV)以上を確保できなくなる。また、0.7
0%を超えて添加すると粗大な共晶炭化物が析出して加
工性を著しく損ねるようになる。そのためCは0.40
〜0.70%とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the amount of each chemical component of the steel of the present invention will be described below. C is an element effective for increasing the hardness after quenching and lowering the A 1 transformation point. However, when added in a large amount, coarse eutectic carbides in an annealed state are present and workability is significantly impaired. If it is less than 0.40%, quenching and tempering hardness is 58 HRC even if predetermined nitrogen is added.
(653 HV) or more cannot be secured. Also, 0.7
If it is added in excess of 0%, coarse eutectic carbides will precipitate and workability will be significantly impaired. Therefore C is 0.40
-0.70%.

【0008】Siは脱酸材として有用な元素であるが、
0.5%を超えて添加した場合、焼鈍し硬さの増加を招
き加工性を損ねるようになる。そのため、上限を0.5
%とした。Mnは焼入性を向上させると共に、オーステ
ナイト生成傾向を高めA1 変態点を低下させる。これに
より炭窒化物のマトリックスへの固溶を促進させ、焼入
性を向上させることができるが、0.5%未満では他の
成分との兼ね合いでその効果が十分ではない。また、
2.0%を超えて添加すると焼鈍し硬さを増加させて加
工性を損ねる。そのため、Mn量を0.5〜2.0%と
限定した。
[0008] Si is an element useful as a deoxidizer,
If it is added in excess of 0.5%, annealing will increase the hardness and impair workability. Therefore, the upper limit is 0.5
%. Mn improves hardenability, increases the tendency to form austenite, and lowers the A 1 transformation point. Thereby, solid solution of carbonitride in the matrix can be promoted and hardenability can be improved, but if it is less than 0.5%, its effect is not sufficient due to the balance with other components. Also,
If added in excess of 2.0%, annealing will increase the hardness and impair workability. Therefore, the Mn content is limited to 0.5 to 2.0%.

【0009】Niはオーステナイト生成傾向を高め、A
1 変態点を低下させる。そのため、焼入れ時の炭窒化物
のマトリックスへの固溶を促進させる効果を持つ。ま
た、Niは電気化学的に貴な元素であり添加により組織
全体を電気化学的に安定方向に作用させ耐食性を向上さ
せる。これらは0.25%以上の添加でその効果が現れ
る。しかし、1.0%を超えて添加するとマルテンサイ
ト変態開始温度(Ms点)が低下し、焼入後に残留オー
ステナイトが生成して焼入れ硬さを低下させると共に焼
鈍し硬さを増加させる作用があるため、焼鈍状態での加
工性を著しく損ねる。そのため、Niは0.25〜1.
0%とした。
Ni enhances austenite formation tendency, and A
1 Lower the transformation point. Therefore, it has the effect of promoting solid solution of the carbonitride in the matrix during quenching. Ni is an electrochemically noble element, and when added, electrochemically acts on the entire structure in a stable direction to improve corrosion resistance. These effects appear when added at 0.25% or more. However, if added in excess of 1.0%, the martensitic transformation onset temperature (Ms point) is reduced, and residual austenite is formed after quenching, which has the effect of reducing quenching hardness and increasing annealing hardness. Therefore, the workability in the annealed state is significantly impaired. Therefore, Ni is 0.25 to 1.
0%.

【0010】Crはステンレス鋼としての耐食性を確保
するために必要不可欠な元素であり、その耐食性を確保
するためには11%以上の添加が必要である。しかし、
14%を超えると硬質の炭窒化物の生成傾向が高くなり
焼鈍状態での加工性が損なわれると共に、炭窒化物が粗
大化しやすいためマトリックスへの固溶が遅れ、焼入れ
硬さが低下する。また、マトリックス中の有効Cr量が
低下して耐食性を損ねる結果となる。そのため、Cr量
を11〜14%と限定した。Moはステンレス鋼の耐食
性を保つCr酸化膜(不動態化膜)を強化して耐食性を
高める効果を有している。但し1.5%を超えて多量添
加すると焼鈍し状態での炭化物の粗大化を促進すると共
に焼鈍し硬さを向上させるため加工性が劣化する。その
ため、Moの上限を1.5%とした。
[0010] Cr is an indispensable element for ensuring the corrosion resistance of stainless steel, and it is necessary to add 11% or more to ensure the corrosion resistance. But,
If it exceeds 14%, the tendency to form hard carbonitrides is increased, and the workability in the annealed state is impaired, and the carbonitrides are liable to be coarsened, so that the solid solution in the matrix is delayed and the quenching hardness is reduced. In addition, the effective Cr content in the matrix decreases, resulting in impaired corrosion resistance. Therefore, the Cr content is limited to 11 to 14%. Mo has the effect of enhancing the corrosion resistance by strengthening the Cr oxide film (passivation film) that maintains the corrosion resistance of stainless steel. However, when added in a large amount exceeding 1.5%, coarsening of the carbide in the annealed state is promoted and the workability is deteriorated because the hardness of the annealing is improved. Therefore, the upper limit of Mo is set to 1.5%.

【0011】NはCと共にマトリックス中に固溶して焼
入れ硬さを確保する為に必須の元素である。Nを添加し
た場合、その材料のC+Nと同量のCを持つ材料に比べ
て、炭化物の微細化が促進されると共に、A1 変態点を
下げるために焼入れ硬さのピーク温度が低下する作用が
ある。ただし、0.05%未満ではCを本発明範囲上限
に持っていっても焼入焼戻状態で硬さを58HRCを確
保できない。また、0.30%を超えて添加した場合、
Nは強力なオーステナイト生成元素のため残留オーステ
ナイトの増加を招き焼入焼戻硬さが低下すると共に焼鈍
時の炭窒化物の析出が多量になり加工性を損ねる。ま
た、これ以上の窒素添加は加圧溶解が必要になるなど現
状ではコストアップ要因となる。よってNは0.05〜
0.30%とした。
N is an element essential for securing quenching hardness by forming a solid solution in the matrix together with C. When N is added, compared to a material having the same amount of C as C + N of the material, the refinement of carbides is promoted and the peak temperature of quenching hardness is lowered to lower the A 1 transformation point. There is. However, if it is less than 0.05%, it is not possible to secure a hardness of 58 HRC in a quenched and tempered state even if C is at the upper limit of the range of the present invention. Also, when added over 0.30%,
N is a strong austenite-forming element, which causes an increase in retained austenite, lowers quenching and tempering hardness, and also causes a large amount of carbonitride to precipitate during annealing, thereby impairing workability. Further, the addition of nitrogen more than this causes a cost increase at present, such as the necessity of melting under pressure. Therefore N is 0.05 ~
0.30%.

【0012】Bは材料の焼入れ性を向上させると共に粒
界を強化して熱間加工時の加工性を向上させる働きもあ
る。しかし、0.015%を超えて添加してもその効果
が飽和すると共に粒界偏析が強くなり脆化するのでその
上限を0.015%とした。C+Nは焼入焼戻状態での
硬さ58HRC(653HV)以上を確保するために
は、総量として0.55%以上が必要である。しかし、
0.85%を超えるとC,Nとも強力なオーステナイト
生成元素であるため残留オーステナイトが増加して焼入
硬さが低下すると共に、焼鈍状態では炭窒化物が粗大化
して加工性を損ねるようになる。そのためC+Nの総量
で0.55〜0.85%とした。
B also has the function of improving the hardenability of the material and strengthening the grain boundaries to improve the workability during hot working. However, even if added in an amount exceeding 0.015%, the effect is saturated and grain boundary segregation becomes strong and embrittles. Therefore, the upper limit is made 0.015%. In order to secure a hardness of 58 HRC (653 HV) or more in the quenched and tempered state, the total amount of C + N must be 0.55% or more. But,
If the content exceeds 0.85%, both C and N are strong austenite forming elements, so that retained austenite increases and the quenching hardness decreases, and in the annealed state, carbonitrides become coarse and impair workability. Become. Therefore, the total amount of C + N is set to 0.55 to 0.85%.

【0013】VはCrに比べて炭化物生成傾向が強く、
またその炭化物が非常に硬質であるため焼入硬さの向上
に有効である。しかしながら、0.50%を超えて添加
するとその炭化物が粗大化すると共に焼鈍状態の硬さを
向上させて加工性を劣化させる。そのため上限を0.5
0%とした。TiはCrに比べて炭化物生成傾向が強
く、またその炭化物が非常に硬質であるため焼入硬さの
向上に有効である。しかしながら、0.50%を超えて
添加するとその炭化物が粗大化すると共に焼鈍状態の硬
さを向上させて加工性を劣化させる。そのため上限を
0.50%とした。
V has a stronger tendency to form carbides than Cr does.
Further, since the carbide is very hard, it is effective for improving the quenching hardness. However, if it is added in excess of 0.50%, the carbides become coarse and the hardness in the annealed state is improved, thereby deteriorating the workability. Therefore, the upper limit is 0.5
0%. Ti has a strong tendency to form carbides as compared with Cr, and since the carbides are very hard, it is effective in improving quenching hardness. However, if it is added in excess of 0.50%, the carbides become coarse and the hardness in the annealed state is improved, thereby deteriorating the workability. Therefore, the upper limit is set to 0.50%.

【0014】WはCrに比べて炭化物生成傾向が強く、
またその炭化物が非常に硬質であるため焼入硬さの向上
に有効である。しかしながら、0.50%を超えて添加
するとその炭化物が粗大化すると共に焼鈍状態の硬さを
向上させて加工性を劣化させる。そのため上限を0.5
0%とした。これらV,Ti,Wは焼入硬さを高めるた
めに複合添加される場合があるが、それぞれ炭窒化物生
成傾向が高いため、あわせて0.70%を超える多量添
加は粗大炭窒化物の生成を促進することになる。そのた
め、複合添加する場合の上限を0.70%とした。
W has a greater tendency to form carbides than Cr does.
Further, since the carbide is very hard, it is effective for improving the quenching hardness. However, if it is added in excess of 0.50%, the carbides become coarse and the hardness in the annealed state is improved, thereby deteriorating the workability. Therefore, the upper limit is 0.5
0%. These V, Ti, and W may be added in combination to increase quenching hardness. However, since each of them has a high tendency to form carbonitrides, the addition of a large amount exceeding 0.70% causes the addition of coarse carbonitrides. Will promote generation. Therefore, the upper limit in the case of adding composite is set to 0.70%.

【0015】[0015]

【実施例】以下に実施例について説明する。表1に示す
本発明鋼および比較鋼を真空溶解炉にて溶製した後、φ
20棒鋼に鍛造し、870℃にて焼鈍した後、各種試験
に供した。焼鈍状態での加工性の評価として焼鈍硬さ測
定、限界据え込み率測定、焼入性の評価として高周波焼
入特性および耐候性の評価としてサイクル湿潤試験の各
試験項目を行った。
The embodiments will be described below. After melting the steel of the present invention and the comparative steel shown in Table 1 in a vacuum melting furnace,
After forging into 20 bar steel and annealing at 870 ° C., it was subjected to various tests. Each test item of an annealing hardness measurement as a workability evaluation in an annealed state, a limit upsetting ratio measurement, an induction hardening characteristic as a hardenability evaluation, and a cycle wet test as an evaluation of weatherability was performed.

【0016】[0016]

【表1】 [Table 1]

【0017】・焼鈍硬さ 870℃の条件で焼鈍した材料のT断面をビッカース硬
度計にて測定した。 ・限界据え込み率 焼鈍状態で長さL0 のTPを両端面拘束した状態で圧下
していき、試験片側面に割れが初めて生じたときの高さ
をLとしたとき、限界据え込み率(%)=1−(L−L
0 )/L0 ×100で表せる値で評価した。
Annealing hardness The T section of the material annealed at 870 ° C. was measured with a Vickers hardness tester. - the limit upsetting ratio annealed condition continue to pressure while restraining both end surfaces TP length L 0, when the height when cracking in the test one side for the first time resulting is L, the limit upsetting ratio ( %) = 1− (L−L)
0 ) / L 0 × 100.

【0018】・高周波焼入特性 プレート電流3.1A、プレート電圧9.0kV、移動
速度232mm/min、回転数160rpm、加熱温
度1050〜1100℃の条件でφ20素材を高周波焼
入処理を行い、その後150℃×1h、空冷の焼戻処理
を行った。高周波焼入硬さは、上記熱処理後試料表面か
ら0.2mmの部位をビッカース硬度計で測定して評価
した。高周波焼入深さについては、上述の条件で高周波
焼入、焼戻処理を施した試験片にて、試料端から中心方
向に0.05mmピッチで硬度測定し、初めて515H
V(約50HRC相当)を下回る時の試料端からの距離
にて評価を行った。
Induction quenching characteristics A φ20 material is subjected to induction quenching under the conditions of a plate current of 3.1 A, a plate voltage of 9.0 kV, a moving speed of 232 mm / min, a rotation speed of 160 rpm, and a heating temperature of 1050 to 1100 ° C. An air-cooled tempering treatment was performed at 150 ° C. × 1 h. The induction hardening hardness was evaluated by measuring a portion 0.2 mm from the surface of the sample after the heat treatment with a Vickers hardness meter. For the induction hardening depth, the hardness was measured at a pitch of 0.05 mm from the end of the sample toward the center from the specimen, which had been subjected to induction hardening and tempering under the above-described conditions.
The evaluation was made based on the distance from the sample end when the value was lower than V (corresponding to about 50 HRC).

【0019】・耐候性試験 高周波焼入、焼戻処理をした試験片にて、相対湿度90
%の環境下で20〜50℃のサイクルを20回繰り返す
サイクル湿潤試験を行い、その時の試験片の外観から発
銹程度をレイティングにより評価した。レイティングは
発銹無しを〇、やや発銹(発銹点の面積率10%以下)
が見られるものを△、激しく発銹(面積率10%以上)
が見られるのを×として評価した。
Weather resistance test A test piece subjected to induction hardening and tempering was subjected to a relative humidity of 90.
A cycle wet test in which a cycle of 20 to 50 ° C. was repeated 20 times in an environment of% was performed, and the degree of rust was evaluated by rating from the appearance of the test piece at that time. Rating: No rusting, slightly rusting (area ratio of rusting point 10% or less)
If you see △, violently rust (area ratio 10% or more)
Was evaluated as x.

【0020】表2に各試験の結果を示す。焼鈍時に優れ
た加工性を示すためには、焼鈍硬さが低いこと及び冷間
加工性に優れていることが重要である。発明鋼は焼鈍硬
さが低く、かつ限界据え込み率も高い値を示しているの
に対し、比較鋼b,d,e,f,g,i,jおよび従来
鋼2は焼鈍硬さが高めで、限界据え込み率も低くなって
いる。これは、焼鈍状態で炭窒化物の析出が多いことと
その析出物が粗大化しているためである。
Table 2 shows the results of each test. In order to exhibit excellent workability during annealing, it is important that the annealing hardness is low and that the cold workability is excellent. Inventive steel has low annealing hardness and high critical upsetting ratio, while comparative steels b, d, e, f, g, i, j and conventional steel 2 have high annealing hardness. The marginal upsetting rate is also low. This is because a large amount of carbonitride precipitates in the annealed state and the precipitates are coarsened.

【0021】高周波焼入性は、発明鋼が高周波焼入硬度
は全て653HV(58HRC相当)以上、515HV
を確保できる深さは3.50mm以上と良好な値を得ら
れるのに対し、比較鋼a,b,d,e,f,gおよび従
来鋼1、2、3では高周波焼入硬度が低く、高周波焼入
深さも浅くなっている。これは、比較鋼b,d,g及び
従来鋼1,2では焼鈍状態での炭窒化物が粗大なため、
高周波焼入のような短時間加熱では、基地中への固溶が
十分に進まなかったためである。また、比較鋼a及び従
来鋼3はC+N量がもともと少ないため、十分な高周波
焼入硬さが得られない。比較鋼b,eの焼入硬さが低い
のは残留オーステナイト量の増加も一因である。
As for the induction hardenability, the invention steel has an induction hardening hardness of at least 653 HV (corresponding to 58 HRC) or more and 515 HV.
Can be obtained as good as 3.50 mm or more, whereas the comparative steels a, b, d, e, f, g and the conventional steels 1, 2, and 3 have low induction hardening hardness, The induction hardening depth is also shallow. This is because the comparative steels b, d, g and the conventional steels 1, 2 have coarse carbonitrides in the annealed state.
This is because the solid solution in the matrix did not sufficiently advance by short-time heating such as induction hardening. Moreover, since the comparative steel a and the conventional steel 3 have originally small amounts of C + N, sufficient induction hardening hardness cannot be obtained. The low quench hardness of the comparative steels b and e is partly due to the increase in the amount of retained austenite.

【0022】また、Bを添加しない比較鋼hは焼入性が
十分でないため、高周波焼入硬さは高いものの焼入深さ
は発明鋼に比べて低くなっている。耐候性に関しては、
発明鋼、従来鋼ともサイクル湿潤試験で発銹が認められ
なかったが、Cr量の少ない比較鋼Cでは発銹が認めら
れる。また比較鋼jで発銹が認められるのは、V,Wの
多量添加により炭窒化物が多くなり、基地との炭窒化物
との電池作用が増加したためである。なお、以上の説明
及び実施例における、焼入は高周波焼入について述べて
きたが、高周波焼入に限定されることなく、一般の焼入
熱処理においても図1に示すように短時間処理が可能に
なることから、本発明として適応されることは明らかで
ある。
The comparative steel h to which B is not added does not have sufficient hardenability, so that the induction hardening hardness is high but the hardening depth is lower than that of the inventive steel. Regarding weather resistance,
No rust was observed in the cycle wet test for both the inventive steel and the conventional steel, but rust was observed in Comparative Steel C having a small Cr content. Further, the reason why rust was observed in the comparative steel j was that the addition of a large amount of V and W increased the amount of carbonitride and increased the battery action with the base carbonitride. In the above description and examples, hardening has been described with respect to induction hardening. However, the hardening is not limited to induction hardening and can be performed in a short time as shown in FIG. 1 in general hardening heat treatment. Therefore, it is obvious that the present invention is applied.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上より、本発明により従来の高硬度ス
テンレス鋼に比べて焼入性に優れ、特に高周波焼入に適
した高硬度ステンレス鋼が得られることが分かる。
From the above, it can be seen that the present invention provides a high hardness stainless steel which is superior in hardenability to conventional high hardness stainless steel and is particularly suitable for induction hardening.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱処理時間と硬さ(HRC)との関係を示す図
である。
FIG. 1 is a diagram showing the relationship between heat treatment time and hardness (HRC).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.40〜0.70%、 Si:0.5%以下、 Mn:0.5〜2.0%、 Ni:0.25〜1.0%、 Cr:11〜14%、 Mo:1.5%以下、 N :0.05〜0.30%、 B :0.001〜0.015%、 残部をFe及び不可避的不純物よりなることを特徴とす
る焼入性に優れた高硬度ステンレス鋼。但し、C+N:
0.55〜0.85%
C .: 0.40 to 0.70%, Si: 0.5% or less, Mn: 0.5 to 2.0%, Ni: 0.25 to 1.0% by weight% Cr: 11 to 14%, Mo: 1.5% or less, N: 0.05 to 0.30%, B: 0.001 to 0.015%, the balance being Fe and unavoidable impurities. High hardness stainless steel with excellent hardenability. However, C + N:
0.55 to 0.85%
【請求項2】 請求項1の成分組成に加えてV、W、T
iを単独で0.50%以下、または複合で合計0.70
%以下を含有することを特徴とする焼入性に優れた高硬
度ステンレス鋼。
2. V, W, T in addition to the component composition of claim 1.
i alone is 0.50% or less, or a combined total of 0.70
% Of high hardness stainless steel having excellent hardenability.
JP27277396A 1996-10-16 1996-10-16 High hardness stainless steel with excellent hardenability Expired - Fee Related JP3262994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27277396A JP3262994B2 (en) 1996-10-16 1996-10-16 High hardness stainless steel with excellent hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27277396A JP3262994B2 (en) 1996-10-16 1996-10-16 High hardness stainless steel with excellent hardenability

Publications (2)

Publication Number Publication Date
JPH10121209A JPH10121209A (en) 1998-05-12
JP3262994B2 true JP3262994B2 (en) 2002-03-04

Family

ID=17518550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27277396A Expired - Fee Related JP3262994B2 (en) 1996-10-16 1996-10-16 High hardness stainless steel with excellent hardenability

Country Status (1)

Country Link
JP (1) JP3262994B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952888B2 (en) * 2006-04-07 2012-06-13 大同特殊鋼株式会社 Martensite steel
JP5186878B2 (en) * 2007-10-18 2013-04-24 大同特殊鋼株式会社 Steel for plastic molds and plastic molds
JP5368887B2 (en) 2008-09-01 2013-12-18 ミネベア株式会社 Martensitic stainless steel and rolling bearings
JP6945664B2 (en) * 2020-01-27 2021-10-06 日鉄ステンレス株式会社 Martensitic stainless steel for high hardness and corrosion resistance with excellent cold workability and its manufacturing method

Also Published As

Publication number Publication date
JPH10121209A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP3491030B2 (en) Stainless steel for disk shakers
JP3817105B2 (en) High strength steel with excellent fatigue characteristics and method for producing the same
EP2530178B1 (en) Case-hardened steel and carburized material
JP4050829B2 (en) Carburized material with excellent rolling fatigue characteristics
JPH0686645B2 (en) Nickel-saving austenitic stainless steel with excellent hot workability
JP3262994B2 (en) High hardness stainless steel with excellent hardenability
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP3477108B2 (en) Martensitic stainless steel for disc brakes with excellent corrosion resistance
JP4846916B2 (en) Hot rolled steel with extremely high elastic limits and mechanical strength, especially useful for manufacturing automotive vehicle parts
JP3384887B2 (en) Precipitation hardened stainless steel for springs with excellent strength and torsion characteristics
EP0957182B1 (en) A martensitic heat resisting steel
EP0445519A1 (en) Wear-resistant steel for intermediate and room temperature service
KR101776491B1 (en) High strength spring steel having excellent corrosion resistance
JPH07233442A (en) Wear resistant and corrosion resistant bearing steel excellent in rolling fatigue property
JPH01225751A (en) Work roll for heavy-load cold rolling excellent in spalling resistance and its production
JP2000063947A (en) Manufacture of high strength stainless steel
JP3241436B2 (en) Bearing steel with excellent workability
JP3391026B2 (en) High-performance materials
JP3378346B2 (en) Precipitation-hardened martensitic stainless steel with excellent strength and toughness
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JPH07216508A (en) Bearing steel
JP2988336B2 (en) Corrosion resistant high strength martensitic stainless steel
JP2548067B2 (en) High toughness low alloy steel
JP3488395B2 (en) High hardness corrosion resistant steel with excellent workability
JP3379823B2 (en) Bearing steel and bearing members

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees