JP3261463B2 - Soil purification method for sewage - Google Patents

Soil purification method for sewage

Info

Publication number
JP3261463B2
JP3261463B2 JP30818095A JP30818095A JP3261463B2 JP 3261463 B2 JP3261463 B2 JP 3261463B2 JP 30818095 A JP30818095 A JP 30818095A JP 30818095 A JP30818095 A JP 30818095A JP 3261463 B2 JP3261463 B2 JP 3261463B2
Authority
JP
Japan
Prior art keywords
sewage
soil
layer
air
infiltration layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30818095A
Other languages
Japanese (ja)
Other versions
JPH09122668A (en
Inventor
一幸 羽田野
正男 野尻
豊 小島
鷹 江
佳奈 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Kogyo Co Ltd
Original Assignee
Taiyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Kogyo Co Ltd filed Critical Taiyo Kogyo Co Ltd
Priority to JP30818095A priority Critical patent/JP3261463B2/en
Publication of JPH09122668A publication Critical patent/JPH09122668A/en
Application granted granted Critical
Publication of JP3261463B2 publication Critical patent/JP3261463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚水を土壌の中に
通過させることにより浄化処理する土壌浄化法、特に、
土壌トレンチ法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soil purification method for purifying sewage by passing sewage through soil.
It relates to the soil trench method.

【0002】[0002]

【従来の技術】汚水発生源からの有機物含有汚水を前処
理して固形物を分離した後、その汚水を陶管のような散
水管と、その散水管の周囲に形成されている砕石層から
なる拡散層と、この拡散層を包んでいる土壌層とに、順
次、通して土壌中に浸潤・拡散させ、汚水中に含まれる
有機物を土壌中に生息している微生物の作用により分解
し、水、炭酸ガス及び窒素にして自然界に返すという土
壌トレンチ法は公知である{「用水と廃水」第29巻第
1号第51〜59頁(1987年)}。
2. Description of the Related Art Organic matter-containing sewage from a sewage generation source is pretreated to separate solids, and then the sewage is separated from a sprinkling pipe such as a ceramic pipe and a crushed stone layer formed around the sprinkling pipe. The diffusion layer and the soil layer surrounding this diffusion layer, in order to infiltrate and diffuse into the soil, decompose the organic matter contained in the sewage by the action of microorganisms living in the soil, The soil trench method of returning water, carbon dioxide, and nitrogen to the natural world is known ("Water and wastewater" Vol. 29, No. 1, pp. 51-59 (1987)).

【0003】この汚水浄化法には、汚水中の有機物と栄
養塩とを同時に効率的に除去でき、かつ設備投資費及び
維持費を低廉にできるという利点があるが、その方法の
実施期間がある程度長くなると、前記拡散層と土壌層と
の境界付近に有機物の目詰まりが起こり易く、汚水の浄
化処理機能の低下を招くという問題がある。
[0003] This sewage purification method has the advantages that organic matter and nutrients in sewage can be removed efficiently at the same time, and that capital investment and maintenance costs can be reduced. If the length is too long, clogging of organic matter is likely to occur near the boundary between the diffusion layer and the soil layer, and there is a problem that the purification function of sewage is reduced.

【0004】そこで、本出願人等は、前記拡散層を特定
の構造に改良して汚水が土壌層に浸潤ないしは広く拡散
してゆく浸潤層ないしは拡散層(以下、本発明において
は浸潤層と総称する)にするとともに、前記境界付近の
有機物の目詰まり状態を汚水の酸化還元電位の変化によ
り把握し、酸化還元電位が所定値以下になったとき、前
記境界付近に空気を送り込んで好気状態にし、そこに生
息している好気性微生物の働きを活発にする、という発
明を提案をした(特開平7−214085号公報)。
Accordingly, the present applicants have developed an infiltration layer or a diffusion layer (hereinafter referred to as an infiltration layer in the present invention) in which the above-mentioned diffusion layer is modified into a specific structure and the sewage infiltrates or diffuses widely into the soil layer. And the clogging state of the organic matter near the boundary is grasped by a change in the oxidation-reduction potential of the sewage, and when the oxidation-reduction potential falls below a predetermined value, air is fed into the vicinity of the boundary to cause an aerobic state. The present inventors have proposed an invention that activates the action of aerobic microorganisms living there (JP-A-7-214085).

【0005】[0005]

【発明が解決しようとする課題】この発明によると、相
当長い期間土壌トレンチ法を実施しても、拡散層と土壌
層との境界付近における有機物の目詰まりを抑えられる
が、その発明には、なお次の点に問題があることがその
後判明した。 (1)土壌トレンチ法が実施される装置(トレンチ装
置)が地中にあるため、前記の酸化還元電位を検知する
ための検知装置を設置しにくいだけでなく、検知装置が
その機能を発揮する頻度(数十日間に1回程度の使用頻
度)の割りには検知装置及びその検知装置の信号により
空気送風用ファンを起動させる制御装置等が大かがりな
ものになる。
According to the present invention, clogging of organic matter near the boundary between the diffusion layer and the soil layer can be suppressed even if the soil trench method is performed for a considerably long time. It was later found that there were problems with the following points. (1) Since a device (trench device) for performing the soil trench method is underground, not only is it difficult to install a detection device for detecting the oxidation-reduction potential, but also the detection device exhibits its function. The frequency of detection (frequency of use about once every several tens of days) requires a detection device and a control device that activates an air blowing fan based on a signal from the detection device.

【0006】(2)たとえ、検知装置等を設置し得て
も、酸化還元電位が所定値に低下したことを検知してか
ら浸潤層に空気を送り込んで、その空気により好気性微
生物の働きを活発にして目詰まりの原因になっている有
機物を分解するまでには相当時間がかかり、その間も浸
潤層と土壌層との境界付近に汚水が流入して土壌トレン
チ法の浄化機能が低下し、ひいては水質の低下を招く虞
れがある。本発明の目的は、前記の問題を解決して前記
浸潤層と土壌層との境界付近における有機物の目詰まり
を未然に防ぐことができる汚水浄化法を提供することに
ある。
(2) Even if a detection device or the like can be installed, air is sent to the infiltration layer after detecting that the oxidation-reduction potential has dropped to a predetermined value, and the action of the aerobic microorganisms is performed by the air. It takes a considerable amount of time to actively decompose the organic matter that is causing clogging, and during that time, sewage flows near the boundary between the infiltration layer and the soil layer, and the purification function of the soil trench method decreases, As a result, there is a possibility that the water quality may be reduced. It is an object of the present invention to provide a sewage purification method capable of solving the above-mentioned problem and preventing clogging of organic matter near a boundary between the infiltration layer and the soil layer.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は地中に埋設させた散水手段に対して、汚
水をポンプにより断続的に供給して、散水手段から浸潤
層及び土壌層に順次移動させて汚水を浄化する汚水の土
壌浄化処理法において、浸潤層に対して地上から空気を
供給して、浸潤層とその下の下部土壌層との境界付近に
空気を到達させて該境界付近を好気状態に保持すること
により、該境界付近における下部土壌層の土壌粒子間の
目詰まりの発生を防止し、該下部土壌層を通って浄化さ
れた処理水を集水するという手段を採用する(請求項1
の発明)。
In order to achieve the above-mentioned object, the present invention provides a water sprinkling means buried in the ground by intermittently supplying sewage by a pump so that the sprinkling water and the infiltration layer can be removed from the water sprinkling means. by sequentially moving the soil layer Te sewage soil remediation treatment smell for purifying wastewater, immersion by supplying air from the ground with respect to Junso, in the vicinity of the boundary between the invasion layer and the lower soil layer thereunder
Allow air to reach and maintain aerobic area near the boundary
Between the soil particles in the lower soil layer near the boundary
Prevent the occurrence of clogging and purify through the lower soil layer
Means for collecting the collected treated water (claim 1).
Invention).

【0008】散水手段への汚水の供給中のみならず該
水の供給が一旦途絶えてから再開されるまでの間浸潤
層に対して地上から空気を供給するとよい。浸潤層への
空気の供給は、散水手段に汚水を供給しているときも行
うことができる。浸潤層への空気の供給は、ポンプの起
動・停止と無関係に連続的に行うこともできる。さら
に、浸潤層に対してその容積より多い量の空気を供給し
て、浸潤層と土壌層との境界付近の好気状態をより確実
に保持することが好ましい。また、請求項1の発明が実
施される装置の設計仕様が明確なときは、浸潤層に対し
て、散水手段1m当たり次の数式1で示される量A(l
/m・回)の空気を供給することが好ましい。
[0008] may be to supply air from the ground against infiltration layer until the supply of the fouling <br/> water not only during the supply of sewage to the water spray means is restarted after interrupted once. The supply of air to the infiltration layer can be performed even when supplying sewage to the watering means. The supply of air to the infiltration layer can be performed continuously irrespective of the start / stop of the pump. Furthermore, it is preferable to supply more air than the volume to the infiltration layer to more reliably maintain the aerobic state near the boundary between the infiltration layer and the soil layer. Further, when the design specifications of the device in which the invention of claim 1 is implemented are clear, the amount A (l
/ M · times) of air is preferably supplied.

【0009】[0009]

【数1】A≧22.4(l/モル)×{(Q×C+R×
S/N)/32(g/モル)}×5 ただし、数式1において、Qは散水手段1m当たりに供
給される汚水量(l/m・回)、Cは汚水のBOD濃度
(g/l)、Sは散水手段1m当たりが占める土壌層の
水平方向の面積(平方m/m)、Rは土壌層の微生物が
生息するのに必要な酸素の量(g/平方m・日)、Nは
散水手段への汚水の供給が停止する頻度(回/日)をそ
れぞれ意味する。通常、前記Rは、経験的に55(g/
m・日)を使用する。
A ≧ 22.4 (l / mol) × {(Q × C + R ×
S / N) / 32 (g / mol)} × 5 where Q is the amount of sewage supplied per meter of watering means (l / m · times), and C is the BOD concentration of sewage (g / l) ), S is the horizontal area of the soil layer occupied by 1 m of watering means (square m / m), R is the amount of oxygen (g / sq m / day) required for the microorganisms in the soil layer to inhabit, N Means the frequency (times / day) at which the supply of sewage to the watering means stops. Usually, the R is empirically 55 (g / g).
m · day).

【0010】[0010]

【発明の実施の形態】以下、本発明を実施した形態例に
ついて、図1〜図3を参照しながら説明すると、まず、
本発明が実施されるトレンチ装置は、基本的には次のよ
うに構成されている。すなわち、図3に示すように、家
庭用トイレや、キャンプ場、スキー場又は公園等に設置
されている公衆トイレ等、矢印Xで示す汚水発生源側か
ら断続的に流入する汚水の固形物等を腐敗させる腐敗槽
1と、その腐敗槽1から溢れた上澄液を貯留する貯留槽
2と、その貯留槽2から水中設置型のポンプ3により汲
み上げられた汚水をトレンチ土壌層4に散水するための
散水手段5と、前記トレンチ土壌層4により浄化処理さ
れた処理水を所定の範囲より拡散させないようにするた
めの非透水膜製トレンチ溝6と、そのトレンチ溝6内の
処理水を集水して矢印Zの方向に排水する集水管7とを
主要な要素として構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS.
The trench device in which the present invention is implemented is basically configured as follows. That is, as shown in FIG. 3, such as household toilets, public toilets installed in campsites, ski resorts, parks, and the like, solid substances such as sewage intermittently flowing from the sewage source side indicated by arrow X Tank 1 that rots the water, storage tank 2 that stores the supernatant liquid overflowing from the tank 1, and sewage pumped from the storage tank 2 by a submersible pump 3 is sprinkled on the trench soil layer 4. For preventing the treated water purified by the trench soil layer 4 from diffusing from a predetermined range, and collecting the treated water in the trench 6. A water collecting pipe 7 for water and draining in the direction of arrow Z is configured as a main element.

【0011】前記各要素をさらに具体的に詳述すると、
貯留槽2には図1に示すように、ケーブルフロート型の
上下位センサー8、9が上下位に2本設けられており、
上位センサー8が所定の高さの水位を感知したとき、ポ
ンプが回転して汚水を散水手段5に連続的に供給し、下
位センサー9が水位の低下を感知したとき、ポンプの回
転が停止して散水手段5に対する汚水の供給が途絶え
る。従って、汚水が貯留槽2から散水手段5に対して断
続的に、すなわち、汚水の供給と停止のサイクルが反復
される態様で供給され、汚水発生源側からの貯留槽2へ
の汚水の単位時間当たりの供給量が増えると、前記の停
止時間が短くなって前記サイクルが短くなる。
Each of the above elements will be described in more detail.
As shown in FIG. 1, the storage tank 2 is provided with two upper and lower cable float type upper and lower sensors 8 and 9.
When the upper sensor 8 detects a water level at a predetermined height, the pump rotates to continuously supply sewage to the sprinkling means 5, and when the lower sensor 9 detects a decrease in the water level, the rotation of the pump stops. As a result, the supply of sewage to the watering means 5 is interrupted. Therefore, the sewage is supplied intermittently from the storage tank 2 to the sprinkling means 5, that is, in a mode in which the cycle of supply and stoppage of the sewage is repeated, and the unit of the sewage from the sewage generation source side to the storage tank 2 is supplied. As the supply per hour increases, the downtime becomes shorter and the cycle becomes shorter.

【0012】散水手段5は樋又は管等の通水要素からな
り、汚水が流下してゆく過程で少しずつ外方に散水され
るように、その上部壁には多孔、スリット又は網目等の
透水部が形成されている。前記集水管7も管壁に前記の
ような透水部を有し、その透水部を通じてトレンチ土壌
層4から処理水が集水されるようになっている。
The water sprinkling means 5 is composed of a water passing element such as a gutter or a pipe. The upper wall of the water sprinkling means 5 is provided with a water permeable element such as a perforated, slit or mesh so that the sewage can be sprinkled outward little by little while flowing down. A part is formed. The water collecting pipe 7 also has the above-described water-permeable portion on the pipe wall, and the treated water is collected from the trench soil layer 4 through the water-permeable portion.

【0013】トレンチ土壌層4は、砂利層10、土壌層
としての下部土壌層11、浸潤層12、及び同じく土壌
層としての上部土壌層13の4つの層が順次積層された
構造になっており、砂利層10の中に前記集水管7が埋
設されているとともに、同中央部において浸潤層12上
に前記散水手段5が埋設されている。なお、この実施形
態においては、散水手段5は特定の構造を有する汚水拡
散装置14に樋として組み込まれている。
The trench soil layer 4 has a structure in which four layers of a gravel layer 10, a lower soil layer 11 as a soil layer, an infiltration layer 12, and an upper soil layer 13 also as a soil layer are sequentially stacked. The water collecting pipe 7 is buried in the gravel layer 10 and the water sprinkling means 5 is buried on the infiltration layer 12 at the center. In this embodiment, the sprinkling means 5 is incorporated as a gutter in the sewage dispersion device 14 having a specific structure.

【0014】砂利層10は、主として砂利からなり、下
部土壌層11を通った処理水が集水管7に集まり易くし
ているとともに、下部土壌層11の土壌と集水管7との
直接接触を断って集水管7の管壁の目詰まりを防止して
いる。下部土壌層11及び上部土壌層13は比較的空隙
率の高い土壌、例えば、粘土、シルト及び砂とが混合さ
れた空隙率の高いクレーロームからなり、汚水が保持さ
れ易くしかも気体も通り易くなっている。微生物はこれ
らの土壌層において呼吸しながら浸潤・拡散してきた汚
水中の有機物を分解する。
The gravel layer 10 is mainly made of gravel, so that the treated water that has passed through the lower soil layer 11 is easily collected in the water collecting pipe 7, and the direct contact between the soil of the lower soil layer 11 and the water collecting pipe 7 is cut off. Thus, clogging of the pipe wall of the water collecting pipe 7 is prevented. The lower soil layer 11 and the upper soil layer 13 are made of a soil having a relatively high porosity, for example, a clay porosity in which clay, silt and sand are mixed, and have a high porosity. I have. Microorganisms decompose organic matter in sewage that has infiltrated and diffused while breathing in these soil layers.

【0015】浸潤層12は、多孔性ケイ酸カルシウム水
和物、特にトバモライトの粒状ないしは塊状の多孔質材
料が所定の厚さに敷き詰められた高透水材層からなり、
汚水拡散装置14からの汚水を浸潤ないしは拡散させて
下部土壌層11に移動させる作用をするとともに、汚水
中の微生物を担持する作用もしている。
The infiltration layer 12 comprises a layer of high water permeable material in which a porous or granular porous material of porous calcium silicate, especially tobermorite, is spread to a predetermined thickness.
It has the function of infiltrating or diffusing sewage from the sewage diffusion device 14 and moving it to the lower soil layer 11, and also has the function of carrying microorganisms in sewage.

【0016】汚水拡散装置14は、散水手段としての散
水樋5と、その散水樋5を支える板状基板15と、その
基板15の両縁部において散水樋5から所定距離おいて
平行に設置された2本の通気ダクト16とから構成され
ている。さら散水樋5と通気ダクト16との間には、多
孔性ケイ酸カルシウム水和物の粒状ないし塊状多孔質材
料からなる汚水浄化材Sが充填された無天井の拡散室1
7が形成されている。汚水浄化材Sの上には面状透水材
20が被覆されており、拡散室17と上部土壌層13と
の間で水の通過を許容し土壌粒子の通過を阻止してい
る。
The sewage diffusion device 14 is installed in parallel with a water spray gutter 5 as a water spray means, a plate-like substrate 15 for supporting the water spray gutter 5, and a predetermined distance from the water spray gutter 5 at both edges of the substrate 15. And two ventilation ducts 16. A non-ceiling diffusion chamber 1 filled with a sewage purifying material S made of a granular or massive porous material of porous calcium silicate hydrate is provided between the spraying gutter 5 and the ventilation duct 16.
7 are formed. The sewage purifying material S is covered with a sheet-like permeable material 20, which allows the passage of water between the diffusion chamber 17 and the upper soil layer 13 and prevents the passage of soil particles.

【0017】前記板状基板15の一部分でもある通気ダ
クト16の下底部にはスリット、切欠き又は透孔が設け
られていて拡散室17からの汚水が浸潤層12に流れる
ようになっているとともに、上底部には、図2に示すよ
うに、複数本の送気管18が所定の間隔をおいて立設さ
れており、その先端部に取り付けられたファン19から
地上の空気が通気ダクト16に強制的に送り込まれるよ
うになっている。
A slit, a notch or a through hole is provided in the lower bottom portion of the ventilation duct 16 which is a part of the plate-like substrate 15 so that sewage from the diffusion chamber 17 flows into the infiltration layer 12. At the upper bottom, as shown in FIG. 2, a plurality of air supply pipes 18 are provided upright at predetermined intervals, and ground air is supplied to a ventilation duct 16 from a fan 19 attached to a tip end thereof. It is forcibly sent.

【0018】上記構造のトレンチ装置において、本発明
は次のように実施される。まず、トレンチ装置が完成し
たら、貯留槽2から散水樋5に断続的に汚水を送液する
ための汚水の回分量を決める。この回分量は次のように
測定される。ある時点において、それまで停止していた
ポンプ3を回転させて汚水を短時間に連続して汚水拡散
装置14の散水樋5に供給すると、汚水は散水樋5の途
中から少しずつ外方に漏れ出て二つの拡散室17に入り
ながら、やがて散水樋5の先端部まで流下する。拡散室
17に入った汚水のほとんどは汚水浄化材Sの隙間を通
ってやがて通気ダクト16に入り、そこから浸潤層12
に拡散・浸潤してゆくが、汚水の一部は面状透水材20
を介して毛管作用により上部土壌層13に吸い上げられ
てゆく。
In the trench device having the above structure, the present invention is implemented as follows. First, when the trench apparatus is completed, the amount of wastewater for intermittently sending wastewater from the storage tank 2 to the sprinkler gutter 5 is determined. This dosage is measured as follows. At a certain point in time, when the pump 3 which has been stopped is rotated to supply sewage to the sprinkling gutter 5 of the sewage diffusion device 14 continuously for a short time, the sewage gradually leaks outward from the middle of the sprinkling gutter 5. While exiting and entering the two diffusion chambers 17, it eventually flows down to the tip of the watering gutter 5. Most of the sewage that has entered the diffusion chamber 17 passes through the gap of the sewage purification material S and then enters the ventilation duct 16, from which the infiltration layer 12
The sewage is partially diffused and infiltrated into
Is sucked up by the upper soil layer 13 by capillary action.

【0019】この状態のもとで、汚水が汚水拡散装置1
4を通って浸潤層12と上部土壌層13に吸い込まれて
いく流量以上の汚水を散水樋5に流すと、汚水は汚水拡
散装置14の中で一時的ではあるが充満する。汚水が汚
水拡散装置14に充満したことを確認した後、ポンプ3
を止める。こうしてポンプ3を回転させてから停止する
までの、短時間内ではあるがその間の連続した時間内に
散水樋5に送水した汚水の量を本発明の回分量とする。
In this state, the sewage is discharged to the sewage diffusion device 1.
When sewage is flowed into the sprinkler gutter 5 at a flow rate equal to or higher than the flow rate of the sewage flowing into the infiltration layer 12 and the upper soil layer 13 through the sewage 4, the sewage is temporarily filled in the sewage diffusion device 14. After confirming that the sewage has filled the sewage diffuser 14, the pump 3
Stop. In this way, the amount of sewage fed to the sprinkler gutter 5 within a short period of time from when the pump 3 is rotated to when it is stopped, but during a continuous period of time is defined as the batch amount of the present invention.

【0020】なお、トレンチ装置の使用の経過とともに
散水樋5の途中から外方に汚水が逸散しにくくなるか
ら、前記回分量はトレンチ装置が初めて稼働するとき又
はメンテナンス終了後に1度測定するだけで足りる。ま
た、汚水が散水樋5の先端まで到達したか否かは、散水
樋5の先端部にサンプリング容器を設けて、その容器に
汚水が入ったか否かを観察することにより判断する。
It is to be noted that, as the use of the trench apparatus progresses, it becomes difficult for the sewage to escape from the middle of the sprinkler gutter 5 to the outside. Therefore, the batch amount is measured only once when the trench apparatus is operated for the first time or after maintenance is completed. Is enough. Whether or not the sewage has reached the tip of the sprinkler gutter 5 is determined by providing a sampling container at the tip of the sprinkler gutter 5 and observing whether or not sewage has entered the container.

【0021】次に、回分量が決定されたら、貯留槽2に
おいて下位センサー9の作用によりポンプ3が回分量の
汚水を汲み上げて上位センサーの作用によりポンプが停
止するよう、上下位センサー8、9の水位感知位置を決
める。そして、トレンチ装置を稼働させる。汚水発生源
側から汚水が断続的に腐敗槽1に流れ込んで、そこで固
形物が分離される。腐敗槽1の水位が上がり、汚水は貯
留槽2に流れ込む。貯留槽2の水位が上位センサー8の
設置レベルに到達すると、ポンプ3が回転して汚水を散
水樋5に供給し始める。なお、このときポンプ3の回転
に合わせて又は前後させてファン19を回転させておい
てもよい。
Next, when the batch amount is determined, the upper and lower sensors 8, 9 are operated so that the pump 3 pumps up the batch amount of wastewater in the storage tank 2 by the operation of the lower sensor 9 and stops the pump by the operation of the upper sensor. Determine the water level sensing position. Then, the trench device is operated. Sewage intermittently flows into the septic tank 1 from the sewage source side, where solids are separated. The water level in the septic tank 1 rises, and the sewage flows into the storage tank 2. When the water level in the storage tank 2 reaches the installation level of the upper sensor 8, the pump 3 rotates and starts supplying sewage to the sprinkler gutter 5. At this time, the fan 19 may be rotated in accordance with the rotation of the pump 3 or before and after.

【0022】ポンプ3は前記回分量の汚水を一気に散水
樋5に供給するので、汚水は散水樋5の先端部まで行き
わたるとともに、その側壁から漏れ出て拡散室17に入
る。拡散室17に入った汚水は前述したとおり、やがて
浸潤層12と上部土壌層13に入る。浸潤層12は透水
性に優れているのでそこに入ったほとんどの汚水は、下
部土壌層11に拡散し、一部の汚水は上部土壌層13に
吸い上げられる。両方の土壌層に生息している微生物は
汚水中の有機物を分解して汚水を浄化する。浸潤層12
においても微生物が生息するから汚水は幾分浄化され
る。浄化された処理水はやがて砂利層10の集水管7に
より集水される。
Since the pump 3 supplies the batch amount of sewage to the sprinkler gutter 5 at a stretch, the sewage reaches the tip of the sprinkler gutter 5 and leaks from the side wall thereof to enter the diffusion chamber 17. The sewage that has entered the diffusion chamber 17 eventually enters the infiltration layer 12 and the upper soil layer 13 as described above. Since the infiltration layer 12 is excellent in water permeability, most of the sewage entering the infiltration layer 12 is diffused to the lower soil layer 11, and a part of the sewage is sucked up by the upper soil layer 13. Microorganisms that live in both soil layers decompose organic matter in the sewage and purify the sewage. Infiltration layer 12
In this case, sewage is somewhat purified because microorganisms inhabit. The purified treated water is eventually collected by the collection pipe 7 of the gravel layer 10.

【0023】次に、貯留槽2における汚水の水位が低下
してポンプ3が停止し、散水樋5への汚水の流れが途絶
え、汚水は散水樋5から漏れ出て浸潤層12内にも流れ
なくなる。通常、汚水の浄化法においては汚水が存在し
ない場合、その浄化処理系に対して空気を吹き込まない
のであるが、本発明では散水樋5に対する汚水の供給が
一旦途絶えてから再開されるまでの間に、浸潤層12に
対して地上から空気を吹き込む。
Next, the water level of the sewage in the storage tank 2 drops, the pump 3 stops, the flow of the sewage to the sprinkler gutter 5 is interrupted, and the sewage leaks from the sprinkler gutter 5 and flows into the infiltration layer 12. Disappears. Normally, in the sewage purification method, when sewage does not exist, air is not blown into the purification treatment system. However, in the present invention, the supply of sewage to the sprinkler gutter 5 is suspended until it is restarted. Then, air is blown into the infiltration layer 12 from the ground.

【0024】この場合、空気の吹込み量A(l/m・
回)は、ポンプ3が回転して停止するまでに散水樋1m
当たりに供給する汚水量Q(l/m・回)、汚水のBO
D濃度C(g/l)、1m当たりが散水樋5が占めるト
レンチ土壌層4の水平方向の面積S(平方m/m)、ト
レンチ土壌層4の微生物が生息するのに必要な酸素の量
R(g/平方m・日)、及び1日当たりポンプ3が停止
する回数N(回/日)、等によっても異なるが、これら
の変数がトレンチ装置の設計仕様として明確なときは、
空気)の吹込み量Aは少なくとも、前記数式1を満たす
ようにファン19を稼働させることが好ましい。なお、
前記Rは経験的に55(g/平方m・日)とする。
In this case, the air blowing amount A (l / m ·
Times) is 1m of watering gutter until the pump 3 rotates and stops.
Amount of wastewater supplied per unit (l / m-times), BO of wastewater
D concentration C (g / l), horizontal area S (square m / m) of trench soil layer 4 occupied by watering gutter 5 per meter, amount of oxygen required for microorganisms in trench soil layer 4 to inhabit R (g / square m-day), the number of times the pump 3 stops per day N (times / day), etc., but when these variables are clear as design specifications of the trench device,
It is preferable to operate the fan 19 so that the blowing amount A of the air) satisfies at least the above mathematical formula 1. In addition,
The above R is empirically set to 55 (g / square m · day).

【0025】前記の変数がトレンチ装置の設計仕様とし
て明確でない場合は、本発明では浸潤層12の空隙分の
空気を少なくとも浸潤層12に吹き込む必要がある。実
際には、浸潤層12の空隙率は、高透水材の種類やトレ
ンチ装置の施工時の押し固めによって異なり、正確な量
を測定することは困難であるので、浸潤層12の容量と
同量以上を吹き込むことにしてもよい。ちなみに、その
吹き込み量が多すぎることによる弊害はなく、過剰の空
気は散水手段等の隙間を経て下部土壌層11や上部土壌
層13に吹き込まれる。
If the above variables are not clear as the design specifications of the trench device, in the present invention, it is necessary to blow at least air corresponding to the gap of the infiltration layer 12 into the infiltration layer 12. Actually, the porosity of the infiltration layer 12 varies depending on the type of the highly permeable material and the compaction during the construction of the trench device, and it is difficult to measure an accurate amount. The above may be blown. By the way, there is no adverse effect due to too much blowing amount, and excess air is blown into the lower soil layer 11 and the upper soil layer 13 through gaps such as watering means.

【0026】上記のように空気を浸潤層12に送り込む
と、空気は浸潤層12と下部土壌層11との境界付近Y
に到達する。その境界付近Yにおいて下部土壌層11側
の土壌粒子は比較的細かいため、その間隙に汚水が滞っ
て有機物が詰まり易いのであるが、そこに汚水より流れ
易い空気を吹き込むと前記間隙は好気性微生物が活動し
易い好気状態になり、それまで存在していた、又は後か
ら入り込むであろう有機物の分解を促進して、前記境界
付近Yの土壌粒子間の目詰まりの発生が未然に防止され
る。
When air is sent into the infiltration layer 12 as described above, the air flows in the vicinity Y of the boundary between the infiltration layer 12 and the lower soil layer 11.
To reach. In the vicinity Y of the boundary, the soil particles on the lower soil layer 11 side are relatively fine, so that sewage stagnates in the gap and organic matter is liable to be clogged. Becomes an aerobic state that is easy to be activated, and promotes the decomposition of organic matter that has been present or will enter later, thereby preventing the occurrence of clogging between soil particles near the boundary Y in advance. You.

【0027】なお、前記においてファン19の起動・停
止は、ポンプ3の起動・停止に連動させて行なうが、少
なくとも散水樋5への汚水の供給が一旦途絶えてから再
開されるまでの間に浸潤層12に対して地上から空気を
供給して前記境界付近Yを好気状態を維持するという条
件を満足する限度において、ファン19による空気の供
給は、散水樋5に汚水を供給しているときも行なうこと
ができるし、汚水の供給が一旦途絶えてから再開される
までの時間が汚水供給時間に比較して著しく長いとき
は、一時的に空気の供給を停止させることもできる。
In the above description, the start and stop of the fan 19 are performed in conjunction with the start and stop of the pump 3. However, the infiltration is performed at least until the supply of the sewage to the sprinkler gutter 5 is interrupted and restarted. As long as the condition that the air is supplied from the ground to the layer 12 to maintain the aerobic state in the vicinity of the boundary Y is satisfied, the supply of the air by the fan 19 is performed when the sprinkling gutter 5 is supplying sewage. The supply of air can be temporarily stopped when the time from when the supply of sewage is once stopped to when it is restarted is significantly longer than the sewage supply time.

【0028】さらに、ポンプ3の起動・停止と無関係
に、ファン19を停止させることなく前記境界付近Yに
空気を連続的に送る態様を採用することもできる。この
態様においては、ポンプ3の起動・停止に連動させる制
御手段が不要になるという利点がある。次に、本発明の
効果を実施例及び比較例をもって説明する。
Further, it is also possible to adopt a mode in which air is continuously sent to the vicinity Y of the boundary without stopping the fan 19 irrespective of the start / stop of the pump 3. In this aspect, there is an advantage that a control means for interlocking with the start / stop of the pump 3 becomes unnecessary. Next, the effects of the present invention will be described with reference to examples and comparative examples.

【0029】[0029]

【実施例】【Example】

[実施例1、比較例1]図4に示すように、厚さ20m
mの砂利層10、厚さ68mmの下部土壌層11、15
mmの浸潤層12、100mmの上部土壌層13からな
る長さ250mm、幅100mmの微生物含有トレンチ
土壌層4を有するトレンチ装置を想定した実験装置を製
作した。そして、浸潤層12上において上部土壌層13
に汚水拡散装置に相当する高さ40mm、長さ120m
mの通水装置14を設置して、その一端側に汚水の貯留
槽2を、そして他端側に空気を供給するための送気管1
8をそれぞれ接続した。前記通水装置14内の2箇所に
汚水の流れを分配する拡散板21が設けられており、砂
利層10には処理水を排出する集水管7が設けられてい
た。
Example 1, Comparative Example 1 As shown in FIG.
m gravel layer 10, 68 mm thick lower soil layers 11, 15
An experimental device was fabricated assuming a trench device having a microbial-containing trench soil layer 4 having a length of 250 mm and a width of 100 mm, which comprises an infiltration layer 12 of mm and an upper soil layer 13 of 100 mm. Then, on the infiltration layer 12, the upper soil layer 13
40mm in height and 120m in length corresponding to a sewage diffusion device
m, a sewage storage tank 2 at one end, and an air supply pipe 1 for supplying air to the other end.
8 were connected respectively. Diffusion plates 21 for distributing the flow of sewage were provided at two locations in the water passage device 14, and the gravel layer 10 was provided with a water collecting pipe 7 for discharging treated water.

【0030】このような構造を有する実験装置を使用し
て、汚水の土壌浄化実験が次のように行なわれた。ま
ず、トレンチ土壌層4の随所に酸化還元電位を測定する
ためのセンサーを埋め込んでから、貯留槽2に1リット
ルの汚水を8回に分けて3時間に1回の頻度で投入し
た。供試汚泥として、BOD濃度が600mg/l、S
S濃度が約250mg/lのし尿を使用した。そして、
トレンチ土壌層4を通過して集水管7から処理水の排水
が開始されるまでに要した時間(浸透時間)を測定する
とともに送気管18から通水装置14に100ml/分
(浸潤層12の約35倍に相当する量)の空気を供給し
た。
Using the experimental apparatus having such a structure, a soil purification experiment on sewage was conducted as follows. First, a sensor for measuring the oxidation-reduction potential was embedded in the trench soil layer 4 everywhere, and then 1 liter of sewage was poured into the storage tank 2 in eight times, once every three hours. As test sludge, BOD concentration is 600mg / l, S
Human waste having an S concentration of about 250 mg / l was used. And
The time (permeation time) required until the drainage of the treated water from the water collection pipe 7 through the trench soil layer 4 was started was measured (permeation time), and the air supply pipe 18 was passed through the water passage device 14 at a rate of 100 ml / min (for the infiltration layer 12). (An amount corresponding to about 35 times).

【0031】このようにして汚水の土壌浄化実験を約半
年間続けて実験が経過するにつれて前記浸透時間がどの
ように変化するかを把握するとともに、トレンチ土壌層
4内の酸化還元電位を測定した。その結果、図5に示す
ように、180日経過するも浸透時間は20分以内であ
った。また浸潤層と上下部土壌層13、11の酸化還元
電位はいずれの箇所においても230mV以上であっ
た。また、トレンチ土壌層4に堆積している有機物の量
を実験開始後、2か月、4か月及び6か月経過時点で計
量したら土壌100ml中に0.37g、1.89g及
び3.15gであった(実施例1)。
In this way, the soil purification experiment of sewage was continued for about half a year, and it was understood how the permeation time changes as the experiment elapses, and the oxidation-reduction potential in the trench soil layer 4 was measured. . As a result, as shown in FIG. 5, the permeation time was within 20 minutes even though 180 days had passed. The oxidation-reduction potential of the infiltration layer and the upper and lower soil layers 13 and 11 was 230 mV or more at any point. Also, when the amount of organic matter deposited in the trench soil layer 4 was measured at 2 months, 4 months and 6 months after the start of the experiment, 0.37 g, 1.89 g and 3.15 g in 100 ml of soil were obtained. (Example 1).

【0032】比較のために、送気管18から通水装置1
4に空気を吹き込むことなく、実施例1と同様に実験を
行ない前記浸透時間と酸化還元電位を測定した。その結
果、浸透時間は、図5に示すように、120日経過した
時点から急激に長くなり、150日経過した頃から1日
の設計量の汚水を処理することができなくなった。さら
に180日経過した頃には700分にもなった。酸化還
元電位は浸潤層12と下部土壌層11では−300mV
に低下していた。また、実施例1と同様に実験開始して
から2か月、4か月及び6か月経過時点で、トレンチ土
壌層4に堆積している有機物の量を計量したら、それは
土壌100ml中に5.60g、8.08g及び9.1
3gと、実施例1の約3倍以上堆積していた(比較例
1)。
For comparison, the water supply device 1
An experiment was conducted in the same manner as in Example 1 without blowing air into Sample No. 4, and the permeation time and the oxidation-reduction potential were measured. As a result, as shown in FIG. 5, the infiltration time was rapidly increased after 120 days, and it was not possible to treat the designed amount of sewage in one day after 150 days. By the time 180 days had passed, it had reached 700 minutes. The redox potential is -300 mV in the infiltration layer 12 and the lower soil layer 11
Had fallen. In the same manner as in Example 1, two months, four months, and six months after the start of the experiment, the amount of organic matter deposited in the trench soil layer 4 was measured. .60 g, 8.08 g and 9.1
3 g, which was about 3 times or more that of Example 1 (Comparative Example 1).

【0033】上記実施例1及び比較例1から明らかなよ
うに、散水手段に相当する通水装置14への汚水の供給
が一旦途絶えてから再開されるまでの間に浸潤層12に
対して空気を供給する本発明法により、浸透時間が長く
なるのを抑制できるとともに、酸化還元電位の低下を抑
さえることができる。すなわち、浸透層12と下部土壌
層11に有機物の目詰まりをなくして、浸潤層12と少
なくとも下部土壌層11との境界付近を好気状態に保持
することができる。
As is clear from Example 1 and Comparative Example 1, the supply of sewage to the water passage device 14 corresponding to the water sprinkling means is interrupted by air before the water is restarted. According to the method of the present invention, the permeation time can be suppressed from being lengthened, and the reduction in the oxidation-reduction potential can be suppressed. That is, the clogging of the infiltration layer 12 and the lower soil layer 11 with the organic matter can be eliminated, and at least the vicinity of the boundary between the infiltration layer 12 and the lower soil layer 11 can be maintained in an aerobic state.

【0034】[実施例2、比較例2]上記のように本発
明の効果が実験室的に証明されたので、本発明の実証実
験を次のように行なった。すなわち、トラス製造工場内
のトイレ用汚水処理施設として、図3に示すトレンチ装
置、すなわち、腐敗槽1、貯留槽2、トレンチ土壌層4
を主要な構成要素とする装置を設置した。トレンチ溝6
は、長さ12m、幅2m及び深さ0.8mで、その中に
厚さ10cmの砂利層10、厚さ27cmの下部土壌層
11、多孔質ケイ酸カルシウム水和物の顆粒からなる厚
さ3cmの浸潤層12、及び厚さ40cmの上部土壌層
13からなるトレンチ土壌層4を形成した。
Example 2 and Comparative Example 2 As described above, the effects of the present invention were proved in a laboratory, and a demonstration experiment of the present invention was performed as follows. That is, as a sewage treatment facility for toilets in a truss manufacturing factory, a trench device shown in FIG. 3, that is, a septic tank 1, a storage tank 2, a trench soil layer 4
Was installed as a major component. Trench 6
Has a length of 12 m, a width of 2 m and a depth of 0.8 m, in which a 10 cm thick gravel layer 10, a 27 cm thick lower soil layer 11, and a porous calcium silicate hydrate granule A trench soil layer 4 consisting of a 3 cm infiltration layer 12 and a 40 cm thick upper soil layer 13 was formed.

【0035】さらに、前記浸潤層12の上に長さ10m
の散水樋5を有し、拡散室17にはトバモライトからな
る汚水浄化材Sが充填されている幅1m、深さ0.08
mの汚水拡散装置14を設置した。浸潤層12に対して
外部から空気を吹き込むために地上に4基のファン19
を設けて送気管18から浸潤層12に空気を吹き込める
ようにした。また、浸潤層12と上下部土壌層13、1
1との境界付近の目詰まりを酸化還元電位をもって監視
するためにトレンチ土壌層4の随所に酸化還元電位検知
センサーを埋設した。
Further, a length of 10 m is placed on the infiltration layer 12.
And the diffusion chamber 17 is filled with a sewage purifying material S made of tobermorite, having a width of 1 m and a depth of 0.08.
m of wastewater diffusion apparatus 14 was installed. Four fans 19 are provided on the ground to blow air into the infiltration layer 12 from the outside.
Is provided so that air can be blown from the air supply pipe 18 to the infiltration layer 12. In addition, the infiltration layer 12 and the upper and lower soil layers 13, 1
In order to monitor the clogging near the boundary with No. 1 with the oxidation-reduction potential, an oxidation-reduction potential detection sensor was buried everywhere in the trench soil layer 4.

【0036】散水樋5の先端にサンプリング容器を取り
付け、種々の流量の汚水を流して汚水の回分量を測定し
たら、それは0.25立方mであった。この量に見合う
量の汚水を断続的に散水樋5に流すことができるよう貯
留槽2に上下位センサー8、9を設けた。そして、この
トレンチ装置を公衆トイレ(公称容量20人槽)に使用
するための実証試験に供した。
When a sampling vessel was attached to the tip of the sprinkler gutter 5 and sewage was flowed at various flow rates and the amount of the sewage was measured, it was 0.25 cubic meters. Upper and lower sensors 8 and 9 are provided in the storage tank 2 so that the amount of sewage corresponding to this amount can be intermittently flown into the sprinkler gutter 5. Then, the trench apparatus was subjected to a verification test for use in a public toilet (nominal capacity 20-person tank).

【0037】この実証試験では、汚水の発生量は平均
1.18立方m/日で、貯留槽2からポンプ3により散
水樋5に汲む上げられる回数は平均5回/日であった。
汚水のpHは7.7、BOD濃度Cは94.8mg/
l、SS濃度は63.1mg/lであった。実験期間中
はファン19を停止させることなく約0.33立方m/
分すなわち、散水樋1m当たり130リットル(l)/
分の空気を浸潤層12に送り込んだ。なお、この実証装
置において、前記Qは、25リットル/m・回、Sは2
平方m/m、Rは55g/平方m・日、そしてNは5回
/日であるから、前記数式1で表わされる空気の吹込み
量Aの下限値は85リットル/m・回となり、前記の空
気の吹込み量はこの値より大きい。
In this demonstration test, the amount of wastewater generated was 1.18 cubic meters / day on average, and the number of times of pumping from the storage tank 2 to the sprinkler gutter 5 by the pump 3 was 5 times / day on average.
Sewage pH is 7.7, BOD concentration C is 94.8mg /
1 and SS concentration were 63.1 mg / l. During the experiment period, without stopping the fan 19, about 0.33 cubic m /
Minute, i.e., 130 liters (l) / m per sprinkler gutter
Minute air was sent to the infiltration layer 12. In this demonstration device, Q is 25 liters / m · times, and S is 2
Since the square m / m, R is 55 g / square m · day, and N is 5 times / day, the lower limit of the air blowing amount A represented by the formula 1 is 85 liters / m · times. Is larger than this value.

【0038】約1年間の実証試験の結果、トレンチ土壌
層4のいずれの箇所でも酸化還元電位は200mV以上
で、浸潤層12と上下部土壌層13、11との境界付近
における目詰まりはなく順調にトレンチ装置の運転がで
きた。また、処理水のpHは7.0で、BOD濃度Cは
3.4mg/l(除去率98.5%)、SS濃度は、
4.2mg/l(98.9%)で、排水基準を大きくク
リアしていた(実施例2)。
As a result of the verification test for about one year, the oxidation-reduction potential was 200 mV or more at any part of the trench soil layer 4, and there was no clogging near the boundary between the infiltration layer 12 and the upper and lower soil layers 13, 11. The operation of the trench equipment was completed. The pH of the treated water was 7.0, the BOD concentration C was 3.4 mg / l (removal rate 98.5%), and the SS concentration was
At 4.2 mg / l (98.9%), the wastewater standard was greatly cleared (Example 2).

【0039】前記実施例2の終了後、散水樋5への汚水
の供給が一旦途絶えてから再開されるまでの間に浸潤層
12に対する空気の供給を停止した場合、トレンチ土壌
層4の酸化還元電位がどのように変化するかを実験した
(比較例2)。
After the end of the second embodiment, if the supply of air to the infiltration layer 12 is stopped between the time when the supply of the sewage to the sprinkler gutter 5 is once stopped and the time when the supply is restarted, the oxidation reduction of the trench soil layer 4 is performed. An experiment was conducted on how the potential changes (Comparative Example 2).

【0040】この比較例2では、図7に示すように、実
験開始してから20日経過するまで前記実施例1と同様
に浸潤層12に空気を吹き込み、その後10日間経過
(実験開始後30日目に到達した日)まで空気の吹き込
みを停止した。その結果、浸潤層12と上下部土壌層1
3、11との境界付近の酸化還元電位は200mVから
−150mVまで低下して目詰まりが発生する虞れが出
ててきたので、再度空気の吹き込みを開始した。その結
果その日から約30日経過して酸化還元電位がもと通り
回復した。
In Comparative Example 2, as shown in FIG. 7, air was blown into the infiltration layer 12 until 20 days had elapsed since the start of the experiment, and then 10 days later (30 days after the start of the experiment). Air blowing was stopped until the day when the day reached). As a result, the infiltration layer 12 and the upper and lower soil layers 1
The oxidation-reduction potential near the boundary between 3 and 11 was lowered from 200 mV to -150 mV, and there was a possibility that clogging might occur. Therefore, air blowing was started again. As a result, about 30 days after that date, the oxidation-reduction potential was recovered as before.

【0041】上記実施例2及び比較例2から明白なとお
り、散水樋5への汚水の供給が一旦途絶えてから再開さ
れるまでの間に浸潤層12に対して空気を供給して、浸
潤層と土壌層との境界付近を好気状態に保持すれば、同
境界付近における有機物の目詰まりを解消できる。
As is evident from Example 2 and Comparative Example 2, air was supplied to the infiltration layer 12 between the time when the supply of sewage to the sprinkler gutter 5 was once interrupted and the time when it was restarted. If the vicinity of the boundary between the soil and the soil layer is maintained in an aerobic state, clogging of organic matter near the boundary can be eliminated.

【0042】なお、本発明は前記実施形態の構成に限定
されず、例えば以下のように、発明の趣旨から逸脱しな
い範囲で適宜変更して具体化することもできる。 (1)公衆トイレの使用頻度が季節や時間によって変化
し、それに伴なってポンプ3が起動・停止する回数も変
化する。この回数が増えるときはファン19を連続運転
にし、減るときはポンプ3と連動して同期起動させるこ
ともできる。 (2)浸潤層12に吹込む空気は前述した体積以上とす
るが、その上限は無制限ではない。維持管理コストを考
慮すると、空気は当然必要最少限の量となるよう吹込ま
れる。 (3)浸潤層12は、トレンチ溝6を全部覆うことなく
部分的に覆う態様でもよいし散水管を包囲する態様のも
のでもよい。 (4)トレンチ装置はトレンチ溝6を有しない開放型で
あってもよい。この態様では上下部土壌層11、13の
作用は、通常、浸潤層12から約50cm外方側まで及
ぶのでので、前記範囲を本発明の上下部土壌層とする。
Note that the present invention is not limited to the configuration of the above-described embodiment, but can be embodied by appropriately changing the scope of the invention as follows, for example, as follows. (1) The frequency of use of the public toilet changes according to the season and time, and the number of times the pump 3 starts and stops changes accordingly. When the number of times increases, the fan 19 can be operated continuously, and when the number of times decreases, the fan 19 can be started in synchronization with the pump 3. (2) The volume of air blown into the infiltration layer 12 is equal to or larger than the volume described above, but the upper limit is not limited. Considering the maintenance costs, the air is naturally blown to the minimum necessary amount. (3) The infiltration layer 12 may be a mode that partially covers the trench groove 6 without completely covering the trench groove 6 or a mode that surrounds the sprinkler tube. (4) The trench device may be an open type having no trench 6. In this embodiment, since the action of the upper and lower soil layers 11 and 13 usually extends about 50 cm outward from the infiltration layer 12, the above range is defined as the upper and lower soil layers of the present invention.

【0043】[0043]

【発明の効果】以上詳述したように、本発明法は、散水
手段から浸潤層を通して土壌層に汚水を浸潤・拡散させ
て土壌中の微生物により汚水を浄化する土壌浄化法にお
いて、前記浸潤層と土壌層との境界付近に起こり易い有
機物の目詰まりを未然に防いで土壌浄化法の機能を長期
間にわたって保持させることができるという優れた効果
を発揮する。
As described above in detail, the method of the present invention relates to a soil purification method for purifying sewage by microorganisms in soil by infiltrating and diffusing sewage into a soil layer from a watering means through an infiltration layer. An excellent effect of preventing the clogging of organic matter, which tends to occur near the boundary between the soil and the soil layer, and maintaining the function of the soil purification method for a long period of time is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される典型的なトレンチ装置の要
部を部分的に破断して示す斜視図である。
FIG. 1 is a perspective view showing a main part of a typical trench apparatus to which the present invention is applied, partially cut away.

【図2】前記トレンチ装置の断面を示す図である。FIG. 2 is a diagram showing a cross section of the trench device.

【図3】同トレンチ装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of the trench device.

【図4】実施例1に使用したトレンチ装置を部分的に破
断して示す斜視図である。
FIG. 4 is a perspective view showing the trench device used in the first embodiment, partially cut away;

【図5】実施例1における実験の経過日数と浸透時間と
の関係を示す線図である。
FIG. 5 is a diagram showing the relationship between the elapsed days of the experiment and the permeation time in Example 1.

【図6】比較例2における酸化還元電位の変動状態を示
す線図である。
FIG. 6 is a diagram showing a variation state of an oxidation-reduction potential in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 腐敗槽 2 貯留槽 3 ポンプ 4 トレンチ土壌層 5 散水手段 7 集水管 10 砂利層 11 下部土壌層 12 浸潤層 13 上部土壌層 16 通気ダクト 18 送気管 19 ファン DESCRIPTION OF SYMBOLS 1 Rotting tank 2 Storage tank 3 Pump 4 Trench soil layer 5 Watering means 7 Water collecting pipe 10 Gravel layer 11 Lower soil layer 12 Infiltration layer 13 Upper soil layer 16 Ventilation duct 18 Air supply pipe 19 Fan

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野尻 正男 愛知県尾張旭市下井町下井2035番地 小 野田エー・エル・シー株式会社 材料研 究所内 (72)発明者 小島 豊 大阪府大阪市淀川区木川東4丁目8番4 号 太陽工業株式会社 土木エンジニア リング事業部内 (72)発明者 江 鷹 大阪府大阪市淀川区木川東四丁目8番4 号 太陽工業株式会社 土木エンジニア リング事業部内 (72)発明者 白木 佳奈 大阪府大阪市淀川区木川東四丁目8番4 号 太陽工業株式会社 土木エンジニア リング事業部内 (56)参考文献 特開 昭57−204290(JP,A) 特開 昭50−42672(JP,A) 実開 昭58−48389(JP,U) 実開 昭58−48390(JP,U) 実開 昭59−150585(JP,U) 実開 平7−7797(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masao Nojiri 2035 Shimo-machi, Shioi-machi, Owariasahi-shi, Aichi Pref. Inside the Materials Research Laboratory, Noda ELC Co., Ltd. 4-8-4 Kawahito Taiyo Kogyo Co., Ltd. Civil Engineering Division (72) Inventor 4-8-4 Kikawahigashi, Yodogawa-ku, Osaka-shi, Osaka Taiyo Kogyo Co., Ltd. Civil Engineering Division (72) Invention Person Kana Shiraki 4-8-4 Kikawahigashi, Yodogawa-ku, Osaka-shi, Osaka Taiyo Kogyo Co., Ltd. Civil Engineering Division (56) References JP-A-57-204290 (JP, A) JP-A-50-42672 (JP) , A) Actually open 1983-48389 (JP, U) Actually open 1983-48390 (JP, U) Actually open 1984-150585 (JP, U) Flat 7-7797 (JP, U) (58 ) investigated the field (Int.Cl. 7, DB name) C02F 3/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地中に埋設させた散水手段(5)に対し
て、汚水をポンプ(3)により断続的に供給して、前記
散水手段(5)から浸潤層(12)及び土壌層(11、
13)に順次移動させて汚水を浄化する汚水の土壌浄化
処理法において、前記浸潤層(12)に対して地上から
空気を供給して、前記浸潤層(12)とその下の下部土
壌層(11)との境界付近(Y)に前記空気を到達させ
て該境界付近(Y)を好気状態に保持することにより、
該境界付近(Y)における下部土壌層(11)の土壌粒
子間の目詰まりの発生を防止し、該下部土壌層(11)
を通って浄化された処理水を集水することを特徴とする
汚水の土壌浄化処理法。
A pump (3) intermittently supplies sewage to a watering means (5) buried in the ground, and the watering means (5) supplies the infiltration layer (12) and the soil layer ( 11,
13) In the sewage soil purification method for purifying sewage by sequentially moving the sewage to the infiltration layer (12), air is supplied from the ground to the infiltration layer (12) and the lower soil layer ( 11) by allowing the air to reach the vicinity (Y) of the boundary and maintaining the vicinity of the boundary (Y) in an aerobic state,
Clogging between soil particles in the lower soil layer (11) near the boundary (Y) is prevented, and the lower soil layer (11)
A method for soil purification of sewage, comprising collecting treated water purified through a soil.
【請求項2】 前記散水手段(5)への汚水の供給中の
みならず該汚水の供給が一旦途絶えてから再開されるま
での間前記浸潤層(12)に対して地上から空気を供
給する請求項1記載の汚水の土壌浄化処理法。
2. During the supply of sewage to said watering means (5).
Soil remediation treatment of wastewater according to claim 1, wherein supplying the air from the ground with respect to even the infiltration layer until the supply of the sewage not a Minara is resumed from the ceased temporarily (12).
【請求項3】 前記浸潤層(12)への空気の供給は、
散水手段(5)に汚水を供給しているときも行う請求項
2記載の汚水の土壌浄化処理法。
3. The supply of air to the infiltration layer (12)
3. The soil purification method for sewage water according to claim 2, wherein the method is carried out even when sewage water is supplied to the water sprinkling means.
【請求項4】 前記浸潤層(12)への空気の供給は、
ポンプ(3)の起動・停止と無関係に連続的に行う請求
項2記載の汚水の土壌浄化処理法。
4. The supply of air to the infiltration layer (12)
3. The soil purification method for sewage water according to claim 2, wherein the method is performed continuously irrespective of the start / stop of the pump (3).
【請求項5】 前記浸潤層(12)に対してその容積よ
り多い量の空気を供給する請求項2記載の汚水の土壌浄
化処理法。
5. The method according to claim 2, wherein air is supplied to the infiltration layer in an amount larger than its volume.
【請求項6】 前記浸潤層(12)に対して、散水手段
(5)1m当たり次の数式で示される量A(l/m・
回)の空気を供給する請求項2記載の汚水の土壌浄化処
理法; A≧22.4(l/モル)×{(Q×C+R×S/N)/32(g/モル)}× 5 ただし、前記数式において、Qは散水手段1m当たりに
供給される汚水量(l/m・回)、Cは汚水のBOD濃
度(g/l)、Sは散水手段1m当たりが占める土壌層
の水平方向の面積(平方m/m)、Rは土壌層の微生物
が生息するのに必要な酸素の量(g/平方m・日)、N
は散水手段への汚水の供給が停止する頻度(回/日)を
それぞれ意味する。
6. An amount A (l / m ·) represented by the following formula per m of the watering means (5) with respect to the infiltration layer (12).
3) A method for soil purification treatment of sewage according to claim 2, wherein air is supplied: A ≧ 22.4 (l / mol) × {(Q × C + R × S / N) / 32 (g / mol)} × 5. In the above formula, Q is the amount of sewage supplied per meter of watering means (l / m.times.), C is the BOD concentration of sewage (g / l), and S is the level of the soil layer occupied per meter of watering means. Area (square m / m), R is the amount of oxygen (g / sq m / day) required for microorganisms in the soil layer to inhabit, N
Means the frequency (times / day) at which the supply of sewage to the watering means stops.
JP30818095A 1995-10-31 1995-10-31 Soil purification method for sewage Expired - Lifetime JP3261463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30818095A JP3261463B2 (en) 1995-10-31 1995-10-31 Soil purification method for sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30818095A JP3261463B2 (en) 1995-10-31 1995-10-31 Soil purification method for sewage

Publications (2)

Publication Number Publication Date
JPH09122668A JPH09122668A (en) 1997-05-13
JP3261463B2 true JP3261463B2 (en) 2002-03-04

Family

ID=17977879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30818095A Expired - Lifetime JP3261463B2 (en) 1995-10-31 1995-10-31 Soil purification method for sewage

Country Status (1)

Country Link
JP (1) JP3261463B2 (en)

Also Published As

Publication number Publication date
JPH09122668A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
US6887383B2 (en) Method for subsurface aerated treatment of wastewater
EP0029066B1 (en) On-site wastewater treatment system
US7081203B2 (en) Compact surface mounted on-site wastewater treatment unit
US20030070985A1 (en) Apparatus for subsurface aerated treatment of wastewater
US5766475A (en) Waste water disposal system
JP2008100161A (en) Calcium scale removal method, and collection and drainage pipe structure and collection drainage pipe therefor
JP2001503829A (en) Water storage, water transport and water treatment systems built into the ground with built-in ground and river protection means
JP3284346B2 (en) Underground water storage system
KR101635966B1 (en) River with clean water for ecological function
JP3261463B2 (en) Soil purification method for sewage
JP2004154696A (en) Method and apparatus for purifying sewage and service water
KR101048805B1 (en) Water Supply System
JP3182631B2 (en) Septic tank
JP2960324B2 (en) On-site drainage terminal treatment equipment
JP3266553B2 (en) Utilization system for rainwater
JP3058801B2 (en) Soil infiltration treatment equipment
JPS6055198B2 (en) Wastewater treatment and denitrification method
JP2983209B1 (en) Infiltration type wastewater treatment apparatus and method of laying it
KR0169210B1 (en) Apparatus for purifying waste water by using a filter bed and a discharge type capillary siphoning trench
JP3438200B2 (en) Wastewater treatment tank, wastewater treatment equipment and wastewater treatment method
US535515A (en) Sewage disposal
JPH08281287A (en) Filter medium for waste water treatment and waste water soil infiltration treating device
JPH11253980A (en) Purifying facilities for river water and purification
JP3025764U (en) Penetration type sewage treatment equipment
JPH0538496A (en) Treatment of sewage and equipment

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term