JP3259186B2 - Plasma treatment method for powder - Google Patents

Plasma treatment method for powder

Info

Publication number
JP3259186B2
JP3259186B2 JP16307192A JP16307192A JP3259186B2 JP 3259186 B2 JP3259186 B2 JP 3259186B2 JP 16307192 A JP16307192 A JP 16307192A JP 16307192 A JP16307192 A JP 16307192A JP 3259186 B2 JP3259186 B2 JP 3259186B2
Authority
JP
Japan
Prior art keywords
powder
gap
cylinder
gas
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16307192A
Other languages
Japanese (ja)
Other versions
JPH06365A (en
Inventor
宏 内山
義一 赤染
Original Assignee
株式会社ダイオー
伊藤忠ファインケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイオー, 伊藤忠ファインケミカル株式会社 filed Critical 株式会社ダイオー
Priority to JP16307192A priority Critical patent/JP3259186B2/en
Publication of JPH06365A publication Critical patent/JPH06365A/en
Application granted granted Critical
Publication of JP3259186B2 publication Critical patent/JP3259186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/187Details relating to the spatial orientation of the reactor inclined at an angle to the horizontal or to the vertical plane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大量の粉体を連続的に
プラズマ処理を施す粉体の大気圧プラズマ処理方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmospheric plasma processing method for a powder which continuously performs a plasma processing on a large amount of powder.

【0002】[0002]

【従来の技術】従来より酸化アルミナ、二酸化チタンな
どの顔料や染料などの粉体にプラズマ処理を施してその
表面の親水性を高めて、その濡れ特性を良好にし、水性
又は油性の溶媒中に容易に分散させることが行われてい
る。殊に最近粉体の粒度の細かいものが得られるように
なり、これらの粉体を良好に分散させることは極めて重
要な問題である。本発明者は、先に、これら粉体に大気
圧プラズマ処理を施して分散性を向上させた発明を見出
した(特願平2−195018号)。しかし、この方法
は円筒の外側に電極をとりつけ、円筒内を粉体とヘリウ
ム、アルゴン等の大気圧プラズマを発生させるための不
溶性ガスと共に電極間を通過させるという方法である。
したがって、プラズマの処理時間は、ガスの流速に比例
するため極めて短時間となり、粉体に完全にプラズマ処
理を施すことができず、また、円筒内の限られた空間内
でバッチ方式で処理するために大量の粉体が処理できな
いという欠点があった。
2. Description of the Related Art Conventionally, powders such as pigments and dyes such as alumina oxide and titanium dioxide have been subjected to plasma treatment to increase the hydrophilicity of their surfaces, thereby improving their wettability, and being used in aqueous or oily solvents. It is easily dispersed. In particular, recently, powders having a fine particle size have been obtained, and it is a very important problem to disperse these powders well. The present inventor has previously found an invention in which these powders are subjected to an atmospheric pressure plasma treatment to improve dispersibility (Japanese Patent Application No. 2-195018). However, in this method, an electrode is attached to the outside of a cylinder, and the inside of the cylinder is passed between the electrodes together with a powder and an insoluble gas for generating an atmospheric pressure plasma such as helium or argon.
Therefore, the plasma processing time is extremely short because it is proportional to the gas flow rate, so that the plasma cannot be completely applied to the powder, and the powder is processed in a limited space within the cylinder by the batch method. Therefore, there is a disadvantage that a large amount of powder cannot be processed.

【0003】[0003]

【発明が解決しようとする課題】本発明者は、上記の欠
点を改良し、大量の粉体をより完全にプラズマ処理すべ
く種々検討した結果、本発明を完成したもので、本発明
の目的は大量の粉体を連続的に、より長時間プラズマ処
理を施す粉体の大気圧プラズマ処理方法を提供するにあ
る。
SUMMARY OF THE INVENTION The present inventor has made various studies to improve the above-mentioned drawbacks and to perform a more complete plasma treatment of a large amount of powder. As a result, the present invention has been completed. It is an object of the present invention to provide an atmospheric pressure plasma processing method for a powder which continuously and for a longer time processes a large amount of powder.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、金属製
の内筒の外側と同軸の金属製の外筒の内側の両方又は何
れか一方に誘電体にてライニングを行い、これら内筒及
び外筒を同軸的に軸支して両者間に一定の間隙を設け、
これら内外筒を傾斜し、且つ、回転可能に設置し、内外
筒間に3000〜5000Hzで2500〜3500V
電圧をかけて両者の間隙間に大気圧プラズマを発生さ
せると共に該間隙間を被処理物である粉体を移動させて
連続的にプラズマ処理を施すことを特徴とする粉体の
気圧プラズマ処理方法である。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a lining made of a dielectric material on at least one of the outer side of a metal inner cylinder and the inner side of a coaxial metal outer cylinder. And the outer cylinder is coaxially supported to provide a certain gap between the two,
These inner and outer cylinders are tilted and rotatably installed, and 2500 to 3500 V at 3000 to 5000 Hz between the inner and outer cylinders.
Large powder which of the該間gap with applying a voltage to generate atmospheric pressure plasma in the gap between them to move the powder which is an object to be treated is characterized by continuously performing the plasma treatment
This is a pressure plasma processing method.

【0005】すなわち、本発明は、内筒の外側と外筒の
内側との間の間隙を大気圧プラズマを発生させ、その間
隙間を、傾斜及び内外筒の回転によって、粉体を移動さ
せてプラズマ処理を施すのであり、したがって、連続的
にプラズマ処理することができ、しかもその移動速度に
よって処理時間を調整することができる。
That is, according to the present invention, the atmospheric pressure plasma is generated in the gap between the outer side of the inner cylinder and the inner side of the outer cylinder, and the powder is moved through the gap by tilting and rotation of the inner and outer cylinders. The processing is performed, and therefore, the plasma processing can be continuously performed, and the processing time can be adjusted by the moving speed.

【0006】本発明のプラズマ処理方法を実施するため
の装置を図1に示す。図1において、金属よりなる内筒
1の外側に、外筒2を同軸的に内筒1と約5mm〜10
mm程度の間隔を保つようにボルト3で保持する。この
際、外筒の内面又は内筒の外面の少なくとも何れか一方
の面を誘電体でライニングを行った。ただ、カ−ボンブ
ラック粉末のような導電性粉末を処理する場合には両方
の面を誘電体でライニングする。誘電体としては、カプ
トンのような耐熱性プラスチック、ガラス、セラミック
スまたは酸化アルミニウム等を使用する。
FIG. 1 shows an apparatus for carrying out the plasma processing method of the present invention. In FIG. 1, an outer cylinder 2 is coaxially arranged with an inner cylinder 1 by about 5 mm to 10 mm outside an inner cylinder 1 made of metal.
It is held by the bolts 3 so as to keep an interval of about mm. At this time, at least one of the inner surface of the outer cylinder and the outer surface of the inner cylinder was lined with a dielectric. However, when processing a conductive powder such as carbon black powder, both surfaces are lined with a dielectric. As the dielectric, a heat-resistant plastic such as Kapton, glass, ceramics, aluminum oxide, or the like is used.

【0007】そして、内筒1の一方の端部に、延長して
スクリュ−コンベア−13を接続する。内筒1は、また
シャフトによって減速モ−タ−6とフランジ14によっ
て廻転できるように支持されており、外筒2は、内筒1
の廻軸と共に廻転できるように絶縁体からなる軸受4及
び5によって支軸されている。外筒の一端には原料供給
口であるホッパ−11を他端には処理された粉体の取出
口15を設け、取出口に大気圧プラズマを発生するため
の不活性ガス導入口を設け、外筒と内筒の間隙を原料と
向流するようにガスが流れるようにする。また内筒と外
筒とに接触するように燐青銅製の刷子を設け、外筒と内
筒との間にグロ−放電を生ずるようにする。装置全体は
ボルト及びナット12によって原料供給口側が高く、原
料排出口が低くなるように傾斜して設置する。
[0007] A screw conveyor 13 is connected to one end of the inner cylinder 1 by extension. The inner cylinder 1 is rotatably supported by a deceleration motor 6 and a flange 14 by a shaft.
The bearing is supported by bearings 4 and 5 made of an insulator so as to be able to rotate together with the rotating shaft. At one end of the outer cylinder, a hopper 11 serving as a raw material supply port is provided, and at the other end, an outlet 15 for treated powder is provided, and an inert gas inlet for generating atmospheric pressure plasma is provided at the outlet, The gas is caused to flow in the gap between the outer cylinder and the inner cylinder so as to flow in the counterflow with the raw material. Further, a brush made of phosphor bronze is provided so as to contact the inner cylinder and the outer cylinder so that a glow discharge is generated between the outer cylinder and the inner cylinder. The entire apparatus is installed at an angle so that the raw material supply port side is high and the raw material discharge port is low by bolts and nuts 12.

【0008】この装置を次のように作動させる。先ず原
料排出口に気体不透過性の袋を取り付け装置内に導入さ
れるガスが排出口より散逸しないようにする。続いてガ
ス導入口9よりヘリウムとアルゴンとの混合ガスを導入
する。このガスは内筒と外筒との間隙を通り、空気を追
い出しながらホッパ−11に流出する。間隙内がアルゴ
ンとヘリウムの混合ガス雰囲気になった後、ホッパ−1
1より原料を装置内に供給し、内筒及び外筒をモ−タ−
6によってゆっくりと回転させる。同時に刷子7及び8
に3KHz、3000Vの高周波電圧を印加すると外筒
と内筒の間隙にグロ−放電が起り、プラズマ励起され
る。粉体にホッパ−11より供給されコンベアベルト1
3を通って内筒と外筒の間隙に送り出され、この間隙を
通過する間にゆっくりと処理され、その粉体表面は著し
い親水性を与え、袋10の中に収納される。
[0008] This device is operated as follows. First, a gas-impermeable bag is attached to the material outlet so that gas introduced into the apparatus is not scattered from the outlet. Subsequently, a mixed gas of helium and argon is introduced from the gas inlet 9. This gas passes through the gap between the inner cylinder and the outer cylinder, and flows out to the hopper 11 while expelling air. After the inside of the gap becomes a mixed gas atmosphere of argon and helium, the hopper-1
Raw material is supplied into the apparatus from 1 and the inner and outer cylinders are motored.
Rotate slowly with 6. At the same time brushes 7 and 8
When a high frequency voltage of 3 KHz and 3000 V is applied to the device, a glow discharge occurs in the gap between the outer cylinder and the inner cylinder to excite the plasma. Conveyor belt 1 supplied from hopper 11 to powder
3 through the gap between the inner cylinder and the outer cylinder, which is slowly treated while passing through this gap, the powder surface of which is provided with significant hydrophilicity and is stored in the bag 10.

【0009】本発明において使用する装置の全長は、実
験室規模と工業化規模仕様とは異なるが0.5mから約
10mで、粉体の移動距離は内側電極の長さと同じ距離
であり0.4mから9mである。この方法においては、
連続的に粉体の表面処理を行うことができるので大多量
に処理できると共に、傾斜角度及び回転速度を変えるこ
とによって粉体の移動速度を加減することができる。次
に実施例をもって、具体的に本発明を説明する。
The total length of the apparatus used in the present invention is different from the laboratory scale and the industrial scale specification, but is from 0.5 m to about 10 m, and the moving distance of the powder is the same as that of the inner electrode, that is, 0.4 m. From 9m. In this method,
Since the surface treatment of the powder can be performed continuously, the powder can be processed in a large amount, and the moving speed of the powder can be adjusted by changing the inclination angle and the rotation speed. Next, the present invention will be specifically described with reference to examples.

【0010】[0010]

【実施例】【Example】

実施例1 本明細書記載の装置の内筒の外側に誘電体として100
ミクロン厚のカプトンをエポキシ樹脂にて張り合せ内筒
外筒の間隙を8mmとした。ガスとしてヘリウムガスと
アルゴンガスの混合ガスを入口から送り円筒内の空気を
置換しつつ1分間10回転で回転させた。このときのガ
スの混合比はヘリウムガス40部アルゴンガス60部で
ある。両円筒の外側円筒を+側に内側円筒を接地側とし
て3000Hz2500Vの電圧を印加した。直ちに両
円筒の間隙8mmの間にグロ−放電が起りプラズマ励起
されるからそのときホッパ−より超微粒子のアルミナ粉
末を送り込んだ。スクリュ−により円筒の間隙に入った
粉末は5秒間で出口に達し排出口から袋の中に排出され
た。この処理された粉末は極めて親水性と分散性が大と
なり水中に入れたとき無処理のものはそのまま水中に沈
むが処理されたものは直ちに分散し乳液状となった。
Example 1 100 dielectrics were placed outside the inner cylinder of the device described in this specification.
A Kapton of micron thickness was laminated with an epoxy resin, and the gap between the inner and outer cylinders was set to 8 mm. As a gas, a mixed gas of helium gas and argon gas was fed from the inlet to replace the air in the cylinder and rotated at 10 revolutions per minute. The mixing ratio of the gas at this time is 40 parts of helium gas and 60 parts of argon gas. A voltage of 3000 Hz and 2500 V was applied with the outer cylinder of both cylinders on the + side and the inner cylinder on the ground side. Immediately, a glow discharge was generated in a gap of 8 mm between the two cylinders, and plasma was excited. The powder which entered the gap between the cylinders with the screw reached the outlet in 5 seconds and was discharged from the outlet into the bag. This treated powder had extremely high hydrophilicity and dispersibility, and when placed in water, the untreated one sank as it was in water, but the treated one was immediately dispersed and turned into an emulsion.

【0011】実施例2 本明細書の円筒の内筒の外側と外筒の内側の両方に50
ミクロン厚みのカプトンを張りつけガスとしてアセトン
を10ppm含有したアルゴンガスをガス入口から送り
円筒内部の空気を置換し1分間20回転で回転させた。
外側円筒に5000Hz3500Vの電圧を印加してグ
ロ−放電を起し微細なグラファイトの粉末をホッパ−よ
り送った。スクリュ−によって円筒の間隙に入った粉末
は極めて軽い為15秒で連続的に排出口から排出され
た。この粉末は親水性が高く微細な無処理グラファイト
が水の上に浮くのに対してプラズマ処理された粉末は直
ちに水の中に沈み黒く分散した。著しく高い親水性をも
つに至った。
Embodiment 2 50 of the present specification is applied to both the outside of the inner cylinder and the inside of the outer cylinder.
Argon gas containing 10 ppm of acetone was supplied from a gas inlet as a gas to which Kapton having a thickness of micron was attached, and the air inside the cylinder was replaced.
A voltage of 5000 Hz and 3500 V was applied to the outer cylinder to cause glow discharge, and fine graphite powder was sent from a hopper. The powder entering the gap between the cylinders by the screw was discharged from the outlet continuously in 15 seconds because it was extremely light. This powder was highly hydrophilic and fine untreated graphite floated on the water, whereas the plasma-treated powder immediately sank and dispersed in water. It resulted in significantly higher hydrophilicity.

【0012】[0012]

【発明の効果】以上、述べたように、本発明は粉体をプ
ラズマ励起されている内筒と外筒との間隙をゆっくりと
回転しながら移動するため、従来の方法に比してより長
時間プラズマ処理を受けることとなり、その結果、得ら
れた粉体の表面は高度に親水性となり、したがって、従
来のものに比してはるかに分散性の優れた粉体が得られ
る。
As described above, according to the present invention, the powder is moved while slowly rotating in the gap between the inner cylinder and the outer cylinder which are plasma-excited. The resulting powder is subjected to a plasma treatment for a long time, and as a result, the surface of the obtained powder becomes highly hydrophilic, so that a powder having much better dispersibility than conventional ones is obtained.

【0013】[0013]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための装置の説明図で
ある。
FIG. 1 is an explanatory diagram of an apparatus for performing a method of the present invention.

【符号の説明】[Explanation of symbols]

1 金属よりなる内筒 2 内面を誘導体でライニングを行った外筒 3 ボルト 4 軸受 5 〃 6 減速モ−タ− 7 刷子 8 〃 9 ガス導入口 10 袋 11 ホッパ− 12 ナット 13 スクリュ−コンベア− 14 フランジ 15 粉体の取出口 DESCRIPTION OF SYMBOLS 1 Inner cylinder made of metal 2 Outer cylinder whose inner surface was lined with a derivative 3 Bolt 4 Bearing 5 〃 6 Reduction motor 7 Brush 8 9 9 Gas inlet 10 Bag 11 Hopper 12 Nut 13 Screw conveyor 14 Flange 15 Powder outlet

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−145038(JP,A) 特開 昭61−31319(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 - 19/32 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-145038 (JP, A) JP-A-61-31319 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 19/00-19/32

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属製の内筒の外側と同軸の金属製の外
筒の内側の両方又は何れか一方に誘電体にてライニング
を行い、これら内筒及び外筒を同軸的に軸支して両者間
に一定の間隙を設け、これら内外筒を傾斜し、且つ、回
転可能に設置し、内外筒間に3000〜5000Hzで
2500〜3500Vの電圧をかけて両者の間隙間に大
気圧プラズマを発生させると共に該間隙間を被処理物で
ある粉体を移動させて連続的にプラズマ処理を施すこと
を特徴とする粉体の大気圧プラズマ処理方法。
1. A lining is made of a dielectric material on at least one of an inner side of a metallic outer cylinder and an inner side of a metallic outer cylinder which is coaxial with the outer peripheral of the metallic inner cylinder. A constant gap is provided between them, and these inner and outer cylinders are tilted and rotatably installed, and between the inner and outer cylinders at 3000 to 5000 Hz.
Applying a voltage of 2500 to 3500 V to generate atmospheric pressure plasma in a gap between the two, and continuously performing a plasma treatment by moving the powder to be processed through the gap; Atmospheric pressure plasma processing method.
JP16307192A 1992-06-22 1992-06-22 Plasma treatment method for powder Expired - Fee Related JP3259186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16307192A JP3259186B2 (en) 1992-06-22 1992-06-22 Plasma treatment method for powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16307192A JP3259186B2 (en) 1992-06-22 1992-06-22 Plasma treatment method for powder

Publications (2)

Publication Number Publication Date
JPH06365A JPH06365A (en) 1994-01-11
JP3259186B2 true JP3259186B2 (en) 2002-02-25

Family

ID=15766633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16307192A Expired - Fee Related JP3259186B2 (en) 1992-06-22 1992-06-22 Plasma treatment method for powder

Country Status (1)

Country Link
JP (1) JP3259186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625729A (en) * 2009-06-09 2012-08-01 创新碳有限公司 Methods and apparatus for particle processing with plasma

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423471A1 (en) * 1994-07-05 1996-01-11 Buck Chem Tech Werke Device for the plasma treatment of fine-grained goods
DE19654603C2 (en) * 1996-12-20 2003-05-22 Iveco Gmbh & Co Kg Low pressure plasma treatment plant
TW200409669A (en) 2002-04-10 2004-06-16 Dow Corning Ireland Ltd Protective coating composition
JP4580339B2 (en) * 2003-06-20 2010-11-10 ホソカワミクロン株式会社 Powder processing method and powder processing apparatus
EP1673162A1 (en) 2003-10-15 2006-06-28 Dow Corning Ireland Limited Manufacture of resins
US7758928B2 (en) 2003-10-15 2010-07-20 Dow Corning Corporation Functionalisation of particles
KR100924723B1 (en) * 2007-12-14 2009-11-04 부산대학교 산학협력단 Surface treatment system of nano-powder using atmospheric plasma
JP2010029830A (en) * 2008-07-31 2010-02-12 Nakamura Sangyo Gakuen Plasma treatment device
JP5089521B2 (en) * 2008-07-31 2012-12-05 学校法人 中村産業学園 Powder plasma processing method
CN105148818B (en) * 2010-12-08 2018-02-06 黑达乐格瑞菲工业有限公司 The preparation and its application of the composite of granular materials including granular materials
JP6076780B2 (en) * 2012-03-12 2017-02-08 エア・ウォーター株式会社 Powder processing apparatus and powder processing method
JP5080701B2 (en) * 2012-04-27 2012-11-21 学校法人 中村産業学園 Plasma processing equipment
KR101346758B1 (en) * 2013-04-03 2013-12-31 (주) 엠에이케이 The apparatus for teating fine particle
EP3445484B1 (en) 2016-04-21 2023-09-27 University College Dublin, National University of Ireland Barrel reactor with electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625729A (en) * 2009-06-09 2012-08-01 创新碳有限公司 Methods and apparatus for particle processing with plasma
CN102625729B (en) * 2009-06-09 2015-09-09 黑达勒石墨工业公共有限公司 With the method and apparatus of plasma treatment particle

Also Published As

Publication number Publication date
JPH06365A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
JP3259186B2 (en) Plasma treatment method for powder
US4979681A (en) Process for grinding and simultaneous drying of moist cellulose ether products
CN105148817B (en) Method for treating particles, associated device and particles
US20100155516A1 (en) Powder Processing Apparatus
JP2017519904A (en) Method for producing a powder product
EP2596862A2 (en) Particle binding
WO2016129431A1 (en) Dispersion method and dispersion apparatus for substance to be treated, and method for producing mixed liquid of treated substance and dispersion medium produced thereby
US4117073A (en) Process for the production of preplasticized materials
US5278384A (en) Apparatus and process for the treatment of powder particles for modifying the surface properties of the individual particles
US3282814A (en) Method and device for carrying out gas discharge processes
EP0178907A2 (en) Activation apparatus and method
US4784335A (en) Finely divided powder and process and apparatus for treating the same
CN112654580B (en) Method for producing tetrahydroborate, apparatus for producing tetrahydroborate, and tetrahydroborate
US3598566A (en) Powder activation
Kapicka et al. The high pressure torch discharge plasma source
JP3197364B2 (en) Mixing device
JP2680888B2 (en) Thin film formation method
JPH06134296A (en) Surface treatment of ultrafine particles
JP3229354B2 (en) Method for removing oxygen from metal powder
JPS63291652A (en) Pulverizer
US11458445B2 (en) Nanoparticle synthesis apparatus
JPH0757314B2 (en) Powder processing method and apparatus
JPH08222354A (en) Discharge device
JPS5820968B2 (en) Method for modifying the surface of mechanical rubber products
JPS631444A (en) Treatment of powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees