JP3255778B2 - Manufacturing method of oil immersion all film capacitor - Google Patents

Manufacturing method of oil immersion all film capacitor

Info

Publication number
JP3255778B2
JP3255778B2 JP29590193A JP29590193A JP3255778B2 JP 3255778 B2 JP3255778 B2 JP 3255778B2 JP 29590193 A JP29590193 A JP 29590193A JP 29590193 A JP29590193 A JP 29590193A JP 3255778 B2 JP3255778 B2 JP 3255778B2
Authority
JP
Japan
Prior art keywords
capacitor
film
manufacturing
heat treatment
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP29590193A
Other languages
Japanese (ja)
Other versions
JPH07115036A (en
Inventor
勝 神庭
義記 林
義久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17826625&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3255778(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP29590193A priority Critical patent/JP3255778B2/en
Publication of JPH07115036A publication Critical patent/JPH07115036A/en
Application granted granted Critical
Publication of JP3255778B2 publication Critical patent/JP3255778B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、油浸オールフィルムコ
ンデンサの製造方法に関する。
The present invention relates to a method for manufacturing an oil-immersed all-film capacitor.

【0002】[0002]

【従来の技術】誘電体をプラスチックフィルム(以下単
にフィルムという。)のみとしたコンデンサ素子の複数
を集合し、絶縁油を含浸させたコンデンサは既によく知
られている。通常この種コンデンサは次のようにして製
造される。
2. Description of the Related Art A capacitor in which a plurality of capacitor elements each having only a plastic film (hereinafter simply referred to as a film) as a dielectric material is assembled and impregnated with insulating oil is already well known. Usually, this kind of capacitor is manufactured as follows.

【0003】すなわち複数枚のフィルムを一対の電極箔
間に重ね合わして巻回し、図3に示すようなコンデンサ
素子1を構成する。このコンデンサ素子1の複数を並設
しておいてから、その両側に締付金具2をあてがい、ス
タッド3により締め付けることによって集合させる。そ
のあとこれをケースに収納し、真空加熱乾燥してから絶
縁油を含浸し、更に加熱処理を行なって油浸コンデンサ
を完成させる。
That is, a plurality of films are superposed and wound between a pair of electrode foils to form a capacitor element 1 as shown in FIG. After arranging a plurality of capacitor elements 1 side by side, fastening metal fittings 2 are applied to both sides of the capacitor elements 1, and assembled by tightening with studs 3. After that, it is stored in a case, dried by heating under vacuum, impregnated with insulating oil, and further subjected to heat treatment to complete an oil immersion capacitor.

【0004】しかしこのように製造されるコンデンサ
は、その製造直後における部分放電開始電圧が低く、ま
た長期加熱課電後の直流破壊電圧が低下する傾向があ
る。その理由を検討したところ、次のような結果が得ら
れた。
[0004] However, capacitors manufactured in this manner tend to have a low partial discharge starting voltage immediately after the manufacture, and a reduced DC breakdown voltage after long-term heating. After examining the reason, the following results were obtained.

【0005】すなわち前記のように絶縁油を含浸して加
熱処理を行なうと、コンデンサ素子のフィルムが膨潤す
る。この膨潤により各フィルム間およびフィルムと電極
箔との間の層間が潰されて、各層間間隙が狭くなる。そ
のため層間における絶縁油のための通路が十分に確保す
ることができず、絶縁油の性能が最大限に利用できなく
なる。これが部分放電開始電圧、直流破壊電圧の低下の
原因となることが判明した。
[0005] That is, when the heat treatment is performed by impregnating the insulating oil as described above, the film of the capacitor element swells. Due to this swelling, the layers between the films and between the films and the electrode foils are crushed, and the gaps between the layers are narrowed. Therefore, a sufficient passage for the insulating oil between the layers cannot be secured, and the performance of the insulating oil cannot be used to the maximum. It has been found that this causes a decrease in the partial discharge starting voltage and the DC breakdown voltage.

【0006】[0006]

【発明が解決しようとする課題】本発明は、コンデンサ
の完成後においても、層間における絶縁油の十分な流通
路を確保することにより、絶縁油の層間における含浸を
確実にし、コンデンサとしての絶縁性能、長期安定性能
の向上を図ることを目的とする。
SUMMARY OF THE INVENTION The present invention secures a sufficient flow path of insulating oil between layers even after completion of the capacitor, thereby ensuring the impregnation of the insulating oil between the layers, and the insulating performance of the capacitor. And to improve long-term stability performance.

【0007】[0007]

【課題を解決するための手段】本発明は、誘電体をフィ
ルムのみとしたコンデンサ素子の複数を集合し、これを
真空加熱乾燥、絶縁油の含浸および加熱処理を順次行な
う製造方法において、コンデンサの完成時における層間
平均間隙が、0.3〜3.0μmとなるように、コンデ
ンサ素子を集合し、および加熱処理することを特徴とす
る。
SUMMARY OF THE INVENTION The present invention provides a method for manufacturing a capacitor, comprising a plurality of capacitor elements each having a film as a dielectric material and sequentially performing drying by vacuum heating, impregnation with insulating oil, and heat treatment. The invention is characterized in that capacitor elements are assembled and heat-treated so that the average interlayer gap at the time of completion is 0.3 to 3.0 μm.

【0008】[0008]

【作用】複数のコンデンサ素子を締め付けることによっ
て集合させた場合、各コンデンサ素子の層間間隙はほぼ
一様に定まる。しかしこの層間間隙はコンデンサの完成
後まで維持されることはない。このあと絶縁油を含浸
し、加熱処理されるが、このときの加熱によってフィル
ムが膨潤して厚さが増す。そのために層間間隙が減少す
る。そこで当初の集合時の締め付け程度および加熱処理
温度を、コンデンサの完成後において、その層間平均間
隙(以下単に層間間隙という。)が0.3〜3.0μm
となるように設定する。
When a plurality of capacitor elements are assembled by tightening, the interlayer gap of each capacitor element is determined almost uniformly. However, this interlayer gap is not maintained until completion of the capacitor. Thereafter, the film is impregnated with insulating oil and subjected to a heat treatment. The heating at this time causes the film to swell and increase in thickness. Therefore, the interlayer gap is reduced. Therefore, the degree of tightening and the heat treatment temperature at the time of the initial assembly are set such that the average interlayer gap (hereinafter simply referred to as interlayer gap) is 0.3 to 3.0 μm after completion of the capacitor.
Set so that

【0009】層間間隙が0.3μmより狭い場合は、部
分放電開始電圧ならびに直流破壊電圧が、コンデンサの
製造直後の初期値よりも遥かに低くなり好ましくない。
これが0.3μmを超えると、各電圧は初期値に近くな
る。そして層間間隙が3.0μmを超えると、直流破壊
電圧が低くなるので好ましくない。なお層間間隙は、複
数のコンデンサ素子を集合したときの集合長をL、フィ
ルムの厚さをFT、その積層枚数をM、電極箔の厚さを
ET、その積層枚数をNとして、式1から算出する。こ
の場合のフィルムの厚さは、加熱処理後、すなわちコン
デンサの完成後における値である。またこれはマイクロ
メーター法厚さ(以下同じ。)による。
When the interlayer gap is smaller than 0.3 μm, the partial discharge starting voltage and the DC breakdown voltage are not preferable because they are much lower than the initial values immediately after the production of the capacitor.
When this exceeds 0.3 μm, each voltage approaches the initial value. If the interlayer gap exceeds 3.0 μm, the DC breakdown voltage becomes low, which is not preferable. In addition, the inter-layer gap is represented by Equation 1 where L is the assembly length when a plurality of capacitor elements are assembled, FT is the thickness of the film, M is the number of laminated layers, ET is the thickness of the electrode foil, and N is the number of laminated layers. calculate. The thickness of the film in this case is a value after the heat treatment, that is, after the completion of the capacitor. This depends on the thickness by the micrometer method (the same applies hereinafter).

【0010】[0010]

【式1】 (Equation 1)

【0011】[0011]

【実施例】本発明の実施例を説明する。厚さ15μmの
ポリプロピレンフィルム2枚をアルミニウム箔からなる
電極箔の間に重ね合わして巻回し、コンデンサ素子1を
構成した。そしてこのコンデンサ素子の複数を並設し
て、層間間隙が1.2μmとなるように締め付けて、図
3に示すように集合した。そのあと真空加熱乾燥し、絶
縁油としてアルキルジフェニルエタンを含浸してから、
それぞれ異なる温度で加熱処理してコンデンサを完成さ
せた。
An embodiment of the present invention will be described. Two polypropylene films each having a thickness of 15 μm were superposed and wound between electrode foils made of aluminum foil to form a capacitor element 1. Then, a plurality of the capacitor elements were juxtaposed, fastened so that the interlayer gap became 1.2 μm, and assembled as shown in FIG. After that, it is dried by heating under vacuum and impregnated with alkyldiphenylethane as insulating oil.
Heat treatment was performed at different temperatures to complete the capacitor.

【0012】このとき、加熱処理を行なわなかったも
の、加熱温度を60℃、80℃、90℃および100℃
としたものは、完成後のコンデンサの層間間隙は、それ
ぞれ1.2μm、0.9μm、0.5μm、0.3μm
および0.1μmとなった。このように加熱温度によっ
て層間間隙が相違するのは、各加熱温度によりフィルム
の膨潤程度が相違し、増加する厚さが異なることによる
ものである。ちなみに各加熱処理後のフィルムの厚さの
増加率は、加熱処理を行なわなかったものが0%、加熱
温度を60℃、80℃、90℃および100℃としたも
のが、それぞれ3%、6%、9%および11%であっ
た。
At this time, the heat treatment was not performed, and the heating temperature was 60 ° C., 80 ° C., 90 ° C. and 100 ° C.
The interlayer gaps of the completed capacitors are 1.2 μm, 0.9 μm, 0.5 μm and 0.3 μm, respectively.
And 0.1 μm. The reason why the interlayer gap varies depending on the heating temperature is that the degree of swelling of the film varies depending on the heating temperature, and the increased thickness varies. Incidentally, the rate of increase in the thickness of the film after each heat treatment was 0% for the case where no heat treatment was performed, and 3% and 6% for the cases where the heating temperature was 60 ° C., 80 ° C., 90 ° C. and 100 ° C. %, 9% and 11%.

【0013】得られた5種類のコンデンサについて、そ
の部分放電開始電圧比を求めたところ、図1に示すよう
な結果が得られた。なお図1において、加熱処理を行な
わずフィルムの厚さの増加率が0%の場合の部分放電開
始電圧比を1.0としてある。この結果から理解できる
ように、層間間隙が0.3μm以下になると、部分放電
開始電圧が急激に低下することが判明する。
The partial discharge starting voltage ratios of the obtained five types of capacitors were obtained, and the results shown in FIG. 1 were obtained. In FIG. 1, the ratio of the partial discharge starting voltage when the rate of increase in the thickness of the film is 0% without performing the heat treatment is set to 1.0. As can be understood from the results, it is found that when the interlayer gap becomes 0.3 μm or less, the partial discharge starting voltage sharply decreases.

【0014】次に前記と同様のコンデンサにつき、その
初期集合時の層間間隙を、それぞれ0.8μm,0.9
μm、1.1μm,1.6μm、3.6μmおよび3.
9μmとし、これを80℃で加熱処理を行なったとこ
ろ、それぞれの完成後の層間間隙は、0.2μm、0.
3μm、0.5μm,1.0μm、3.0μmおよび
3.3μmとなった。
Next, for the same capacitor as above, the interlayer gap at the time of initial assembly is set to 0.8 μm and 0.9 μm, respectively.
2. μm, 1.1 μm, 1.6 μm, 3.6 μm and 3.
When heat treatment was performed at 80 ° C., the inter-layer gap after each completion was 0.2 μm and 0.1 μm.
They were 3 μm, 0.5 μm, 1.0 μm, 3.0 μm and 3.3 μm.

【0015】これらについてそれぞれ定格電圧の1.3
倍の電圧を印加し、70℃で100日間にわたって加熱
課電を実施したのち、直流破壊電圧比を求めたところ、
図2に示すような結果が得られた。なお図2において、
初期値は加熱課電前の各直流破壊電圧比を1.0として
ある。この結果から理解できるように、層間間隙が0.
3m〜3.0μmの範囲において直流破壊電圧の低下率
が少なく、長期信頼性が優れていることが判明する。な
お層間間隙が0.3μmより狭い場合、および3.0μ
mより広い場合は、いずれも直流破壊電圧が大幅に低く
なっている。
For each of these, the rated voltage of 1.3
After applying twice the voltage and conducting heating at 70 ° C. for 100 days, the DC breakdown voltage ratio was determined.
The result as shown in FIG. 2 was obtained. In FIG. 2,
The initial value is assumed that each DC breakdown voltage ratio before applying heat is 1.0. As can be understood from the result, the interlayer gap is set to 0.
In the range of 3 m to 3.0 μm, the rate of decrease in DC breakdown voltage is small, and it is found that long-term reliability is excellent. In addition, when the interlayer gap is smaller than 0.3 μm, and when 3.0 μm
When the width is larger than m, the DC breakdown voltage is significantly lower in each case.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、油
浸オールフィルムコンデンサを製作するにあたり、完成
後におけるコンデンサの層間間隙が0.3μm〜3.0
μmとなるように集合し、加熱処理を施すことにより、
部分放電特性ならびに長期安定性に優れたコンデンサを
製作することができる効果を奏する。
As described above, according to the present invention, when manufacturing an oil-immersed all-film capacitor, the interlayer gap of the capacitor after completion is 0.3 μm to 3.0 μm.
By assembling so as to be μm and performing heat treatment,
This produces an effect that a capacitor having excellent partial discharge characteristics and long-term stability can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるコンデンサの部分放電開始電圧比
特性を示す特性図である。
FIG. 1 is a characteristic diagram showing a partial discharge starting voltage ratio characteristic of a capacitor according to the present invention.

【図2】本発明による直流破壊電圧比特性を示す特性図
である。
FIG. 2 is a characteristic diagram showing a DC breakdown voltage ratio characteristic according to the present invention.

【図3】コンデンサ素子を集合した状態を示す平面図で
ある。
FIG. 3 is a plan view showing a state where capacitor elements are assembled.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 締付金具 3 スタッド DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Clamping fitting 3 Stud

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 義久 京都市右京区梅津高畝町47番地 日新電 機株式会社内 (56)参考文献 特開 昭58−93318(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihisa Tanaka 47, Umezu Takaune-cho, Ukyo-ku, Kyoto-shi Inside Nissin Electric Co., Ltd. (56) References JP-A-58-93318 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体をプラスチックフィルムのみとし
たコンデンサ素子の複数を集合し、これを真空加熱乾
燥、絶縁油の含浸および加熱処理を順次行なう油浸オー
ルフィルムコンデンサの製造方法において、コンデンサ
の完成時における前記プラスチックフィルム間および前
記プラスチックフィルムと電極箔との間の層間平均間隙
が0.3〜3.0μmとなるように、前記コンデンサ素
子を集合し、および加熱処理することを特徴とする油浸
オールフィルムコンデンサの製造方法。
1. A method of manufacturing an oil-immersed all-film capacitor in which a plurality of capacitor elements each of which is made of only a plastic film as a dielectric material is assembled, and dried by vacuum heating, insulating oil impregnation and heat treatment sequentially. An oil characterized in that the capacitor elements are assembled and heat-treated so that the average gap between the plastic films and between the plastic film and the electrode foil at the time is 0.3 to 3.0 μm. Manufacturing method of immersion all film capacitor.
JP29590193A 1993-10-19 1993-10-19 Manufacturing method of oil immersion all film capacitor Ceased JP3255778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29590193A JP3255778B2 (en) 1993-10-19 1993-10-19 Manufacturing method of oil immersion all film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29590193A JP3255778B2 (en) 1993-10-19 1993-10-19 Manufacturing method of oil immersion all film capacitor

Publications (2)

Publication Number Publication Date
JPH07115036A JPH07115036A (en) 1995-05-02
JP3255778B2 true JP3255778B2 (en) 2002-02-12

Family

ID=17826625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29590193A Ceased JP3255778B2 (en) 1993-10-19 1993-10-19 Manufacturing method of oil immersion all film capacitor

Country Status (1)

Country Link
JP (1) JP3255778B2 (en)

Also Published As

Publication number Publication date
JPH07115036A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
US3991451A (en) Method of making a fluoride film capacitor
JP3255778B2 (en) Manufacturing method of oil immersion all film capacitor
JPS5878415A (en) Power condenser
CA1116706A (en) Electrical capacitor with a pleated metallized portion and a starting portion wound about the lead wires
US3211973A (en) Dielectric-coated foil capacitors
JPH08288171A (en) Metallized film capacitor
JP3043140B2 (en) Film capacitor
JP3392525B2 (en) Metallized film capacitors
JP3446523B2 (en) Capacitor and manufacturing method thereof
JPS587812A (en) Method of producing metallized film condenser
JP3284384B2 (en) High voltage condenser
JP2008294431A (en) Metallized film capacitor
JPS60262412A (en) Film condenser
JPS6237526B2 (en)
JPS58153322A (en) Condenser
JP2004200591A (en) Metallized film capacitor
JP4845217B2 (en) High-voltage metal-deposited electrode oil-filled capacitor
JPH0227551Y2 (en)
JP2000012372A (en) Dry type high voltage metallized film capacitor
JPH0669069A (en) Metallized film capacitor
JPH0143852Y2 (en)
DE2151438B2 (en) REGENERATIVE WINDING CAPACITOR
JPH09260209A (en) Capacitor for electric power
JPH0580129B2 (en)
JP2629414B2 (en) All film capacitors

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition