JP3255015B2 - Alloy-coated gas turbine blade and method of manufacturing the same - Google Patents

Alloy-coated gas turbine blade and method of manufacturing the same

Info

Publication number
JP3255015B2
JP3255015B2 JP14546696A JP14546696A JP3255015B2 JP 3255015 B2 JP3255015 B2 JP 3255015B2 JP 14546696 A JP14546696 A JP 14546696A JP 14546696 A JP14546696 A JP 14546696A JP 3255015 B2 JP3255015 B2 JP 3255015B2
Authority
JP
Japan
Prior art keywords
alloy
layer
gas turbine
coating layer
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14546696A
Other languages
Japanese (ja)
Other versions
JPH09324256A (en
Inventor
秀行 有川
慶享 児島
輝 目幡
三男 萩野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14546696A priority Critical patent/JP3255015B2/en
Publication of JPH09324256A publication Critical patent/JPH09324256A/en
Application granted granted Critical
Publication of JP3255015B2 publication Critical patent/JP3255015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温耐久性、特に
高温耐食性に優れた合金被覆ガスタービン翼及びその製
造法さらにそのガスタービン翼を備えたガスタービンに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy-coated gas turbine blade excellent in high-temperature durability, particularly high-temperature corrosion resistance, a method for manufacturing the same, and a gas turbine provided with the gas turbine blade.

【0002】[0002]

【従来の技術】発電用のガスタービンは発電効率の向上
を目的として燃焼ガス温度が高くなってきており、その
結果、高温の燃焼ガスに曝されるタービン静翼・動翼の
高温耐久性の向上が強く要望されている。高温耐久性と
して特に燃料中のS,燃焼用空気中のNa,K等によっ
て引き起こされる高温腐食に対する耐久性が必要とな
る。このような高温腐食を防止する対策として高温耐食
性に優れた合金を被覆する方法が通常行われている。ま
た、燃焼ガス温度の高温化に伴う翼基材のメタル温度も
当然高くなってくるが、耐熱材料の高温強度にも限界が
あるため、翼の冷却技術の進歩も著しい。その結果、翼
は中空構造の薄肉厚の耐熱合金で構成されるようにな
り、高温腐食による翼の肉厚の低減は翼の高温信頼性を
著しく損なうことになる。また、翼の冷却方法としてリ
ターンフロー,インピンジ等の手法を用いることによ
り、翼基材のメタル温度を低くしているのであるが、複
雑な冷却方法を用いるが故に翼全体の均一冷却が難しく
なり温度分布を持つことが多くなる。
2. Description of the Related Art The temperature of a combustion gas in a gas turbine for power generation has been increasing in order to improve power generation efficiency. As a result, the high-temperature durability of turbine vanes and moving blades exposed to high-temperature combustion gas has been increased. Improvement is strongly demanded. As high-temperature durability, durability against high-temperature corrosion caused by S in fuel, Na, K, and the like in combustion air is particularly required. As a countermeasure for preventing such high-temperature corrosion, a method of coating an alloy having excellent high-temperature corrosion resistance is usually performed. In addition, the metal temperature of the blade base material naturally rises as the combustion gas temperature increases, but the high-temperature strength of the heat-resistant material is limited, so that the progress of the blade cooling technology is remarkable. As a result, the blade is made of a thin-walled heat-resistant alloy having a hollow structure, and a reduction in the thickness of the blade due to high-temperature corrosion significantly impairs the high-temperature reliability of the blade. In addition, the metal temperature of the wing base material is lowered by using methods such as return flow and impingement as cooling methods of the wing. However, uniform cooling of the entire wing becomes difficult due to the complicated cooling method. It often has a temperature distribution.

【0003】このような背景により各種の耐食被覆材及
び被覆方法が提案されている。最も多い方法は、Co又
はNi及びそれらを組合せた合金にCr,Alを添加
し、さらにY及びその他の希土類元素添加した合金(以
下、MCrAlX合金と称す。MはFe,Ni,Co、
XはY及びその他の希土類元素である。)被覆を設けた
ものがある。このようなMCrAlX合金被覆を設けた
タービン翼では、高温腐食環境下に曝された場合、Ni
或いはCoの硫化反応より、Cr,Alの酸化反応が優
先しCr,Alの酸化物が保護被膜として形成される。
Ni或いはCoの硫化物は低融点の化合物であり、液相
となりやすく、反応が促進され減肉が大きくなる。一
方、Cr,Alの酸化物は融点が高く液相とならないた
め、硫化物に比べ酸化物の形成反応速度は遅く、減肉の
程度は少なくなる。すなわち、MCrAlX合金被覆は耐熱合
金に比べCr,Alの含有量が多いため、高温腐食環境
下でCr,Alの酸化物保護被膜が生じ、減肉が少なく
高温耐食性に優れることになる。
[0003] Against this background, various corrosion-resistant coating materials and coating methods have been proposed. The most common method is an alloy obtained by adding Cr or Al to Co or Ni and an alloy thereof and further adding Y and other rare earth elements (hereinafter referred to as an MCrAlX alloy. M is Fe, Ni, Co,
X is Y and other rare earth elements. ) Some are provided with a coating. When the turbine blade provided with such an MCrAlX alloy coating is exposed to a high-temperature corrosive environment, Ni
Alternatively, the oxidation reaction of Cr and Al has priority over the sulfurization reaction of Co, and the oxide of Cr and Al is formed as a protective film.
The sulfide of Ni or Co is a compound having a low melting point, is likely to be in a liquid phase, accelerates the reaction, and increases the wall loss. On the other hand, the oxides of Cr and Al have a high melting point and do not form a liquid phase, so that the formation reaction rate of the oxide is slower than that of the sulfide, and the degree of wall thinning is reduced. That is, since the MCrAlX alloy coating has a higher content of Cr and Al than the heat-resistant alloy, an oxide protective coating of Cr and Al is generated in a high-temperature corrosive environment, and the thinning is small and the high-temperature corrosion resistance is excellent.

【0004】また、この結果から、高温耐食性により優
れたMCrAlX合金被覆としてCr,Alを多く含有
した合金が必要となる。しかし、MCrAlX合金被覆
でCr,Alの含有量を多くした場合、合金被覆材の靭
性が低下し、クラック等の損傷が生じ易くなる。被覆層
にクラックが生じた場合、そのクラックが起点となり翼
基材まで進展し、薄肉で構成される翼の破損になる。こ
のような、燃焼ガス温度の高温化に伴う高温腐食環境条
件の悪化と、翼構造の変化に対応するため、燃焼ガス温
度の低いタービンの翼(この場合、冷却無しか、或い
は、冷却構造が簡単で翼肉厚が厚い)に比べ高温耐食被
覆に種々の改良が提案されている。例えば、U.S.PA
T4080486,U.S.PAT4246323,U.S.PAT432601
で公開されている技術として、MCrAlX合金被覆の
表面部分近くのCr,Al,Si等の含有量を増加させ
るものがある。この方法は拡散浸透が主である。これら
の方法ではCr,Al,Si等の含有量の多い表面層を
形成することにより、MCrAlX合金被覆の高温耐食
性を向上させることが可能になると提案されている。ま
た、合金被覆の下部のCr,Al,Siの含有量は表面
部近くに比べ少ないので、下部の靭性の低下は無いので
表面部でクラックが生じた際もその進展は下部で止まる
と予想されている。
[0004] From these results, an alloy containing a large amount of Cr and Al is required as an MCrAlX alloy coating excellent in high-temperature corrosion resistance. However, when the content of Cr and Al is increased in the MCrAlX alloy coating, the toughness of the alloy coating material is reduced, and damage such as cracks is likely to occur. When a crack occurs in the coating layer, the crack starts from the crack and propagates to the blade base material, resulting in breakage of the thin-walled blade. In order to cope with such deterioration of high-temperature corrosive environmental conditions accompanying a rise in combustion gas temperature and a change in blade structure, turbine blades with low combustion gas temperature (in this case, no cooling or cooling structure Various improvements have been proposed for high-temperature corrosion-resistant coatings as compared to simple and thick wings. For example, US PA
T4080486, US PAT4246323, USPAT432601
As a technique disclosed in U.S. Pat. No. 6,086,086, there is a technique for increasing the content of Cr, Al, Si, etc. near the surface portion of the MCrAlX alloy coating. This method mainly uses diffusion infiltration. In these methods, it is proposed that the high-temperature corrosion resistance of the MCrAlX alloy coating can be improved by forming a surface layer having a large content of Cr, Al, Si and the like. In addition, since the contents of Cr, Al, and Si in the lower portion of the alloy coating are smaller than those near the surface portion, there is no decrease in toughness in the lower portion. ing.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの公知
のMCrAlX合金被覆の耐食性の改良技術は、いずれ
もMCrAlX合金被覆の表面部に酸化物保護被膜を形
成するCr,Al,Si等の元素を拡散浸透しその含有
量を増加させたものであるため、高温腐食環境下に曝さ
れた場合、表面にこれらの酸化物保護被膜が形成される
一方で、高温での元素の拡散によりMCrAlX合金被
覆層の靭性低下が免れず、本発明者らの検討の結果、燃
焼ガス温度の高いガスタービン翼として必ずしも十分な
物でないことが判明した。
However, these known techniques for improving the corrosion resistance of MCrAlX alloy coatings all involve the use of elements such as Cr, Al, and Si which form an oxide protective coating on the surface of the MCrAlX alloy coating. When exposed to a high-temperature corrosive environment, these oxide protective coatings are formed on the surface, while the MCrAlX alloy coating is formed due to the diffusion of elements at high temperatures because of the diffusion and infiltration and the increased content. The reduction in the toughness of the layer was inevitable, and as a result of the investigations by the present inventors, it was found that the gas turbine blade having a high combustion gas temperature was not necessarily sufficient.

【0006】本発明の目的は、MCrAlX合金被覆の
公知技術の検討結果に基づき、高温での耐久性に優れた
ガスタービン翼及びその製造方法、さらにそのガスター
ビン翼を有したガスタービンを提供することにある。
An object of the present invention is to provide a gas turbine blade excellent in durability at high temperatures, a method for manufacturing the same, and a gas turbine having the gas turbine blade based on the results of a study of the known art of MCrAlX alloy coating. It is in.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は種々のMCrAlX合金被覆層及びその表
面部にCr,Al含有量を多くした被覆層について高温
腐食試験を行いその腐食形態を検討した結果、以下の知
見を得た。すなわち、従来技術のMCrAlX合金被覆
の表面部に酸化物保護被膜を形成するCr,Al,Si
等の元素を拡散浸透しその含有量を増加させたもので
は、高温腐食環境下に曝された場合、表面にこれらの酸
化物保護被膜が形成される一方で、高温での元素の拡散
によりMCrAlX合金被覆層下部のCr,Al,Si
等の濃度が増加していくことによるMCrAlX合金被
覆層の靭性低下が生じる。その結果、特に高温ガスター
ビン用の薄肉の複雑空冷翼ではガスタービンの起動・停
止の際の熱応力により靭性の低下した合金被覆層でクラ
ックが生じる。高温腐食はこのようなクラックを通じ
て、合金被覆層下部まで進行し、ついには基材の腐食に
至る。一方、MCrAlX合金被覆層の靭性低下が生じない程
度に表面部のCr,Al含有量を低く抑えた場合では、
酸化物保護被膜が形成される際にMCrAlX合金被覆
層内のCr,Alが酸化物保護被膜の形成に消費される
ことになり、Cr,Alの拡散浸透を行わない場合と比
べ耐食性の十分な向上が得られない。また、CrとAl
を拡散浸透したものの比較から、燃焼ガス温度の高い高
温ガスタービンで予想される高温腐食環境では高温腐食
を防止する上で最も有効な元素はAlであり、高温で安
定なAl23が表面に保護被膜として生成することが耐
食性に重要であることが判明した。
In order to achieve the above object, the present invention provides a high-temperature corrosion test for various MCrAlX alloy coating layers and a coating layer having a high Cr and Al content on the surface of the coating layer. As a result, the following findings were obtained. That is, Cr, Al, Si which forms an oxide protective film on the surface of a conventional MCrAlX alloy coating
In the case of exposure to a high-temperature corrosive environment, these oxide protective films are formed on the surface, while the elements are diffused and infiltrated by MCrAlX due to the diffusion of elements at high temperatures. Cr, Al, Si under the alloy coating layer
The toughness of the MCrAlX alloy coating layer is reduced due to the increase in the concentration of the alloy. As a result, cracks occur in the alloy coating layer having reduced toughness due to thermal stress when starting and stopping the gas turbine, particularly in a thin-walled complicated air-cooled blade for a high-temperature gas turbine. High-temperature corrosion proceeds through such cracks to the lower portion of the alloy coating layer, and eventually leads to corrosion of the base material. On the other hand, when the Cr and Al contents on the surface are kept low enough that the toughness of the MCrAlX alloy coating layer does not decrease,
When the oxide protective film is formed, Cr and Al in the MCrAlX alloy coating layer are consumed for forming the oxide protective film, and have a sufficient corrosion resistance compared to the case where Cr and Al are not diffused and infiltrated. No improvement is obtained. In addition, Cr and Al
The most effective element for preventing high-temperature corrosion in a high-temperature corrosive environment expected from a high-temperature gas turbine with a high combustion gas temperature is Al, and Al 2 O 3 is stable at high temperatures. It was found that the formation as a protective film was important for corrosion resistance.

【0008】そこで、本発明では上記のような検討結果
に基づき、高温腐食条件が厳しく、かつ、熱応力が大き
い、高温ガスタービン用の薄肉の中空構造複雑冷却翼に
対する、高温耐食性及び高温信頼性に優れた被覆層とし
て耐熱合金の基材の表面にCo及び/又はNiを主成分
としCr,Alを含み、さらにY若しくはYとTa,Z
r,Ceのいずれか一つもしくはその組合せからなる合
金被覆層からなり、さらに前記合金被覆層の上に酸化処
理によって表面側がAl23化されたAl拡散層を設け
た被覆層を見いだした。
In view of the above, the present invention provides a high-temperature corrosion resistance and high-temperature reliability for a thin-walled hollow-structured complex cooling blade for a high-temperature gas turbine, which has severe hot-corrosion conditions and large thermal stress, based on the above-described examination results. As a coating layer excellent in heat resistance, the surface of a heat-resistant alloy substrate contains Cr and Al with Co and / or Ni as main components, and further contains Y or Y and Ta, Z
A coating layer comprising an alloy coating layer made of any one of r or Ce or a combination thereof, and further having an Al diffusion layer whose surface side has been converted to Al 2 O 3 by oxidation treatment on the alloy coating layer was found. .

【0009】すなわち本発明は、耐熱合金の基材の表面
に高温耐食性及び耐酸化性に富む被覆層を設けたガスタ
ービン翼において、前記被覆層はCo及び/又はNiを
主成分としCr,Alを含み、さらにY若しくはYと
a,Zr,Ceのいずれか一つもしくはその組合せから
なる合金被覆層からなり、さらにその上に酸化処理によ
って表面側がAl23化されたAl拡散層を設けたこと
を特徴とするものである。ここで、前記合金被覆層はC
r;10〜30wt%,Al;5〜15wt%,Y;
0.1〜1.5wt%、残部Co及び/又はNi、及び不
可避的不純物よりなるものがよい。また、合金被覆層上
部に設けたAl拡散層中のAl濃度は15〜25%であ
るものがよい。また、合金被覆層上部に設けた酸化処理
によって表面側がAl23化されたAl拡散層の厚さは
10μm以下であるものがよい。また、合金被覆層表面
に設けた酸化処理によって表面側がAl23化されたA
l拡散層の内、Al23化された部分の厚さはAl拡散
層全体の厚さの2/3を最大として1〜5μmの範囲の
ものがよい。
That is, the present invention relates to a gas turbine blade provided with a coating layer having high temperature corrosion resistance and oxidation resistance on the surface of a heat-resistant alloy substrate, wherein the coating layer contains Co and / or Ni as a main component and Cr, Al And Y or Y and T
a, Zr, or Ce, or an alloy coating layer made of a combination thereof, and further, an Al diffusion layer whose surface side is changed to Al 2 O 3 by an oxidation treatment is provided thereon. is there. Here, the alloy coating layer is C
r; 10 to 30 wt%, Al; 5 to 15 wt%, Y;
It is preferable to use 0.1 to 1.5 wt%, the balance being Co and / or Ni, and unavoidable impurities. The Al concentration in the Al diffusion layer provided above the alloy coating layer is preferably 15 to 25%. Further, the thickness of the Al diffusion layer whose surface side has been changed to Al 2 O 3 by the oxidation treatment provided above the alloy coating layer is preferably 10 μm or less. In addition, A whose surface side has been converted to Al 2 O 3 by an oxidation treatment provided on the surface of the alloy coating layer.
The thickness of the portion of the 1-diffusion layer converted to Al 2 O 3 is preferably in the range of 1 to 5 μm with the maximum thickness being 2/3 of the total thickness of the Al-diffusion layer.

【0010】また、前記合金被覆ガスタービン翼で、酸
化処理によって表面側がAl23化されたAl拡散層を
上部に設けた合金被覆層が、少なくとも翼面全面及びプ
ラットフォーム部に設けられているものがよい。また、
酸化処理によって表面側がAl23化されたAl拡散層
を上部に設けた合金被覆層が、少なくとも翼面全面及び
燃焼ガスに曝されるガスパス部の表面に設けられている
ものがよい。
Further, in the alloy-coated gas turbine blade, an alloy coating layer having an Al diffusion layer whose surface side has been converted to Al 2 O 3 by oxidation treatment is provided on at least the entire blade surface and the platform portion. Things are good. Also,
It is preferable that an alloy coating layer provided with an Al diffusion layer whose surface side has been converted to Al 2 O 3 by oxidation treatment on the upper surface is provided at least on the entire blade surface and on the surface of the gas path exposed to combustion gas.

【0011】また本発明は、耐熱合金の基材の表面に高
温耐食性及び耐酸化性に富む被覆層を設けたガスタービ
ン翼の製造方法で、基材表面にCo及び/又はNiを主
成分としCr,Alを含み、さらにY若しくはYと
a,Zr,Ceのいずれか一つもしくはその組合せから
なる合金被覆層を形成する工程と、その合金被覆層の上
にAlを拡散浸透させる工程と、さらに前記Al拡散層
の表面を熱プラズマによる酸化処理によってAl23
する工程とを含むことを特徴とするものである。
The present invention also provides a method for manufacturing a gas turbine blade having a coating layer having high temperature corrosion resistance and oxidation resistance provided on the surface of a heat-resistant alloy base material, wherein the base material surface contains Co and / or Ni as a main component. Cr, Al, and Y or Y and T
a) forming an alloy coating layer made of any one of a, Zr, and Ce or a combination thereof; diffusing and infiltrating Al onto the alloy coating layer; And converting to Al 2 O 3 by oxidation treatment.

【0012】ここで、Al拡散層の表面を熱プラズマに
よる酸化処理によってAl23化する工程では、熱プラ
ズマ発生ガスとして酸素を用いるのがよい。また、Al
拡散層の表面を熱プラズマによる酸化処理によってAl
23化する工程の際に、基材温度は800℃以下に保持
するのがよい。
Here, in the step of converting the surface of the Al diffusion layer into Al 2 O 3 by an oxidation treatment using thermal plasma, it is preferable to use oxygen as a thermal plasma generating gas. Also, Al
The surface of the diffusion layer is subjected to oxidation treatment by thermal plasma to form Al
During 2 O 3 of that process, the substrate temperature is better to hold the 800 ° C. or less.

【0013】また本発明は、圧縮機と、燃焼器と、ター
ビンディスクにダブテイル部が固定された単段又は複数
段のタービンブレードと、前記ブレードに対応して設け
られたタービンノズルとを備えたガスタービンで、前記
のいずれかの合金被覆ガスタービン翼を備えていること
を特徴とする。
Further, the present invention includes a compressor, a combustor, a single-stage or plural-stage turbine blade having a dovetail portion fixed to a turbine disk, and a turbine nozzle provided corresponding to the blade. A gas turbine comprising any one of the alloy-coated gas turbine blades described above.

【0014】本発明による被覆層を設けたタービン翼で
は、厚さ10μm以下のAl拡散層の内、最表面の酸化
処理によって形成された厚さ1〜5μmのAl23層が
苛酷な高温腐食環境からタービン翼を保護する作用を有
している。また、その下にAl含有量の多いAl拡散層
が残存するため、上部のAl23層に損傷が生じた場合
でも浸入してきた酸素と反応してAl23膜を再生する
作用を有する。一方、このAl拡散層は熱プラズマによ
る酸化処理によってAl23膜を形成することにより、
厚さが10μm以下と従来に比べ薄くてすみ、余分なA
lが合金被覆層に拡散して合金層の靭性を低下するのを
最小限に抑えることが可能である。このため、薄肉構造
の空冷タービン翼で生じる翼基材の熱応力により、Al
23層とAl含有量の多い部分にクラックが生じても、
その下の合金被覆層は靭性の低下をほとんど生じていな
いためクラックの進展が生じることはなく、従来技術の
被覆層を設けたガスタービン翼に比べ高温腐食に対して
信頼性の高いタービン翼となる。
In the turbine blade provided with the coating layer according to the present invention, of the Al diffusion layers having a thickness of 10 μm or less, the Al 2 O 3 layer having a thickness of 1 to 5 μm formed by oxidizing the outermost surface is subjected to severe high temperature. It has the function of protecting turbine blades from corrosive environments. In addition, since the Al diffusion layer having a high Al content remains under the layer, even when the upper Al 2 O 3 layer is damaged, it reacts with the invading oxygen to regenerate the Al 2 O 3 film. Have. On the other hand, this Al diffusion layer is formed by forming an Al 2 O 3 film by an oxidation treatment using thermal plasma,
The thickness is 10 μm or less, which is thinner than before, and extra A
It is possible to minimize that l diffuses into the alloy coating layer and lowers the toughness of the alloy layer. For this reason, due to the thermal stress of the blade base material generated in the air-cooled turbine blade having a thin structure, Al
Even if cracks occur in the 2 O 3 layer and the portion with a high Al content,
Since the alloy coating layer underneath hardly causes a decrease in toughness, crack growth does not occur, and a turbine blade with higher reliability against high temperature corrosion than a gas turbine blade with a coating layer of the prior art is used. Become.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)ガスタービン翼材料として用いられるNi
基耐熱合金(Rene′−80:Ni−14%Cr−4%M
o−4%W−3%Al−5%Ti−9.5%Co)を試験
片基材とし、その表面に本発明の被覆層を設けたものを
作成した。試験片形状及び寸法は直径9×50mmの丸棒
及び直径9×80mmで、中心部に直径5mmの孔を有した
中空パイプである。まず、試験片を脱脂,洗浄した後、
Al23製グリッド(粒径100〜150μm)を用い
て、5kg/cm2 の圧力の圧縮空気によって表面を粗面化
するブラスチング処理を行った。その後、減圧雰囲気中
プラズマ溶射法によりそれぞれ組成の異なるMCrAl
Y合金、すなわち、Co−20%Cr−8%Al−1%
Y,Co−32%Ni−21%Cr−8%Al−1%
Y,Ni−20%Cr−8%Al−0.5%Y,Ni−3
0%Co−21%Cr−8%Al−0.5%Y の組成か
らなる合金被覆層を設けた。その厚さはいずれの合金も
100μmである。これらの合金被覆層の形成条件は、
Ar−7%H2 プラズマを用い、プラズマ出力50k
W,溶射距離250mm,溶射時の雰囲気圧力50Torr,
粉末供給量50g/min ,溶射中の試験片温度650℃
である。
(Example 1) Ni used as a gas turbine blade material
Base heat-resistant alloy (Rene'-80: Ni-14% Cr-4% M
o-4% W-3% Al-5% Ti-9.5% Co) was used as a test piece base material, and the surface thereof was provided with a coating layer of the present invention. The shape and dimensions of the test piece are a round bar having a diameter of 9 × 50 mm and a hollow pipe having a diameter of 9 × 80 mm and having a hole of 5 mm in the center. First, after the specimen is degreased and washed,
Using an Al 2 O 3 grid (particle diameter: 100 to 150 μm), blasting treatment was performed to roughen the surface with compressed air at a pressure of 5 kg / cm 2 . Thereafter, MCrAl having different compositions are formed by plasma spraying in a reduced pressure atmosphere.
Y alloy, that is, Co-20% Cr-8% Al-1%
Y, Co-32% Ni-21% Cr-8% Al-1%
Y, Ni-20% Cr-8% Al-0.5% Y, Ni-3
An alloy coating layer having a composition of 0% Co-21% Cr-8% Al-0.5% Y was provided. The thickness of each alloy is 100 μm. The conditions for forming these alloy coating layers are as follows:
Plasma output 50k using Ar-7% H 2 plasma
W, spraying distance 250 mm, atmosphere pressure during spraying 50 Torr,
Powder supply amount 50g / min, test specimen temperature 650 ° C during thermal spraying
It is.

【0016】このようにNi基耐熱合金からなる基材表
面に、それぞれの組成の合金被覆層を設けた試験片にA
l拡散処理を実施し合金被覆層の表面部のAl含有量を
大きくする処理を行った。その処理方法は、10%Al
+1%NH4Cl−残部Al23からなる混合粉末中に
試験片を埋め込み、Ar雰囲気中で750℃,1h加熱
するものである。その後、混合粉末中から試験片を取り
出し表面付着物を除去した後、真空中で1060℃,4
hの加熱処理を行った。なお、本発明で、Al拡散層の
Al濃度及び厚さは重要であり、その制御は処理に用い
るAl−NH4Cl−Al23 混合粉末の組成比,処理
温度,処理時間によって実現でき、Al拡散層のAl濃
度が15〜25%の範囲,厚さが10μm以下の範囲で
任意に選択できる。その後、図2に示す真空容器14の
上部に水冷二重石英管プラズマトーチ11を備えた高周
波誘導熱プラズマ装置を用いて、酸素熱プラズマ流12
を試験片13の表面に照射しAl拡散層表面の酸化処理
を行った。その処理方法は、真空容器内圧力;100To
rr,プラズマガス;酸素+20%Ar,高周波出力;5
0kW,試験片温度;700℃,照射時間;30min で
ある。なお、本発明で、酸化処理によって形成されるA
23層の厚さは重要であり、その制御は高周波出力,
処理時間によって実現でき、Al23層の厚さがAl拡
散層の2/3を最大として1〜5μmの範囲で選択でき
る。
A test piece having an alloy coating layer of each composition provided on the surface of a substrate made of a Ni-base heat-resistant alloy as described above
A diffusion treatment was performed to increase the Al content in the surface of the alloy coating layer. The processing method is 10% Al
+ 1% NH4Cl- embedding the remainder Al 2 O 3 test pieces in a mixed powder composed of, 750 ° C. in an Ar atmosphere to 1h heating. Thereafter, the test piece was taken out from the mixed powder to remove the deposits on the surface.
h). In the present invention, the Al concentration and the thickness of the Al diffusion layer are important, and the control can be realized by the composition ratio, the processing temperature, and the processing time of the Al—NH 4 Cl—Al 2 O 3 mixed powder used for the processing. The Al concentration of the Al diffusion layer can be arbitrarily selected within a range of 15 to 25% and a thickness of 10 μm or less. Thereafter, the oxygen thermal plasma flow 12 is generated using a high-frequency induction thermal plasma apparatus provided with a water-cooled double quartz tube plasma torch 11 on the upper part of the vacuum vessel 14 shown in FIG.
Was irradiated on the surface of the test piece 13 to oxidize the surface of the Al diffusion layer. The processing method is as follows;
rr, plasma gas; oxygen + 20% Ar, high frequency output; 5
0 kW, test piece temperature; 700 ° C., irradiation time: 30 min. In the present invention, A formed by oxidation treatment
The thickness of the l 2 O 3 layer is important and its control depends on high frequency output,
This can be realized by the processing time, and the thickness of the Al 2 O 3 layer can be selected in the range of 1 to 5 μm with the maximum being 2/3 of the Al diffusion layer.

【0017】このようにして作製した試験片の断面組織
観察結果の模式図を図1に示す。基材3の表面に合金被
覆層2が設けられ、その上にAl含有量の多いAl拡散
層1が設けられ、さらにその表面部には酸素熱プラズマ
の照射によって形成されたAl23層4が設けられてい
る。Al拡散層1のAl濃度は最大20%で、Al23
層4を含めたAl拡散層1の厚さは5μm、そのうちA
23層4の厚さは2μmである。なお、比較として公
知例(例えばU.S.PAT4080486)の被覆層も作製し
た。作製方法及びその条件は本発明の被覆層の一部を形
成するのと同様であり、Co−20%Cr−8%Al−
1%Y,Ni−20%Cr−8%Al−0.5%Y 合金
粉末を用いた。これらの合金被覆層(厚さ100μm)
を形成した後、10%Al+1%NH4Cl−残部Al2
3 からなる混合粉末中に試験片を埋め込み、Ar雰囲
気中で750℃,4h加熱処理して、それぞれの合金被
覆層の表面のAl含有量を大きくした。このときのAl
拡散層のAl濃度は最大20%で、厚さは50μmであ
る。表1に本発明の被覆層及び比較のための被覆層を設
けた試験片を示す。
FIG. 1 is a schematic view showing the results of observation of the cross-sectional structure of the test piece thus manufactured. An alloy coating layer 2 is provided on the surface of a substrate 3, an Al diffusion layer 1 having a high Al content is provided thereon, and an Al 2 O 3 layer formed by irradiating oxygen thermal plasma is provided on the surface thereof. 4 are provided. The Al concentration of the Al diffusion layer 1 is up to 20%, and the Al 2 O 3
The thickness of the Al diffusion layer 1 including the layer 4 is 5 μm, of which A
The thickness of the l 2 O 3 layer 4 is 2 μm. For comparison, a coating layer of a known example (for example, US PAT4080486) was also prepared. The manufacturing method and the conditions are the same as those for forming a part of the coating layer of the present invention, and the Co-20% Cr-8% Al-
1% Y, Ni-20% Cr-8% Al-0.5% Y alloy powder was used. These alloy coating layers (thickness 100 μm)
Is formed, 10% Al + 1% NH 4 Cl-remainder Al 2
The test piece was embedded in a mixed powder made of O 3 , and heated at 750 ° C. for 4 hours in an Ar atmosphere to increase the Al content on the surface of each alloy coating layer. Al at this time
The diffusion layer has an Al concentration of at most 20% and a thickness of 50 μm. Table 1 shows test pieces provided with a coating layer of the present invention and a coating layer for comparison.

【0018】[0018]

【表1】 [Table 1]

【0019】それぞれの被覆層を設けた丸棒試験片を用
いて図3に示すバーナリグ高温腐食試験装置で被覆層の
高温耐食性を評価した。試験は燃料として軽油(S含有
量0.4%)を用い、燃焼炎中に高温腐食を生じさせるN
aClを添加した。添加方法はNaCl水溶液を燃焼炎
中に投入する方法で、燃焼炎中の添加量は200ppm で
ある。燃焼炎中に設けた試験片には熱電対を取り付け試
験片温度を測定した。試験後、試験片に付着した付着物
を除去し、試験前の重量測定値と比較し、重量損失量を
評価した。また、重量損失量に大差がない場合、試験片
の断面組織観察を行い、被覆層の表層部の損傷の有無を
調べた。表2は高温腐食試験による重量損失量の測定結
果、表3は断面組織観察による被覆層の表層部の損傷の
有無を示す。
Using a round bar test piece provided with each coating layer, the high-temperature corrosion resistance of the coating layer was evaluated by a burner rig high-temperature corrosion test apparatus shown in FIG. The test used light oil (S content 0.4%) as fuel, and N which causes high-temperature corrosion in the combustion flame
aCl was added. The addition method is a method in which an aqueous NaCl solution is introduced into the combustion flame, and the amount added during the combustion flame is 200 ppm. A thermocouple was attached to the test piece provided in the combustion flame, and the temperature of the test piece was measured. After the test, the deposits attached to the test piece were removed, and the weight loss value was evaluated by comparing with the measured weight value before the test. When there was no great difference in the weight loss, the cross-sectional structure of the test piece was observed to check whether the surface layer of the coating layer was damaged. Table 2 shows the measurement results of the weight loss by the high-temperature corrosion test, and Table 3 shows the presence or absence of damage to the surface portion of the coating layer by observing the cross-sectional structure.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】これらの表1の本発明及び公知の被覆層の
試験結果(表2,表3)から、本発明の被覆層(No.1
〜4)及びNo.6の公知の被覆層では重量減量も全くな
く、断面組織も健全であった。一方、No.5に示すCo
CrAlY合金被覆層にAl拡散層を設けた場合、その
耐食性は悪く、高温試験では基材の一部にまで高温腐食
が生じていた。このような評価方法は実機のガスタービ
ン翼の曝される高温腐食を模擬したものであるが、ガス
タービンの起動・停止によって生じる熱応力の影響は対
象となっていない。
From the test results (Tables 2 and 3) of the present invention and the known coating layer shown in Table 1, the coating layer (No. 1) of the present invention was obtained.
No. 4) and No. 6 of the known coating layer did not lose weight at all, and the cross-sectional structure was sound. On the other hand, Co shown in No. 5
When the Al diffusion layer was provided on the CrAlY alloy coating layer, the corrosion resistance was poor, and high-temperature corrosion occurred in a part of the base material in the high-temperature test. Such an evaluation method simulates high-temperature corrosion to which a gas turbine blade of an actual machine is exposed, but does not consider the influence of thermal stress caused by starting and stopping the gas turbine.

【0023】そこで、本発明では図4に示す試験装置を
用いて、熱応力と高温腐食が相乗したガスタービン翼の
実環境を模擬した評価を実施した。本法は加熱源として
Ar−7%H2 ガスのプラズマジェットを用い、中空試
験片の内部を圧縮空気によって空冷する方法である。プ
ラズマジェットの出力は40kW、加熱距離は100mm
で、プラズマジェット中にSO2 ガス及びNaClを添
加した。また、プラズマジェットによる加熱を10min
、プラズマジェットを発生させるプラズマガンを移動
させ、空冷のみを行う冷却行程を1min 繰り返すサイク
ル試験とした。その結果、SO2 ガス及びNaClによ
り試験片表面にNa2SO4溶融塩が形成され、実機条件
を加速した高温腐食条件下になるとともに、ガスタービ
ン翼の熱的条件となり加熱・冷却の繰り返しによってガ
スタービンの起動・停止をほぼ模擬した熱応力条件にも
なる。このような試験で表1の本発明の被覆層と公知の
被覆層を設けたそれぞれの試験片を用いて評価した。試
験のサイクル数は1500回である。表4は試験後の外
観観察及び断面組織の観察結果を示す。
Therefore, in the present invention, an evaluation simulating the actual environment of a gas turbine blade in which thermal stress and high-temperature corrosion are synergistically performed was performed using the test apparatus shown in FIG. In this method, a plasma jet of Ar-7% H 2 gas is used as a heating source, and the inside of a hollow test piece is air-cooled by compressed air. Plasma jet output is 40kW, heating distance is 100mm
Then, SO 2 gas and NaCl were added into the plasma jet. Heating by plasma jet for 10min
A cycle test in which a plasma gun for generating a plasma jet was moved and a cooling step of performing only air cooling for 1 minute was repeated. As a result, a molten salt of Na 2 SO 4 is formed on the surface of the test piece by the SO 2 gas and NaCl. The thermal stress condition almost simulates the start / stop of the gas turbine. In such a test, evaluation was performed using each test piece provided with the coating layer of the present invention and a known coating layer in Table 1. The number of test cycles is 1500. Table 4 shows the results of observation of the appearance and cross-sectional structure after the test.

【0024】[0024]

【表4】 [Table 4]

【0025】本発明の被覆層(No.1〜4)では外観観
察では高温腐食による損傷はまったく認められず、断面
組織観察の結果、表層部のAl23層及びAl拡散層に
厚さ方向に多数のクラックが生じており、そのクラック
先端部のMCrAlY合金被覆層に高温腐食に起因する
損傷が認められた。しかし、その下部のMCrAlY合
金被覆層には高温腐食による損傷は認められず健全で、
当然ながら基材の損傷もなかった。一方、No.5の被覆
層ではクラックの発生はほとんど認められないが表面部
から内部に向かって高温腐食による損傷が顕著で、損傷
は基材との境界部にまで達しており、一部では基材の損
傷も認められた。また、No.6の被覆層では表面部のA
l含有量を多くした部分にクラックが生じており、その
深さは本発明による被覆層に比べ深くまで達していた。
また、そのクラック先端部で高温腐食による損傷が生じ
ていた。そして、一部では高温腐食による損傷は基材ま
で達していた。以上の評価試験の結果、本発明の被覆層
は従来の被覆層に比べ苛酷な環境下でも信頼性の優れた
ものであることが明らかになった。
In the coating layer (Nos. 1 to 4) of the present invention, no damage due to high-temperature corrosion was observed in the appearance observation, and the thickness of the Al 2 O 3 layer and the Al diffusion layer in the surface layer was observed as a result of cross-sectional structure observation. Many cracks occurred in the direction, and damage due to high-temperature corrosion was observed in the MCrAlY alloy coating layer at the tip of the crack. However, the MCrAlY alloy coating layer beneath it was sound without damage due to high temperature corrosion,
Of course, there was no damage to the substrate. On the other hand, cracks were hardly observed in the coating layer of No. 5, but the damage due to high temperature corrosion was remarkable from the surface to the inside, and the damage reached the boundary with the base material. Substrate damage was also observed. In the coating layer of No. 6, A on the surface
Cracks occurred in the portion where the 1 content was increased, and the depth was deeper than the coating layer according to the present invention.
In addition, damage due to high-temperature corrosion occurred at the tip of the crack. In some cases, damage due to high-temperature corrosion reached the base material. As a result of the above evaluation tests, it has been clarified that the coating layer of the present invention is superior in reliability under a severe environment as compared with the conventional coating layer.

【0026】次に本発明のガスタービン翼を作成した。
図5はガスタービン翼の外観図で、その内部は空冷用の
冷却通路,冷却効率を上げるタービュレンスプロモータ
ー,ピンフィンを有したもので、翼は薄肉の中空構造で
ある。翼基材はNi基耐熱合金で、前述と同様の材料,
方法により本発明の被覆層を形成した。本発明の被覆層
を設けた部分は翼面41及び高燃焼ガスに曝されるプラ
ットフォーム部42である。このようなガスタービン翼
を実機ガスタービン動翼に用いた結果、従来の被覆層を
設けたものに比べて、高温腐食に対する耐久性は格段に
向上した。
Next, a gas turbine blade of the present invention was prepared.
FIG. 5 is an external view of a gas turbine blade, which has a cooling passage for air cooling, a turbulence promoter for improving cooling efficiency, and a pin fin. The blade has a thin hollow structure. The wing base material is a Ni-base heat-resistant alloy,
The coating layer of the present invention was formed by the method. The portion provided with the coating layer of the present invention is a blade surface 41 and a platform portion 42 exposed to high combustion gas. As a result of using such a gas turbine blade for an actual gas turbine rotor blade, the durability against high-temperature corrosion was remarkably improved as compared with a conventional gas turbine blade provided with a coating layer.

【0027】(実施例2)実施例1と同様の方法によ
り、Ni基の一方向凝固材(DS材,Mar−M24
7,Ni−16%Cr−1.8%Mo−2.6%W−3.
4%Al−3.4%Ti−1.7%Ta−8.5%Co−
0.1%C)及びNi基の単結晶材(SC材,CMSX−
4,Ni−6.6%Cr−0.6%Mo−6.4%W−3.
0%Re−5.6%Al−1.0%Ti−6.5%Ta−
9.6%Co)を試験片基材として本発明の被覆層を作
製した。このようにして作製した本発明の被覆層につい
て実施例1に示した図4の試験装置により高温腐食と熱
応力とを相乗した耐久性評価を実施した。その結果、い
ずれの材料を試験片基材とした場合とも、実施例1の本
発明の被覆層と同等の耐久性を示した。
(Example 2) In the same manner as in Example 1, a Ni-based unidirectional solidified material (DS material, Mar-M24) was used.
7, Ni-16% Cr-1.8% Mo-2.6% W-3.
4% Al-3.4% Ti-1.7% Ta-8.5% Co-
0.1% C) and Ni-based single crystal material (SC material, CMSX-
4, Ni-6.6% Cr-0.6% Mo-6.4% W-3.
0% Re-5.6% Al-1.0% Ti-6.5% Ta-
(9.6% Co) was used as a test piece substrate to prepare a coating layer of the present invention. The durability of the coating layer of the present invention produced in this manner was evaluated by the test apparatus shown in FIG. As a result, no matter which material was used as the test piece base material, the same durability as that of the coating layer of the present invention of Example 1 was exhibited.

【0028】(実施例3)図6に示すタービン静翼(材
質:Ni基耐熱合金IN−939,Ni−23%Cr−
2%W−2%Al−3.7%Ti−1.4%Ta−19%
Co−0.15%C)を用いて本発明のガスタービン翼を
作製した。実施例1と同様の被覆材を用いて、同様の方
法,条件にて図6に示す翼面51全面及び燃焼ガスに曝
されるガスパス部52の表面に本発明の被覆層を形成し
たガスタービン翼を作製した。このガスタービン翼は実
施例1と同様に実機に用いた結果、優れた高温耐食性が
得られた。
Embodiment 3 A turbine vane shown in FIG. 6 (material: Ni-base heat-resistant alloy IN-939, Ni-23% Cr-)
2% W-2% Al-3.7% Ti-1.4% Ta-19%
(Co-0.15% C) was used to produce a gas turbine blade of the present invention. A gas turbine in which the coating layer of the present invention is formed on the entire wing surface 51 and the surface of the gas path section 52 exposed to the combustion gas shown in FIG. Wings were made. This gas turbine blade was used in an actual machine as in Example 1, and as a result, excellent high-temperature corrosion resistance was obtained.

【0029】[0029]

【発明の効果】本発明の被覆層は、高温腐食と熱応力が
相乗した環境化で使用されるガスタービン翼の耐久性向
上,長寿命化に大きく貢献する。特に、発電効率の高い
ガスタービンでは燃焼ガス温度が高くなり、その結果、
翼基材の温度を耐熱合金の耐熱温度にするため翼の冷却
が必須となる。したがって、翼の構造は中空の薄肉とな
り、高温腐食による基材の減肉が翼寿命を律速する。ま
た、このような構造の翼では、ガスタービンの起動・停
止に伴う熱応力が大きくなるが、本発明の被覆層は、A
23保護被膜による高温耐食性を保持しながら、Al
含有量の増加による合金被覆層の靭性低下がほとんどな
いため優れた耐熱応力特性を発揮する。本発明のガスタ
ービン翼を用いることにより、高効率発電用ガスタービ
ンシステムが可能となる。
The coating layer of the present invention greatly contributes to improving the durability and extending the life of a gas turbine blade used in an environment where high-temperature corrosion and thermal stress are synergistic. In particular, the combustion gas temperature increases in gas turbines with high power generation efficiency, and as a result,
In order to make the temperature of the blade base material the heat-resistant temperature of the heat-resistant alloy, cooling of the blade is essential. Therefore, the blade structure becomes hollow and thin, and the thinning of the base material due to high-temperature corrosion determines the blade life. Further, in the blade having such a structure, the thermal stress accompanying the start / stop of the gas turbine is increased.
While maintaining high temperature corrosion resistance by the l 2 O 3 protective coating,
Since the toughness of the alloy coating layer hardly decreases due to the increase in the content, it exhibits excellent thermal stress characteristics. By using the gas turbine blade of the present invention, a gas turbine system for high-efficiency power generation becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による被覆層の断面図。FIG. 1 is a sectional view of a coating layer according to the present invention.

【図2】高周波誘導熱プラズマ発生装置の説明図。FIG. 2 is an explanatory diagram of a high-frequency induction thermal plasma generator.

【図3】高温腐食試験装置の説明図。FIG. 3 is an explanatory view of a high-temperature corrosion test apparatus.

【図4】高温腐食と熱応力を相乗させた試験装置の説明
図。
FIG. 4 is an explanatory view of a test apparatus in which high-temperature corrosion and thermal stress are synergized.

【図5】本発明の合金被覆ガスタービン動翼の斜視図。FIG. 5 is a perspective view of the alloy-coated gas turbine blade of the present invention.

【図6】本発明の合金被覆ガスタービン静翼の斜視図。FIG. 6 is a perspective view of an alloy-coated gas turbine vane according to the present invention.

【符号の説明】[Explanation of symbols]

1…Al拡散層、2…合金被覆層、3…基材、4…Al
23層。
1 Al diffusion layer, 2 alloy coating layer, 3 base material, 4 Al
2 O 3 layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩野谷 三男 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (58)調査した分野(Int.Cl.7,DB名) C23C 8/10 C23C 10/50 C23C 16/06 C23C 30/00 F01D 5/28 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuo Haginoya 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) C23C 8/10 C23C 10/50 C23C 16/06 C23C 30/00 F01D 5/28

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐熱合金の基材の表面に高温耐食性及び耐
酸化性に富む被覆層を設けたガスタービン翼において、
前記被覆層はCo及びNiの少なくとも一つを主成分と
し、重量でCr10〜30%、Al5〜15%及びY
0.1〜1.5%を含む溶射層にAl拡散層が形成された
合金被覆層からなり、前記Al拡散層はAl15〜25
重量を有し、前記合金被覆層の上に熱プラズマ処理
よってAl23層を設けたことを特徴とする合金被覆ガ
スタービン翼。
A gas turbine blade provided with a coating layer rich in high-temperature corrosion resistance and oxidation resistance on the surface of a heat-resistant alloy substrate,
The coating layer contains at least one of Co and Ni as main components, and has a weight of Cr 10 to 30%, Al 5 to 15%, and Y
An alloy coating layer in which an Al diffusion layer is formed on a sprayed layer containing 0.1 to 1.5%, wherein the Al diffusion layer is
It has a weight%, the alloy-coated gas turbine blade, characterized in that a <br/> Thus the Al 2 O 3 layer to the thermal plasma treatment on the alloy coating layer.
【請求項2】耐熱合金の基材の表面に高温耐食性及び耐
酸化性に富む被覆層を設けたガスタービン翼の製造方法
において、 基材表面にCo及びNiの少なくとも一つを主成分と
し、重量でCr10〜30%、Al5〜15%及びY
0.1〜1.5%を含む合金の溶射層を形成する工程と、 該溶射層の上にAlを拡散浸透させ、Al15〜25重
量%を有するAl拡散層を形成する工程と、熱プラズマ処理 によってAl23層を形成する工程と
を含むことを特徴とする合金被覆ガスタービン翼の製造
方法。
2. A method of manufacturing a gas turbine blade comprising a heat-resistant alloy substrate provided with a coating layer having high temperature corrosion resistance and oxidation resistance on a surface of the substrate, wherein at least one of Co and Ni is provided as a main component on the substrate surface, Cr 10-30%, Al 5-15% and Y by weight
Forming a sprayed layer of an alloy containing 0.1 to 1.5%, a step of diffuse penetration of Al on the solution morphism layer, to form an Al diffusion layer having the Al15~25 wt%, the thermal plasma Forming an Al 2 O 3 layer by processing ;
A method for manufacturing an alloy-coated gas turbine blade, comprising:
【請求項3】圧縮機と、燃焼機と、タービンディスクに
ダブテイル部が固定された単段又は複数段のタービンブ
レードと、前記ブレードに対応して設けられたタービン
ノズルとを備えたガスタービンにおいて、前記タービン
ブレード及びノズルの少なくとも一方が請求項1に記載
の合金被覆ガスタービン翼からなることを特徴とするガ
スタービン。
3. A gas turbine comprising a compressor, a combustor, a single-stage or multiple-stage turbine blade having a dovetail portion fixed to a turbine disk, and a turbine nozzle provided corresponding to the blade. the turbine blades and at least one of characteristics and to Ruga <br/> turbines that consist of alloy coated gas turbine blade according to claim 1 of the nozzle.
【請求項4】(4) 前記合金被覆層は、Ta,Zr,CeのいThe alloy coating layer is made of Ta, Zr or Ce.
ずれか一つ若しくはその組み合わせを含む合金被覆層でWith an alloy coating containing one or a combination of
ある請求項1記載の合金被覆ガスタービン翼。The alloy-coated gas turbine blade of claim 1.
【請求項5】(5) 前記Al拡散層は10μm以下であり、前The Al diffusion layer is 10 μm or less,
記AlNote Al 2Two O 3Three 層は1〜5μmの範囲でThe layer is in the range of 1-5 μm ある請求項1記載のA certain claim 1
合金被覆ガスタービン翼。Alloy-coated gas turbine blades.
JP14546696A 1996-06-07 1996-06-07 Alloy-coated gas turbine blade and method of manufacturing the same Expired - Lifetime JP3255015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14546696A JP3255015B2 (en) 1996-06-07 1996-06-07 Alloy-coated gas turbine blade and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14546696A JP3255015B2 (en) 1996-06-07 1996-06-07 Alloy-coated gas turbine blade and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09324256A JPH09324256A (en) 1997-12-16
JP3255015B2 true JP3255015B2 (en) 2002-02-12

Family

ID=15385897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14546696A Expired - Lifetime JP3255015B2 (en) 1996-06-07 1996-06-07 Alloy-coated gas turbine blade and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3255015B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3976599B2 (en) 2002-03-27 2007-09-19 独立行政法人科学技術振興機構 Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
RU2347851C2 (en) * 2003-05-30 2009-02-27 Исикавадзима-Харима Хэви Индастриз Ко., Лтд. METHOD OF APPLICATION COATING FOR INHIBITION OF REACTIVITY OF SUPER-ALLOY ON Ni BASE
GB2429465A (en) * 2005-08-24 2007-02-28 Univ Northumbria Newcastle Aluminide coating for a substrate and a method for providing same.
JP2016176131A (en) * 2015-03-23 2016-10-06 三菱重工業株式会社 Coating layer repair method
JP6452204B2 (en) * 2016-11-09 2019-01-16 株式会社ディ・ビー・シー・システム研究所 Thermocouple and manufacturing method thereof, thermocouple manufacturing structure and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09324256A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
JP2949605B2 (en) Alloy-coated gas turbine blade and method of manufacturing the same
JP4607530B2 (en) Heat resistant member having a thermal barrier coating and gas turbine
US6273678B1 (en) Modified diffusion aluminide coating for internal surfaces of gas turbine components
US6283714B1 (en) Protection of internal and external surfaces of gas turbine airfoils
JP3474788B2 (en) Thermal insulation coating system and its manufacturing method
JP3302589B2 (en) Ceramic coated gas turbine blade
EP1995350B1 (en) High temperature component with thermal barrier coating
US6291084B1 (en) Nickel aluminide coating and coating systems formed therewith
US5538796A (en) Thermal barrier coating system having no bond coat
JP2007231422A (en) Coating process and coated article
JP7174811B2 (en) high temperature parts
JP4579383B2 (en) Method for removing dense ceramic thermal barrier coating from surface
JP2006161808A (en) Article protected by diffusion barrier layer and platinum group protective layer
JP3255015B2 (en) Alloy-coated gas turbine blade and method of manufacturing the same
JP4907072B2 (en) Selective area vapor phase aluminization method
US6630250B1 (en) Article having an iridium-aluminum protective coating, and its preparation
US6558813B2 (en) Article having a protective coating and an iridium-containing oxygen barrier layer
US6896488B2 (en) Bond coat process for thermal barrier coating
JP2934599B2 (en) High temperature corrosion resistant composite surface treatment method
JP2008002468A (en) Oxidation-resistant metal phosphate coating
EP1798303A2 (en) Method for depositing an aluminium-containing layer onto an article
US20030152799A1 (en) Nickel-base superalloy article substrate having aluminide coating thereon, and its fabrication
EP1215301B1 (en) Method for treating the bond coating of a component
JP3307242B2 (en) Ceramic coated heat resistant member, its use and gas turbine
JP2021123771A (en) Heat resistant alloy member, manufacturing method of the same, high temperature apparatus and manufacturing method of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term