JP3251927B2 - Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground - Google Patents

Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground

Info

Publication number
JP3251927B2
JP3251927B2 JP25435799A JP25435799A JP3251927B2 JP 3251927 B2 JP3251927 B2 JP 3251927B2 JP 25435799 A JP25435799 A JP 25435799A JP 25435799 A JP25435799 A JP 25435799A JP 3251927 B2 JP3251927 B2 JP 3251927B2
Authority
JP
Japan
Prior art keywords
water
ground
air
pipe
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25435799A
Other languages
Japanese (ja)
Other versions
JP2000345549A (en
Inventor
俊多 白石
Original Assignee
俊多 白石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊多 白石 filed Critical 俊多 白石
Priority to JP25435799A priority Critical patent/JP3251927B2/en
Publication of JP2000345549A publication Critical patent/JP2000345549A/en
Application granted granted Critical
Publication of JP3251927B2 publication Critical patent/JP3251927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地盤の地震時液状
化防止工法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing liquefaction of a ground during an earthquake.

【0002】[0002]

【従来の技術】地盤の液状化とは、地下水により飽和し
た粘着力が微弱であるかまたは、粘着力がないゆるい砂
質の地盤が地震により激しく揺すられた際に起きる特異
な現象である。砂をゆるく詰めた容器を激しく揺する
と、容器中の砂の粒子間空隙容積が縮小するために砂が
揺すり込まれて体積が減ることは、日常見られる現象で
ある。乾いたゆるい砂地盤が地震により激しく揺すられ
ると同様な現象が生じ、砂の空隙容積が縮小するために
地盤が沈下する。しかし、乾いたゆるい砂地盤が揺すら
れる場合には、多少の沈下が生じるほかに重大な被害を
及ぼすようなことは無い。
2. Description of the Related Art Soil liquefaction is a peculiar phenomenon that occurs when a loose sandy ground having little or no cohesion due to groundwater is violently shaken by an earthquake. It is a common phenomenon that, when a container loosely filled with sand is shaken violently, the volume of the interparticle void space of the sand in the container is reduced and the sand is shaken to reduce the volume. A similar phenomenon occurs when a dry, loose sand ground is shaken violently by an earthquake, causing the ground to sink due to the reduced void volume of the sand. However, if the dry loose sand ground is shaken, it will not cause any serious damage except for some settlement.

【0003】しかし、地下水により飽和した粘着力が微
弱であるかまたは粘着力がないゆるい砂質地盤が地震に
より激しく揺すられると、地盤内の空隙容積が縮小しよ
うとしても空隙容積には地下水が充満していて縮小し得
ず、空隙容積が縮小しようとする力によって空隙中の水
に異常に高い圧力の過剰間隙水圧が発生し、重力により
有効に作用していた粒子間の接触圧がほとんど零にな
り、土粒子が地下水中に浮遊しているような状態にな
る。地盤がこのような状態になることを液状化という。
液状化した地盤は流体の性質を帯び、外部から作用する
力に対する抵抗力を失い、地盤より比重が小さい軽い物
体は地中から浮き上がり、地盤より比重が大きい重い物
体は地盤中に沈み込む。液状化した地盤は、ほとんど平
坦に見える僅かに傾斜した傾斜面でも低い方へ徐々に流
動する。液状化した地盤そのものの流動圧は、構造物を
破壊するほど大きくない場合が多いが、流動する液状化
した地盤上の地下水面上の液状化していない固体地盤も
液状化した地盤とともに移動し、この移動する固体地盤
が構造物基礎に及ぼす膨大な圧力により構造物が倒壊す
ることがある。
[0003] However, when a loose sandy ground saturated with groundwater or weak in adhesiveness is shaken violently by an earthquake, even if the void volume in the ground is reduced, the void volume is filled with groundwater. The pore volume is reduced due to the force that reduces the pore volume, causing an excessively high excess pore water pressure in the water in the pores, and the contact pressure between the particles that was effectively acting due to gravity is almost zero. , And it becomes as if the soil particles are floating in the groundwater. This state of the ground is called liquefaction.
The liquefied ground takes on the properties of a fluid, loses its resistance to forces acting from the outside, light objects having a lower specific gravity than the ground float up from the ground, and heavy objects having a higher specific gravity than the ground sink into the ground. The liquefied ground gradually flows to the lower side even on a slightly inclined surface that looks almost flat. The fluid pressure of the liquefied ground itself is often not large enough to destroy the structure, but the unliquefied solid ground on the groundwater surface on the flowing liquefied ground also moves with the liquefied ground, The enormous pressure exerted by the moving solid ground on the structure foundation can cause the structure to collapse.

【0004】前記の液状化を起こしやすい土の条件とし
ては、相対密度75%以下、均等係数10以下、
50%粒径D50が0.074〜2.0mm、上載荷
重2kgf/cm2以下などが挙げられていたが、阪神淡路大
震災では、D50が2.0mm以上の砂礫地盤にも液状
化が発生した。
[0004] The conditions of the soil that is liable to cause liquefaction include:
A 50% particle size D50 of 0.074 to 2.0 mm and a load of 2 kgf / cm 2 or less were mentioned. However, in the Great Hanshin-Awaji Earthquake, liquefaction occurred on the gravel ground with a D50 of 2.0 mm or more. .

【0005】また、前記従来の液状化の対策としては、
地盤を液状化しないように改良する。液状化が発生
しても構造物に致命的な被害を生じないように構造物を
設計する方法が考えられている。
[0005] As a measure against the conventional liquefaction,
Improve the ground to prevent liquefaction. A method of designing a structure so that even if liquefaction occurs does not cause fatal damage to the structure has been considered.

【0006】前記の地盤の性質を改良することによる
液状化防止対策の中にも、A.密度の増大工法、B.固
結工法、C.置換工法(土質の改良)、D.飽和度の低
下工法等がある。
Among the measures for preventing liquefaction by improving the properties of the ground, A.I. B. density increasing method, Consolidation method, C.I. D. Replacement method (improvement of soil quality) There is a method of reducing the degree of saturation.

【0007】本発明は、地盤改良による液状化防止対策
のうち前記、D.飽和度の低下工法に属し、従来の飽和
度低下工法の欠点を改良するものである。
[0007] The present invention relates to the above-mentioned D.I. It belongs to a method for reducing the degree of saturation and improves the disadvantages of the conventional method for reducing the degree of saturation.

【0008】従来の飽和度低下工法には、ディープウェ
ル工法と排水トンネルによる地下水位低下工法が考えら
れたことがある。
As a conventional method for lowering the degree of saturation, a deep well method and a method for lowering the groundwater level by using a drainage tunnel have been considered.

【0009】ディープウェル工法は、ディープウェルに
より地下水を汲み上げて地下水位を低下させる工法であ
る。この工法では、地下水位の低下による地盤沈下の影
響が大きいので、都市地域では実施不可能であると考え
られる。
The deep well method is a method in which groundwater is pumped by a deepwell to lower the groundwater level. This method is considered to be impractical in urban areas because the impact of land subsidence due to a drop in groundwater level is significant.

【0010】排水トンネル工法は、地中深部に設置した
多孔質トンネルに地下水を流入させ、前記トンネルから
地下水を汲み上げて地下水位を低下させる工法である。
この工法でも、ディープウェル工法と同様に、地下水位
の低下による地盤沈下の影響が大きいので、都市地域で
は実施不可能であると考えられる。
The drainage tunnel method is a method in which groundwater flows into a porous tunnel installed deep underground, and groundwater is pumped from the tunnel to lower the groundwater level.
This method is also considered to be impractical in urban areas because the impact of ground subsidence due to a drop in groundwater level is significant, as is the case with the deep well method.

【0011】[0011]

【発明が解決しようとする課題】従来の液状化防止対策
としての飽和度(地下水位)低下工法では、地盤沈下が
生じ、構造物の沈下を考慮する必要があるなどの問題が
あった。本発明は前述の課題を解決したもので、地盤沈
下が生じることなく、空気溶存水を地中に浸透させるこ
とによる地盤の地震時液状化防止工法を提供することを
目的とする。ここで言う空気溶存水は、例えば図1に示
す曝気装置20aにより水道水20を噴霧状に空気中に
噴上処理して造成した空気を飽和状態もしくは過飽和状
態で溶存する水道水を言う。
The conventional method of lowering the degree of saturation (groundwater level) as a countermeasure against liquefaction has a problem that land subsidence occurs and that it is necessary to consider the subsidence of the structure. An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a method for preventing liquefaction of a ground during an earthquake by causing dissolved water to penetrate into the ground without causing land subsidence. The air-dissolved water referred to here is, for example, tap water in which the air created by spraying the tap water 20 into the air in a spray form by the aeration apparatus 20a shown in FIG. 1 is dissolved in a saturated state or a supersaturated state.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、本発明の請求項1に記載の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、粘着力が微弱な地盤中に超微細気泡を含む空気溶存
水を浸透させ続けることにより地盤中に微小気泡混入範
囲を造成するため、定常的な地下水流の上流端に、不透
気性の被覆で上面を覆った盲溝中に多孔管を設け、その
多孔管に超微細気泡を含む空気溶存水を流入させ、定常
的な地下水流の下流端に設けた盲溝中の多孔管に、地中
を浸透した微小気泡を含む空気溶存水を集水し、その集
水した水を最寄りの下水管または雨水渠に流下させるこ
とにより、ゼロメーター地域を囲む堤防または防潮壁基
礎地盤中の微小気泡混入範囲の地盤の地下水の飽和度を
地震時に液状化が発生しない程度まで低下させて液状化
を防止することを特徴とする。
In order to achieve the above object,
Therefore, the air-dissolved water according to claim 1 of the present invention permeates underground.
The liquefaction prevention method of the ground by the earthquake
Is air-dissolved air containing ultra-fine bubbles in the ground with weak adhesion
Continue to infiltrate water to prevent microbubbles from entering the ground
In order to create an enclosure, an impermeable
A perforated tube is provided in a blind groove covering the upper surface with a
Air-dissolved water containing ultra-fine bubbles flows into the perforated tube,
Underground water flow through the perforated pipe in the blind ditch at the downstream end.
Water that contains microbubbles that have penetrated
Do not allow water to flow down to the nearest drain or sewer.
And the embankment or seawall surrounding the zero meter area
Saturation of groundwater in the ground within the range of microbubbles in the foundation ground
Liquefaction by reducing to a level that does not cause liquefaction during an earthquake
It is characterized by preventing.

【0013】また、請求項2の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1の発明において、ミクロンサイズの超微細
気泡を空気溶存水中に発生させるために、セラミック等
のポーラスストーンのような超微細濾過層を備えた超微
細濾過装置を通じて圧縮空気を流入させることにより発
生する超微細気泡が混入する水を、送水手段により、現
存する定常的な地下水流の上流端に設けた上面を不透気
性の被覆で覆った盲溝中の多孔管中に流入させることを
特徴とする。
Further, in the method for preventing liquefaction of the ground during an earthquake by infiltrating air-dissolved water into the ground according to the second aspect of the present invention, the micro-sized ultrafine
In order to generate air bubbles in the dissolved water, ceramics etc.
Ultra-fine filter layer with ultra-fine filtration layer like porous stone
Generated by flowing compressed air through a fine filtration device
The water mixed with the generated ultrafine bubbles is
The upper surface provided at the upstream end of the existing steady groundwater flow is impervious
Flow into a perforated tube in a blind groove covered with a conductive coating.
Features.

【0014】また、請求項3の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1、2の発明において、空気を溶存する水道
水を地中に浸透させる場合、貯水槽の底面の高さが中等
海水面にほぼ一致する高さの貯水槽に水道水を溜め、前
記貯水槽に貯水した水を前記定常的な地下水流の上流
に設けた多孔管へ流入させる過程において、ポーラスス
トーンのような超微細濾過装置を通じて発生させた超微
細気泡が混入する水道水を、上流端に設けた盲溝中の多
孔管を通じて地中に浸透流入させることにより、地下水
中に微小気泡を発生させることを特徴とする。
According to the third aspect of the present invention, there is provided a method for preventing liquefaction of ground during an earthquake by infiltrating air-dissolved water into the ground.
When infiltrating water into the ground, the height of the bottom of the water tank is moderate
Store tap water in a water tank whose height is almost the same as the sea level.
The water stored in the reservoir is transferred to the upstream end of the steady groundwater flow.
In the process of flowing into the porous tube provided in the
Ultra-fine generated through ultra-fine filtration device such as tone
Tap water mixed with fine air bubbles in the blind groove provided at the upstream end
By infiltrating into the ground through borehole pipes, groundwater
It is characterized in that micro bubbles are generated therein.

【0015】また、請求項4の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1、2、3の発明において、空気を溶存する
水道水を地中に浸透させる場合、水道水を貯水槽に溜
め、前記貯水槽に貯水した水に超微細濾過装置を通じて
発生させた超微細気泡が混入する水を地下水流の上流端
に設けた盲溝中の多孔管を通じ地中に浸透させて、地盤
中に前記超微細気泡を核として発生する微小気泡混入範
囲の地下水の飽和度を地震時に地盤に液状化が発生しな
い程度まで低下させて液状化を防止することを特徴とす
る。
Further, in the method for preventing liquefaction of the ground during an earthquake by infiltrating the dissolved water of the air into the ground according to the fourth aspect , the air is dissolved in the inventions of the first, second and third aspects.
When penetrating tap water into the ground, store tap water in a water tank.
To the water stored in the water tank through an ultra-fine filtration device.
The water mixed with the generated ultrafine bubbles is transferred to the upstream end of the groundwater flow.
Through the perforated pipe in the blind groove provided in
Range of microbubbles mixed with the ultrafine bubbles as nuclei
The groundwater saturation of the surrounding ground should not be liquefied during the earthquake.
To prevent liquefaction by lowering
You.

【0016】また、請求項5の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1、2、3および4の発明において、空気を
溶存する水道水を地中に浸透させる場合、水道水を貯水
槽に溜め、前記貯水槽が満水になれば、盲溝中の多孔管
中に通水する貯水槽排水口の水栓が自動的に開き一定時
間、超微細濾過装置により発生させた超微細気泡を混入
する水道水を、地下水流の上流端に設けた盲溝中の多孔
管を通じ地中に浸透させて地盤中の微小気泡混入範囲の
地下水の飽和度を地震時に液状化が発生しない程度まで
低下させて液状化を防止することを特徴とする。
Further, in the method for preventing liquefaction of the ground during an earthquake by infiltrating the dissolved water of air into the ground according to claim 5, the invention according to claims 1, 2, 3 and 4,
When penetrating dissolved tap water into the ground, store the tap water.
When the reservoir is full, the perforated tube in the blind groove
When the water faucet at the water tank drain opening that opens inside automatically opens at a certain time
During operation, ultra-fine bubbles generated by ultra-fine filtration device are mixed
The tap water to be supplied to the hole in the blind groove provided at the upstream end of the groundwater flow.
To penetrate the ground through pipes
Groundwater saturation to the point where liquefaction does not occur during an earthquake
It is characterized by lowering to prevent liquefaction.

【0017】また、請求項6の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1、2、3、4および5に記載の発明におい
て、多孔管17に放水機能を有する制御弁を備えた立管
の基端部を接続し、その放水機能を有する制御弁91に
より、多孔管17内の水圧を多孔管17周囲の地下水圧
より高くならないようにすることを特徴とする。
Further, in the method for preventing liquefaction of the ground during an earthquake by infiltrating air-dissolved water into the ground according to claim 6, the invention according to claims 1, 2, 3, 4 and 5 is provided.
And a standing pipe provided with a control valve having a water discharge function in the perforated pipe 17
To the control valve 91 having a water discharging function.
The water pressure in the perforated pipe 17 is
It is characterized in that it does not become higher.

【0018】また、請求項7の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法において
は、請求項1、2、3、4、5および6に記載の発明に
おいて、多孔管に水を送水する時に、多孔管17内の水
圧を周囲の地下水圧に比べて過大になることを抑制する
ために、多孔管に接続する送水管に、給水量制御弁83
を備えた給水量制御装置を設けることを特徴とする。
Further, in the method for preventing liquefaction of the ground during an earthquake by infiltrating the dissolved water of air into the ground according to claim 7, the invention according to claims 1, 2 , 3, 4, 5 and 6 is applied.
When water is supplied to the perforated pipe 17, the water inside the perforated pipe 17
Prevent pressure from becoming too high compared to surrounding groundwater pressure
For this purpose, a water supply control valve 83
A water supply amount control device provided with a water supply amount is provided.

【0019】 本発明によると、粘着力が微弱な地盤中あ
るいは定常的な地下水流がある粘着力が微弱な地盤中
に、飽和または過飽和空気溶存水に超微細気泡を混入さ
せた水を浸透させることにより、地盤中に微小気泡混入
範囲を造成し、その微小気泡混入範囲内の地盤の地下水
の飽和度を地震時に液状化が発生しない程度まで低下さ
せて液状化を防止することができる。
[0019] According to the present invention, the adhesive strength is weak in the ground which the adhesive strength is weak soil during or steady groundwater flow, to penetrate the saturated or supersaturated air dissolved water was mixed ultrafine bubbles water Thus, a range in which microbubbles are mixed in the ground can be created, and the degree of saturation of groundwater in the ground within the range in which microbubbles are mixed can be reduced to a level at which liquefaction does not occur during an earthquake, thereby preventing liquefaction.

【0020】[0020]

〔本発明を適用する場所〕[Place where the present invention is applied]

本発明を適用する場所は、定常的に地下水流がある地盤
で、これはゼロメーター地域を囲う堤防とその基礎地
盤、防潮護岸シートパイル壁の基礎地盤または重力式護
岸壁の基礎地盤であり、例えば図1,図3の実施の形態
に示すように、主としてゼロメーター地域1(中等海水
面より低い地域)周囲の堤防2、防潮護岸壁3の基礎地
盤4であって、河海側5から堤防2または防潮護岸壁3
内に向かう定常的地下水流7がある場所である。ゼロメ
ーター地域1内における堤防2では、河海側5から堤内
側6へ向けて地盤中を浸透水8が定常的に流れている。
そして、堤内側法尻9に浸透水8をまとめて流下させポ
ンプ場に導く排水渠10が設けられていることを前提と
する。また、堤防斜面11は、不透水性被覆13等の法
面防護工12(木曽三川では不透水性被覆13)により
覆われていることが多い。ゼロメーター地域1内堤防2
が地震時に基礎地盤4または堤体14の液状化により破
堤すれば、河水15が堤内側6のゼロメーター地域1に
奔入氾濫しゼロメーター地域1に惨憺たる被害を及ぼす
おそれがある。
The place where the present invention is applied is a ground where there is a steady groundwater flow, which is a dike surrounding the zero meter area and its foundation ground, a foundation ground of a tide barrier sheet pile wall or a foundation ground of a gravity type revetment wall, For example, as shown in the embodiment of FIGS. 1 and 3, the embankment 2 around the zero meter area 1 (area lower than the middle sea level), the foundation ground 4 of the seawall 3 and the riverside 5 Embankment 2 or seawall 3
This is where there is a steady groundwater flow 7 going inward. In the embankment 2 in the zero meter area 1, the seepage water 8 constantly flows through the ground from the riverside 5 to the inside 6 of the embankment.
Then, it is assumed that there is provided a drainage channel 10 that collectively causes the permeated water 8 to flow down to the foreside 9 of the embankment and guides the water to the pump station. Further, the embankment slope 11 is often covered with a slope protection work 12 such as an impermeable covering 13 (an impermeable covering 13 in Kiso Mikawa). Zero meter area 1 Embankment 2
If an earthquake breaks due to liquefaction of the foundation ground 4 or the embankment body 14 during an earthquake, the river water 15 may flood into the zero meter area 1 inside the embankment 6 and cause disastrous damage to the zero meter area 1.

【0021】 本発明をゼロメーター地域1周囲の堤防2
に適用する場合を、図1に示す模式図に基づいて説明す
る。堤体14内の中段位置に貯水槽24が設置され、こ
の貯水槽24の設置レベルは、貯水槽24の底面の高さ
(ほぼ給水管55への排出口レベル)が中等海水面±
0.0mにほぼ一致する高さにされる。このようにする
と図2に示す給水制御弁83の作動により多孔管の内外
の水圧を均衡させるようにすることができる。また上流
端側の雑石積58外端の盲溝16内に、例えば細粗適宜
に混合した砕石からなるフィルタ材16aが充填され、
これに多孔管17を埋め込むように配設され、その多孔
管17内には、多孔管17の内径よりも小さな外径の送
気管27の出口が同心状に配置され、前記送気管27の
出口に、多孔管17の内径よりも小さな外径の超微細濾
過装置56の入口が接続されると共に、前記超微細濾過
装置56は前記送気管27に同心状に支持された状態で
配置され、前記超微細濾過装置56の他端側の出口は多
孔管17に開放されている。前記貯水槽24の下部排出
口と、盲溝16内に配置された多孔管17の中間部に開
口する入口とは、送水管55により接続され、コンプレ
ッサー等の圧縮空気供給装置57により供給される圧縮
空気28は、前記圧縮空気供給装置57および超微細濾
過装置56に接続された送気管27を介して、セラミッ
クス等の超微細濾過層56aを備えた超微細濾過装置5
6の入口に送気され、その超微細濾過装置56の出口は
前記多孔管17の中間部に開口する前記送水管55の出
口付近において多孔管17内に同心状に配設されてい
る。
[0021] The present invention zero meter area 1 around the embankment 2
The case where the present invention is applied will be described based on the schematic diagram shown in FIG. A water storage tank 24 is installed at a middle position in the embankment 14, and the installation level of the water storage tank 24 is such that the height of the bottom surface of the water storage tank 24 (substantially the level of the outlet to the water supply pipe 55) is equal to the medium sea level ±.
The height is almost equal to 0.0 m. In this way, the water pressure inside and outside the perforated pipe can be balanced by the operation of the water supply control valve 83 shown in FIG. In addition, the filter material 16a made of crushed stones, for example, finely and coarsely mixed, is filled in the blind groove 16 at the outer end of the stone pile 58 on the upstream end side,
The perforated pipe 17 is disposed so as to be embedded therein. In the perforated pipe 17, an outlet of an air supply pipe 27 having an outer diameter smaller than the inner diameter of the perforated pipe 17 is concentrically arranged. The inlet of the ultrafine filtration device 56 having an outer diameter smaller than the inner diameter of the perforated tube 17 is connected thereto, and the ultrafine filtration device 56 is disposed concentrically supported by the air supply pipe 27, The outlet at the other end of the ultrafine filtration device 56 is open to the porous tube 17. The lower outlet of the water storage tank 24 and the inlet opening at an intermediate portion of the perforated pipe 17 arranged in the blind groove 16 are connected by a water pipe 55 and supplied by a compressed air supply device 57 such as a compressor. The compressed air 28 is passed through the compressed air supply device 57 and the air supply pipe 27 connected to the ultrafine filtration device 56, and the ultrafine filtration device 5 having the ultrafine filtration layer 56a made of ceramics or the like.
The outlet of the ultrafine filtration device 56 is concentrically disposed in the perforated pipe 17 near the outlet of the water pipe 55 which is opened at an intermediate portion of the perforated pipe 17.

【0022】 前記圧縮空気送気管27によって送気され
た圧縮空気を、前記超微細濾過装置56に通過させるこ
とにより、図1(b)に示すように、ミクロンサイズの
超微細気泡eを発生させて、前記送水管55から送水さ
れてくる水と混合されて超微細気泡を含む空気溶存水が
生成され、その超微細気泡を含む空気溶存水が樹脂製の
多孔管17から下方に向けて放出され、その放出された
超微細気泡を含む空気溶存水が盲溝16内の細粗適宜に
混合した砕石からなるフィルタ材16aを介して雑石積
58または海底地盤59を通過して浸透経路26または
地下水流7と共に、超微細気泡を含む空気溶存水を堤体
14および砂質土等からなる基礎地盤4に流入浸透させ
続けると、空気溶存水から水圧低下にともない超微細気
泡を含む空気溶存水中の超微細気泡を核とする溶存空気
の溶出による微小気泡が形成され、遮断壁25間の堤体
14および基礎地盤4に微小気泡が成生されつづけるの
で、その部分の地下水の飽和度を低下させていき、した
がって、堤体14内および基礎地盤14の地下水の飽和
度を低下させることができる。前記のような貯水槽2
4,送水管55,圧縮空気供給装置57,多孔管17等
の設備は、例えば堤体2の長手方向に、50m〜100
m間隔で適宜設置するのが好ましい。超微細気泡eが下
流端の多孔管17aに到達するまで数十日以上空気溶存
水中に混入し続ければ浸透水中に十分な数量の微小気泡
が形勢されるので、その後引き続き超微細気泡eを生成
混入させる必要はない。通常一つの貯水槽24から一本
の多孔管17に給水するようになる。給水槽24の設置
間隔は、堤防の規模、本件発明を実施する設備以外の堤
防に付属する水門等の設備、堤体14および基礎地盤の
土質などにより、決められるようになるが、通常、堤体
14の長手方向には、50mないし100mの間隔をお
いて設置するようにするのが好ましい。貯水槽24は前
記実施形態の設置間隔により決まる多孔管17一本の長
さの中央付近に置き、一つの貯水槽24から一本の多孔
管17に給水するようにする。なお、送気管27および
その先端部に配設される超微細濾過装置56は多孔管1
7内に送水管55が取付く送水出口の付近に設けるよう
にするのがよい。
The compressed air supplied by the compressed air supply pipe 27 is passed through the ultrafine filtration device 56 to generate micron-sized ultrafine bubbles e as shown in FIG. 1B. As a result, air-dissolved water containing ultra-fine bubbles is generated by being mixed with the water sent from the water-supply pipe 55, and the air-dissolved water containing the ultra-fine bubbles is discharged downward from the porous tube 17 made of resin. Then, the air-dissolved water containing the released ultrafine bubbles passes through the masonry pile 58 or the submarine ground 59 through the filter material 16a made of crushed stone finely and appropriately mixed in the blind groove 16, and the permeation path 26 or When the air-dissolved water containing ultra-fine bubbles together with the groundwater flow 7 continues to flow into and penetrate into the foundation ground 4 composed of the embankment body 14 and sandy soil, etc., the air-dissolved water containing ultra-fine bubbles from the air-dissolved water decreases with the water pressure. The microbubbles formed by the elution of the dissolved air with the ultrafine bubbles in the nuclei are formed, and the microbubbles continue to be generated in the embankment 14 between the barrier walls 25 and the foundation ground 4, so that the degree of saturation of the groundwater in that portion is reduced. As a result, the degree of saturation of the groundwater in the embankment body 14 and the foundation ground 14 can be reduced. Water tank 2 as described above
4, the equipment such as the water pipe 55, the compressed air supply device 57, and the perforated pipe 17 is, for example, 50 m to 100 m in the longitudinal direction of the embankment 2.
It is preferable to set them appropriately at m intervals. If the ultra-fine bubbles e continue to be mixed in the air-dissolved water for several tens of days until they reach the downstream end perforated pipe 17a, a sufficient number of micro-bubbles will be formed in the permeated water. There is no need to mix them. Usually, water is supplied from one water storage tank 24 to one porous tube 17. The installation interval of the water supply tank 24 is determined by the scale of the embankment, equipment such as a water gate attached to the embankment other than the equipment for carrying out the present invention, the soil quality of the embankment body 14 and the foundation ground. Preferably, the body 14 is installed at an interval of 50 m to 100 m in the longitudinal direction. The water storage tank 24 is placed near the center of the length of one perforated pipe 17 determined by the installation interval in the embodiment, and water is supplied from one water storage tank 24 to one perforated pipe 17. In addition, the air supply pipe 27 and the ultra-fine filtration device 56 provided at the tip thereof are
It is preferable to provide it in the vicinity of a water supply outlet to which the water supply pipe 55 is attached.

【0023】 堤内側の遮断壁25の下部を通過した浸透
水は、前述のように下流側である堤内側の法尻9の堤内
側に隣接設置される盲溝16aに集水され多孔管17a
を通じて流下させ排水渠10から排出される。この実施
形態の場合には、貯水槽24に供給される水は水道水2
0を使用する形態を示している。このように水道水20
を使用する場合には、これを貯水槽24に溜めて間欠的
に送水管55に排出するようにして、多孔管17に適当
な圧力を有する水を供給する。
The permeated water that has passed through the lower part of the cut-off wall 25 on the inner side of the levee is collected in the blind groove 16a located adjacent to the inner side of the levee 9 on the downstream side of the levee 9 as described above, and is perforated by the perforated pipe 17a.
And drained from the culvert 10. In the case of this embodiment, the water supplied to the water storage tank 24 is tap water 2
This shows a mode using 0. Thus tap water 20
When water is used, water having an appropriate pressure is supplied to the perforated pipe 17 by storing it in the water storage tank 24 and discharging it intermittently to the water supply pipe 55.

【0024】 前述のように、図1(a),(b)に示す
ような設備により空気溶存水を堤体14内および砂質土
等からなる基礎地盤4内に流入浸透させ、地下水の飽和
度を地震時地盤の液状化が生じない程度まで低下させれ
ば、堤防2の機能を損じることなしに地震時における堤
防2およびその基礎地盤4の液状化を防ぐことができ、
そのため、堤体14および基礎地盤4の液状化に起因す
る破堤を未然に防止することができる。
[0024] As described above, FIG. 1 (a), the air dissolved water is flowed penetrate into the foundation ground 4 consisting of the dam body 14 and sandy soil or the like by equipment such as (b), the saturation of the ground water If the degree is reduced to a level that does not cause liquefaction of the ground during an earthquake, liquefaction of the levee 2 and its foundation ground 4 during an earthquake can be prevented without impairing the function of the levee 2,
Therefore, it is possible to prevent a breach due to liquefaction of the bank body 14 and the foundation ground 4 beforehand.

【0025】 次に図2の左側部分を参照しながら、多孔
管17内の水圧を多孔管17外の水圧より高くならない
ように制御するための水圧制御装置93を説明する。前
述のゼロメーター地域は臨海都市内の感潮河川および海
域に接しており、外部水面15aは干満により上下する
ので、多孔管17外の盲溝16内の地下水圧は昇降す
る。また一方において、多孔管17内の水圧も貯水槽2
4内の水位の上下に応じて昇降する。理想的には、多孔
管17内外の水圧が均衡し、多孔管17から流れ出す水
道水20から製造された空気溶存水の浸透流が河水15
等の外部水へ無駄に流出することなく、水道水20から
製造された空気溶存水の浸透流の全量が堤防14とその
基礎地盤中を堤内地6へ向いて流れるようにするのが好
ましい。このために、図2の左部分に示すように、立管
92の基端側入口を多孔管17に接続し、立管92の上
端部を河川15の上方に開放させ、多孔管17から立ち
上がる立管90内の水位が外部水面15aより高くなれ
ば開口して立管92内の水位が外部水面15aに等しく
なるまで立管92の中間部に設けた制御弁91の排出口
95から放水し、立管92内の水位が外部水面15aよ
り低い場合には、制御弁91を締めて外部水15bが立
管92内へ流入しないようにする制御弁91を備えた立
管92を設けて、多孔管17内の水圧を多孔管17周囲
の地下水圧より高くならないようにしてある。このよう
に制御弁91を備えた立管92を設けた場合には、多孔
管17内の水圧が多孔管17周囲の地下水圧より低い場
合には、多孔管17から盲溝16aへの水道水の流出は
停止し、外部水15bが盲溝16aを通じて多孔管17
へ逆流する。しかし、この逆流する外部水15bは盲溝
16を通ってくる間に盲溝中の砕石フィルタ材16aに
より濾過されている。外部水(河川15)が盲溝16を
通じて多孔管17へ逆流する間に盲溝16中の砕石フィ
ルタ材16aは外部水に含まれるシルトによって目詰ま
りが生じるが、多孔管17内の水圧が多孔管17周囲の
地下水圧より再び高くなれば、この目詰まりは多孔管1
7から流出する水道水20から製造された空気溶存水に
より洗浄される。
[0025] Next, with reference to the left-hand portion of FIG. 2, illustrating the hydraulic control device 93 for controlling the water pressure in the porous tube 17 so as not to become higher than the pressure outside the perforated pipe 17. Since the above-mentioned zero meter area is in contact with the tidal river and the sea area in the seaside city, and the external water surface 15a rises and falls due to ebb and flow, the groundwater pressure in the blind groove 16 outside the perforated pipe 17 rises and falls. On the other hand, the water pressure in the perforated pipe 17 is
It rises and falls according to the water level in 4 above and below. Ideally, the water pressure inside and outside the perforated pipe 17 is balanced, and the permeate flow of the dissolved air produced from the tap water 20 flowing out of the perforated pipe 17 is changed to the river water 15.
It is preferable that the entire amount of the permeated flow of the dissolved air produced from the tap water 20 flow toward the embankment 14 and the ground inside the embankment 6 without wastefully flowing into the external water such as. To this end, as shown in the left part of FIG. 2, the base end of the standpipe 92 is connected to the perforated pipe 17, the upper end of the standpipe 92 is opened above the river 15, and rises from the perforated pipe 17. When the water level in the vertical pipe 90 becomes higher than the external water surface 15a, the water is discharged from the discharge port 95 of the control valve 91 provided in the intermediate portion of the vertical pipe 92 until the water level in the vertical pipe 92 becomes equal to the external water level 15a. When the water level in the vertical pipe 92 is lower than the external water surface 15a, a vertical pipe 92 having a control valve 91 for closing the control valve 91 to prevent the external water 15b from flowing into the vertical pipe 92 is provided. The water pressure in the perforated pipe 17 is not to be higher than the underground water pressure around the perforated pipe 17. When the standing pipe 92 provided with the control valve 91 is provided as described above, when the water pressure in the perforated pipe 17 is lower than the underground water pressure around the perforated pipe 17, the tap water from the perforated pipe 17 to the blind groove 16a is not used. The outflow of water stops and the external water 15b flows through the perforated pipe 17 through the blind groove 16a.
Backflow to However, the external water 15b flowing backward is filtered by the crushed stone filter material 16a in the blind groove while passing through the blind groove 16. While the external water (river 15) flows backward to the perforated pipe 17 through the blind groove 16, the crushed stone filter material 16a in the blind groove 16 is clogged by silt contained in the external water. If the pressure of the groundwater around the pipe 17 becomes higher again, this clogging may occur.
It is washed with the dissolved water produced from the tap water 20 flowing out of the tank 7.

【0026】 さらに図2の左側部分を参照しながら水圧
制御装置93の構造を詳細に説明する。多孔管17に接
続する立管92の基端側は水平に配置され、立管92の
基端側中間部に排出口95を有する制御弁91とこれに
間隔をおいて分岐管96の基端側入口が接続され、その
分岐管96の先端部は立管92の水平部分と並行に配置
され、その分岐管96の先端部出口には、横向きに伸縮
自在な密閉式アコーディオン型ベローズ97に基端側入
口が接続され、そのベローズ97は前記分岐管96に横
向きに固定された中空筒状の制御筒98内に間隙を介し
て同心状に配置され、前記制御筒98の上部には、盲溝
16を貫通して突出し河水内に上端出口が開放された外
部水圧導入用縦管99の基端側入口が接続されていると
共に制御筒98の下部には、左右方向に延長するように
ガイド用スリットが設けられ、弁開閉操作用アーム10
0はそのガイド用スリットにガイドされて回動される。
前記伸縮自在なベローズ97の先端部外側には、ブラケ
ット101の基端部が固定され、そのブラケット101
の先端部と制御弁91における弁開閉操作用アーム10
0の縦スリット付き先端部とは、その縦スリット内に配
置された横軸102により枢着されている。前記多孔管
17に接続する立管92と排出口95を有する制御弁9
1と分岐管96とベローズ97と外部水圧導入用縦管9
9と制御筒98等により水圧制御装置93が構成されて
いる。この水圧制御装置93は立管92内の水位が外部
水圧導入用縦管99内の水圧(河水15の水位15a)
より高いときには、前記ベローズ97が伸長して、制御
弁開閉操作用アーム100を開弁方向(時計方向)に回
動して、制御弁91により排出口95が開き排出口95
から放水し、また立管92内の水位が外部水圧導入用縦
管99内の水圧(河水15の水位15a)より低いとき
には、前記ベローズ97が短縮して、制御弁開閉操作用
アーム88を閉弁方向(反時計方向)に回動して、制御
弁91により排出口95を閉じるように構成されてい
る。なお、制御弁開閉操作用アーム100の回動を確実
にするために、フィルタ材16a内の水圧と制御装置内
水圧とが相互に干渉しないように適宜囲み壁(図示を省
略した)を設ける。
Furthermore the structure of the hydraulic control device 93 will be described in detail with reference to the left portion of FIG. The base end of the standpipe 92 connected to the perforated pipe 17 is disposed horizontally, and a control valve 91 having a discharge port 95 at a base end intermediate portion of the standpipe 92 and a base end of a branch pipe 96 spaced apart therefrom. A side inlet is connected, and the tip of the branch pipe 96 is arranged in parallel with the horizontal portion of the standing pipe 92, and the outlet of the tip of the branch pipe 96 is provided with a closed accordion-type bellows 97 that can expand and contract horizontally. An end-side inlet is connected, and the bellows 97 is concentrically disposed with a gap in a hollow cylindrical control cylinder 98 fixed laterally to the branch pipe 96. A proximal end inlet of an external water pressure introducing vertical pipe 99 projecting through the groove 16 and having an upper end outlet opened in the river water is connected, and a lower portion of the control cylinder 98 is guided so as to extend in the left-right direction. And a valve opening / closing operation arm 10
0 is guided and rotated by the guide slit.
A base end of a bracket 101 is fixed to the outer side of the front end of the telescopic bellows 97.
Opening / closing operation arm 10 at the tip of the valve and control valve 91
The zero-slit end portion is pivotally connected by a horizontal axis 102 arranged in the vertical slit. Control valve 9 having a standing pipe 92 connected to the perforated pipe 17 and a discharge port 95
1, branch pipe 96, bellows 97, and vertical pipe 9 for introducing external water pressure
9 and a control cylinder 98 constitute a water pressure control device 93. The water pressure control device 93 is configured such that the water level in the vertical pipe 92 is equal to the water pressure in the vertical pipe 99 for introducing external water pressure (the water level 15a of the river water 15).
When it is higher, the bellows 97 is extended and the control valve opening / closing operation arm 100 is rotated in the valve opening direction (clockwise), and the discharge port 95 is opened by the control valve 91 and the discharge port 95 is opened.
When the water level in the vertical pipe 92 is lower than the water pressure in the vertical pipe 99 for introducing external water pressure (the water level 15a of the river water 15), the bellows 97 is shortened, and the control valve opening / closing arm 88 is closed. The control valve 91 rotates the valve 95 in the valve direction (counterclockwise) to close the discharge port 95. In order to ensure the rotation of the control valve opening / closing operation arm 100, an appropriate surrounding wall (not shown) is provided so that the water pressure in the filter material 16a and the water pressure in the control device do not interfere with each other.

【0027】 多孔管17内の水圧も貯水槽24内の水位
の上下に応じて昇降する。この多孔管17内の水圧上昇
量が過大になると制御弁91を備えた立管92を設ける
だけでは対応しきれなくなるので、多孔管17内の水圧
上昇量が過大になることを抑制するために、貯水槽24
から多孔管17に給水する送水管55が多孔管17に接
続する直前に次のような給水量を抑制する給水量抑制制
御装置90を設置する。この制御装置90は、送水管5
5から分岐する分岐管55aと外部水に接続する外部水
圧導入用縦管86とが取り付く制御筒85内に、送水管
55から分岐する分岐管55aに接続するアコーディオ
ン形ベローズ84が設けられ、給水圧が高すぎてアコー
ディオン形ベローズ84が伸びると、同ベローズ頂点
(先端部)にヒンジ接合する弁開閉操作用アーム88が
回動して給水制御弁83を絞り、給水を減少する。給水
が減少され給水圧が低下するとベローズ84が縮まり給
水制御弁83を開けて給水を増加する。
The water pressure in the porous tube 17 also moves up and down in accordance with the upper and lower water level in the water tank 24. If the amount of increase in water pressure in the perforated pipe 17 becomes excessive, it is not possible to cope with the problem by merely providing the standing pipe 92 provided with the control valve 91. Therefore, in order to prevent the amount of increase in water pressure in the perforated pipe 17 from being excessive. , Water tank 24
Immediately before the water supply pipe 55 that supplies water to the perforated pipe 17 is connected to the perforated pipe 17, a water supply suppression control device 90 that suppresses the following water supply is installed. The control device 90 controls the water pipe 5
An accordion-type bellows 84 connected to the branch pipe 55a branched from the water supply pipe 55 is provided in a control cylinder 85 in which a branch pipe 55a branched from the water supply pipe 5 and an external water pressure introduction vertical pipe 86 connected to external water are attached. If the water pressure is too high and the accordion-type bellows 84 extends, the valve opening / closing operation arm 88 hinged to the apex (tip) of the bellows pivots to turn the water supply control valve 83 and reduce water supply. When the water supply is reduced and the water supply pressure is reduced, the bellows 84 contracts and the water supply control valve 83 is opened to increase the water supply.

【0028】 次に図2の右側部分を参照しながら、さら
に送水管55側に設けられた給水量抑制制御装置90の
構造について詳細に説明する。盲溝16内において水平
に配設された送水管55の中間部に給水制御弁83が設
けられると共に、前記給水制御弁83の上流側におい
て、送水管55から分岐する分岐管55aの基端側入口
が接続され、その分岐管55aの先端部は送水管55の
水平部分と並行に配置され、その分岐管55aの先端部
出口には、横向きに伸縮自在な密閉式アコーディオン型
ベローズ84の基端側入口が接続され、そのベローズ8
4は前記分岐管55aに横向きに固定された中空筒状の
制御筒85内に間隙を介して同心状に配置され、前記制
御筒85の上部には、盲溝16を貫通して外部河水内に
上端出口が開放された外部水圧導入用縦管86の基端側
入口が接続されていると共に制御筒85の下部には、左
右方向に延長するようにガイド用スリットが設けられ、
給水制御弁開閉操作用アーム88はそのガイド用スリッ
トにガイドされて回動される。前記伸縮自在なベローズ
84の先端部外側には、ブラケット87の基端部が固定
され、そのブラケット87の先端部と給水制御弁83に
おける給水制御弁開閉操作用アーム88の縦スリット付
き先端部とは、その縦スリット内に配置された横軸89
により枢着されている。前記給水制御弁83と分岐管5
5aとベローズ84と制御筒85と外部水圧導入用縦管
86等により給水量制御装置90が構成されている。こ
の給水量制御装置90は給水管(送水管)55内の給水
圧(送水圧)が外部水圧導入用縦管86内の水圧より高
いときには、前記ベローズ84が伸長して、給水制御弁
開閉操作用アーム88を閉弁方向(反時計方向)に回動
して、給水制御弁83を絞り、また給水管(送水管)5
5内の給水圧(送水圧)が外部水圧導入用縦管86内の
水圧より低いときには、前記ベローズ84が短縮して、
給水制御弁開閉操作用アーム88を開弁方向(時計方
向)に回動して、給水制御弁83を開くように構成され
ている。なお、給水制御弁開閉操作用アーム88の回動
を確実にするために、フィルタ材16a内の水圧と制御
装置内水圧とが相互に干渉しないように適宜囲み壁(図
示を省略した)を設ける。
[0028] Next, with reference to the right-hand portion of FIG. 2 will be described in further detail the structure of the water supply amount control controller 90 provided in the water pipe 55 side. A water supply control valve 83 is provided at an intermediate portion of the water supply pipe 55 disposed horizontally in the blind groove 16, and a base end of a branch pipe 55 a branched from the water supply pipe 55 on the upstream side of the water supply control valve 83. The inlet is connected, and the distal end of the branch pipe 55a is arranged in parallel with the horizontal portion of the water supply pipe 55. The proximal end of the hermetic accordion type bellows 84 that can expand and contract horizontally is provided at the distal end of the branch pipe 55a. Side inlet is connected and its bellows 8
4 is concentrically disposed with a gap in a hollow cylindrical control cylinder 85 fixed laterally to the branch pipe 55a. The proximal end of the external water pressure introduction vertical pipe 86 having an open upper end outlet is connected to the lower end of the control cylinder 85, and a guide slit is provided so as to extend in the left-right direction.
The water supply control valve opening / closing operation arm 88 is rotated by being guided by the guide slit. A base end of a bracket 87 is fixed to the outside of the distal end of the extendable bellows 84. The distal end of the bracket 87 and the distal end of the water supply control valve 83 with a vertical slit of the water supply control valve opening / closing operation arm 88. Is a horizontal axis 89 arranged in the vertical slit.
It is pivoted by The water supply control valve 83 and the branch pipe 5
The water supply amount control device 90 includes the 5a, the bellows 84, the control cylinder 85, the external water pressure introduction vertical pipe 86, and the like. When the water supply pressure (water supply pressure) in the water supply pipe (water supply pipe) 55 is higher than the water pressure in the vertical pipe 86 for introducing external water pressure, the bellows 84 extends to open and close the water supply control valve. The arm 88 is rotated in the valve closing direction (counterclockwise) to throttle the water supply control valve 83 and to change the water supply pipe (water supply pipe) 5.
When the water supply pressure (water supply pressure) in 5 is lower than the water pressure in the external water pressure introduction vertical pipe 86, the bellows 84 is shortened,
The water supply control valve opening / closing operation arm 88 is rotated in the valve opening direction (clockwise) to open the water supply control valve 83. In order to ensure the rotation of the water supply control valve opening / closing operation arm 88, a surrounding wall (not shown) is provided as appropriate so that the water pressure in the filter material 16a and the water pressure in the control device do not interfere with each other. .

【0029】 〔水道水の出方〕 外部水位15aは潮汐により一日に通常2回上下する。
多孔管17周囲の盲溝16内の地下水圧は、潮汐変化よ
り数秒遅れて増減する。水槽24内の水位は、最高位か
ら最低位にへ減るまで数日かかる。多孔管17内の水圧
は、潮位が低下過程にある間には制御弁91が開弁し排
出口95から放水するので、多孔管周囲の盲溝16内地
下水圧より数秒早く低下するために、盲溝16内地下水
が多孔管17内へ流入する。潮位上昇過程では、制御弁
91が絞られて多孔管17内の水圧は多孔管周囲の盲溝
16内地下水圧より数秒早く上昇するので、多孔管17
内の水が盲溝16中へ流出する。しかし多孔管17内水
圧は常に外部水圧を過剰に越えない程度を保ちながら増
減する。
[How to Tap Water] The external water level 15a normally rises and falls twice a day due to tide.
The groundwater pressure in the blind groove 16 around the perforated pipe 17 increases and decreases several seconds later than the tide change. It takes several days for the water level in the aquarium 24 to decrease from the highest to the lowest. Since the control valve 91 opens and discharges water from the discharge port 95 while the tide level is in the process of lowering, the water pressure in the perforated pipe 17 drops several seconds earlier than the groundwater pressure in the blind groove 16 around the perforated pipe. The groundwater in the blind groove 16 flows into the perforated pipe 17. During the tide rising process, the control valve 91 is throttled, and the water pressure in the perforated pipe 17 rises several seconds earlier than the groundwater pressure in the blind groove 16 around the perforated pipe.
The water inside flows out into the blind groove 16. However, the internal water pressure of the perforated pipe 17 increases and decreases while always keeping the external water pressure in an excessive degree.

【0030】 〔地中に浸透させる水の事前処理〕 次に本発明の液状化防止工法において使用する超微細気
泡を含む空気溶存水を製造するための事前処理について
説明する。セラミックス等の超微細濾過装置中に圧縮空
気を通過させて発生させたミクロンサイズの超微細気泡
を水と一緒に上流端の盲溝16内の樹脂製の多孔管17
に注入し続ければ、超微細気泡が上方へ浮力により浮き
上がろうとする力より基礎地盤4内の下流方向への浸透
水流による動水圧の方が格段に大きいので超微細気泡は
上方へは浮き上がらず下流方向へ横移動するので、堤体
14表面に気密な被覆を必要としない。この方法による
時は、毎日1千m3以上の水道水を必要とすることが多
い。したがって、工業用水道水が容易に得られる場所で
は料金が安い工業用水道水を曝気処理して常時適量づつ
供給する設備を設けるのが望ましい。
[ Pretreatment of Water Permeated into the Ground] Next, a pretreatment for producing air-dissolved water containing ultrafine bubbles used in the liquefaction prevention method of the present invention will be described. Micron-sized ultra-fine bubbles generated by passing compressed air through an ultra-fine filtration device for ceramics or the like are combined with water to form a resin porous tube 17 in a blind groove 16 at the upstream end.
If the micro-bubbles continue to be injected, the hydrodynamic pressure due to the infiltration water flow in the downstream direction in the foundation ground 4 is much larger than the force of the micro-bubbles trying to float upward by buoyancy, so the micro-bubbles will rise upward. Since it moves laterally in the downstream direction, airtight covering is not required on the surface of the bank body 14. This method often requires more than 1,000 m 3 of tap water every day. Therefore, in a place where industrial tap water can be easily obtained, it is desirable to provide a facility for aerating and supplying an appropriate amount of industrial tap water at a low rate.

【0031】 〔地中に浸透させた水の事後処理〕 図1に示す下流端側の排水管10aの途中において、図
11および図12に示すように、下流側(堤内側)多孔
管17aに排水管10bにより接続し上方へ直立する溢
流立管103をマンホール104内に設け、溢流立管1
03より溢流した排水は排水管10aにより最寄りの下
水渠または雨水渠10へ排水する。上流側多孔管17よ
り空気溶存水を地盤中へ浸透させ始めた時から地盤土の
透水試験結果に基づく透水理論計算により下流側多孔管
17aに空気溶存水の前端が到達したと考えられる期間
が経過した時の前後毎週一回ていどの割合で溢流立管1
03内の水の資料を採取し、微小気泡の発生を目測する
かまたは理学試験法により溶存空気濃度を測定する。こ
のようにして微小気泡の存在または溶存空気濃度が飽和
度以上に達したことを観測することにより空気溶存水の
前端が下流側多孔管17aに到達したことを確認する。
空気溶存水の前端が下流側多孔管17aに到達した後
は、空気溶存水の浸透経路全長にわたり地震時地盤液状
化防止効果を十分に発揮できる数量の微小気泡が発生し
ているので、微小気泡発生を促進するために放出した超
微細気泡発生用の圧縮空気発生装置の運転を停止し、圧
縮空気発生装置の長期間に及ぶ運転を継続するのに要す
る維持管理費および運転用動力費の節約を図ることがで
きる。空気溶存水が浸透する地盤中に酸化第二鉄等溶存
空気中の酸素を化学反応により奪い去る成分がある場合
には、酸素欠乏空気を溶存する水が下流側多孔管17a
に到達し溢流立管103内の水中より酸素欠乏空気がマ
ンホール104内に発生し酸素欠乏事故の原因になるお
それがある。酸素欠乏空気が発生するか否かを予知する
ことが不可能な場合には、酸素濃度計105をマンホー
ル104内に取り付け、酸素濃度計105が酸素欠乏空
気を検知したときには酸素濃度計105と電気的に連動
する換気扇106が自動的に作動して酸素濃度が平常値
に回復するまでマンホール104内を換気することによ
り、酸素欠乏事故発生を未然に防止する設備を用意す
る。ただし、空気溶存水の浸透経路の地盤中に酸化第二
鉄等溶存空気中の酸素を化学反応により奪い去る成分が
無いことが事前に確認されている場合には、酸素濃度計
105および換気扇106は不要である。都市域内を流
下する河水は濁度が高く、河川に面する堤体および河底
地盤は浸透水中のシルト分により目詰まりし透水係数が
低下している。例えば、目詰まりしていない砂の透水係
数k=5×10-2cm/secの場合、目詰まりした砂
の透水係数k´はk´=5×10-3cm/secていど
に低下していると考えられる。落差h=2m,浸透距離
l=70mの場合、浸透速度v=kh/l=0.005×2
/70=1.4286×10-4cm/sec=0.1234m/da
yであるので、浸透水流の前端が下流端の多孔管17a
に到達するに要する時間は、l÷v=70÷0.1234=
567day=1年6か月19日という長時日を要する計算に
なる。透水理論計算による空気溶存浸透水流の前端が下
流端の多孔管17aに到達するに要する時間はこのよう
に長いうえに、浸透係数の設定誤差もあるので所要日数
には数日ないし数週間の誤差がある。故に、計算上の期
間終了後、溢流立管103内の水の試料を採取しその溶
存空気濃度を測定することにを毎週1回ていどの割合で
行うわけである。
[ Post-Treatment of Water Infiltrated into the Ground] In the middle of the downstream end drainage pipe 10a shown in FIG. 1, as shown in FIG. 11 and FIG. An overflow stand 103 connected by the drain pipe 10b and standing upright is provided in the manhole 104, and the overflow stand 1
The drain water overflowing from 03 is drained to the nearest sewer or rain sewer 10 by the drain pipe 10a. From the time when the air-dissolved water starts to penetrate into the ground through the upstream-side perforated pipe 17, there is a period during which the front end of the air-dissolved water reaches the downstream-side perforated pipe 17a by the permeation theoretical calculation based on the permeation test result of the ground soil. Once every week before and after the passage of time
Samples of water in 03 are collected, and the generation of microbubbles is visually measured or the dissolved air concentration is measured by a physical test method. By observing the presence of the microbubbles or the fact that the dissolved air concentration has reached the saturation level or more, it is confirmed that the front end of the dissolved air water has reached the downstream side porous tube 17a.
After the front end of the air-dissolved water reaches the downstream-side porous pipe 17a, a sufficient number of microbubbles are generated over the entire length of the permeation path of the air-dissolved water to prevent the ground liquefaction during an earthquake. Saving the maintenance and operating costs required to stop the operation of the compressed air generator for generating ultra-fine bubbles released to promote the generation and continue the long-term operation of the compressed air generator Can be achieved. If there is a component such as ferric oxide that removes oxygen in the dissolved air by a chemical reaction in the ground into which the air-dissolved water penetrates, the water that dissolves the oxygen-deficient air flows into the downstream porous tube 17a.
And the oxygen-deficient air is generated in the manhole 104 from the water in the overflow standing pipe 103 and may cause an oxygen-deficiency accident. If it is not possible to predict whether or not oxygen-deficient air will be generated, an oximeter 105 is mounted in the manhole 104, and when the oximeter 105 detects oxygen-deficient air, the oximeter 105 and the oximeter 105 are electrically connected. The ventilation fan 106 automatically operates to automatically ventilate the inside of the manhole 104 until the oxygen concentration recovers to a normal value, thereby preparing equipment for preventing the occurrence of an oxygen deficiency accident. However, if it is previously confirmed that there is no component that removes oxygen in the dissolved air such as ferric oxide by a chemical reaction in the ground of the permeation path of the dissolved air, the oxygen concentration meter 105 and the ventilation fan 106 Is unnecessary. River water flowing down the urban area has high turbidity, and the embankment facing the river and the riverbed ground are clogged by silt in the seepage water and the permeability is reduced. For example, in the case where the water permeability k of the unplugged sand is k = 5 × 10 −2 cm / sec, the water permeability k ′ of the clogged sand decreases to k ′ = 5 × 10 −3 cm / sec. It is thought that it is. When the head h is 2 m and the permeation distance 1 is 70 m, the permeation speed v = kh / l = 0.005 × 2
/70=1.4286×10 -4 cm / sec = 0.1234 m / da
y, the front end of the permeate flow is the downstream end of the perforated pipe 17a.
Is the time required to reach l = v = 70 ÷ 0.1234 =
567day = It takes a long time of 1 year, 6 months and 19 days. The time required for the front end of the air-dissolved permeated water flow to reach the downstream end perforated pipe 17a based on the theoretical theory of permeation is long as described above. There is. Therefore, after the end of the calculation period, a sample of water in the overflow riser 103 and measurement of its dissolved air concentration are performed once a week at any rate.

【0032】 地中に浸透させる水にゴミやシルト分を含
む河水ではなく、水道水20を用いる装置として、例え
ば図5に示すように、水洗便器に水を流し込む仕掛けに
似た装置を内蔵した貯水槽24に水道水20を溜め、貯
水槽24に水道水20が所要量貯水されたならば排水弁
40が自動的に開き、貯水槽24内の水を盲溝16内の
多孔管17を通じて地盤中に浸透させることができる。
貯水槽24内の水が排出されて多孔管17を通じて地盤
中に浸透し、貯水槽24がほぼ空になると、排水弁40
が自動的に閉じ、常時適当量ずつ水道水20が貯水槽2
4内に注水し続けているので、貯水槽24内の水面が所
定のレベルになると排水弁40が自動的に開き同様な操
作を繰り返すようになる。貯水槽24の大きさは水道水
20が地中を浸透する速度にもよるが、水道水20は間
欠的に数日間流れては、数日間止まる仕掛けとする。こ
のような本発明の装置は、セラミックス、強化プラステ
ィックス等耐久性が優れた材料により構成し、数十年ま
たは百数十年間ほとんど整備しないでも作動するような
簡単で、耐久的な構造であるので、ほとんどメンテナン
スを必要としない。ただし、本発明の工法を適用する堤
防、防潮壁等は、公共資産であるので、関係河川を管理
する公共団体の管理下に置かれ、圧縮空気供給装置57
等の維持管理などに最小限の管理業務が行われることが
予想される。
As a device using tap water 20 instead of river water containing garbage and silt in the water to be penetrated into the ground, for example, as shown in FIG. 5, a device similar to a device for pouring water into a flush toilet is built in. The tap water 20 is stored in the water tank 24, and when the required amount of the tap water 20 is stored in the water tank 24, the drain valve 40 is automatically opened, and the water in the water tank 24 is passed through the perforated pipe 17 in the blind groove 16. It can penetrate into the ground.
When the water in the water storage tank 24 is discharged and penetrates into the ground through the perforated pipe 17 and the water storage tank 24 is almost empty, the drain valve 40
Automatically closes and the tap water 20 is always filled in an appropriate amount
4, the drain valve 40 is automatically opened and the same operation is repeated when the water level in the water storage tank 24 reaches a predetermined level. The size of the water storage tank 24 depends on the speed at which the tap water 20 permeates the ground, but the tap water 20 flows intermittently for several days and stops for several days. Such a device of the present invention is made of a highly durable material such as ceramics and reinforced plastics, and has a simple and durable structure that can be operated with little maintenance for decades or hundreds of decades. It requires little maintenance. However, since the embankment, seawall, and the like to which the method of the present invention is applied are public assets, they are placed under the control of a public organization that manages the related river, and the compressed air supply device 57 is used.
It is expected that a minimum amount of management work will be performed for maintenance and the like.

【0033】 次に前記の水道水20を間欠的に排水の為
の開弁・閉弁動作をする装置を装備した貯水槽24の一
形態について、その詳細構造および作用について図5,
図6〜図9を参照しながら説明する。貯水槽24におけ
る縦壁24aの上部内側に、水道管39の一端側の横管
部分およびこれに接続する給水縦管39aが配設され、
前記給水縦管39aの下部が下方に向かって開口してい
る。
[0033] The next one form of the water storage tank 24 to the tap water 20 equipped with a device for the opening-closing operation for intermittently draining, 5 for the detailed structure and operation,
This will be described with reference to FIGS. A horizontal pipe portion on one end side of the water pipe 39 and a water supply vertical pipe 39a connected thereto are provided inside the upper portion of the vertical wall 24a in the water storage tank 24,
The lower part of the water supply vertical pipe 39a opens downward.

【0034】 また前記貯水槽内24の底板24bには排
水口48を備えた排水縦管48aが設けられ、その排水
縦管48aの中間部に、溢水排出管48cの下部出口4
8dが接続され、前記溢水排出管48cの上端開口部4
8bは貯水槽24内において排水縦管48aおよびフロ
ート49の上昇した位置におけるレベルよりも高レベル
にかつ給水縦管39aの下端出口よりも若干低レベルに
設定されている。前記排水縦管48aの上端開口部(弁
座)には、支持アーム47aを有するフロートバルブ4
7の本体が係合され、そのフロートバブル47における
前記支持アーム47aの基端部は、前記排水縦管48a
の下部に横軸47bにより枢着されて、前記フロートバ
ルブ47は前記横軸47bを中心として、開弁方向およ
び閉弁方向に回動自在に構成されている。前記フロート
バルブ47の上端部に鎖50等の連結条体の一端部が接
続され、その連結条体50の他端部はフロート49の下
部に連結されている。前記フロートバブル47の内部に
は、空気溜まり47cが設けられており、前記フロート
バルブ47が前記前記排水縦管48aの上端開口部(弁
座)に着座しているときには、水圧がフロートバブル4
7の浮力よりも大きくなっているので、前記フロートバ
ルブ47は閉弁状態に作用している。しかし、前記フロ
ート49が水面51より下に没水する前のレベルにおけ
る前記フロート49の浮力は、高レベル位置の場合の水
面51におけるフロートバルブ47に作用する水圧より
も大きく設定されている。
Further said bottom plate 24b in the water tank 24 is provided drainage vertical pipe 48a having a drain outlet 48, an intermediate portion of the drainage vertical pipe 48a, the lower outlet 4 of the overflow discharge pipe 48c
8d is connected to the upper opening 4 of the overflow pipe 48c.
8b is set to a higher level than the level at the position where the drainage vertical pipe 48a and the float 49 are raised in the water storage tank 24 and a level slightly lower than the lower end outlet of the water supply vertical pipe 39a. A float valve 4 having a support arm 47a is provided at an upper end opening (valve seat) of the drainage vertical pipe 48a.
7 is engaged, and the base end of the support arm 47a in the float bubble 47 is connected to the drain vertical pipe 48a.
The float valve 47 is configured to be rotatable in a valve opening direction and a valve closing direction about the horizontal shaft 47b. One end of a connecting strip such as a chain 50 is connected to the upper end of the float valve 47, and the other end of the connecting strip 50 is connected to the lower part of the float 49. An air reservoir 47c is provided inside the float bubble 47, and when the float valve 47 is seated at the upper end opening (valve seat) of the drain vertical pipe 48a, the water pressure is reduced.
Since the buoyancy is larger than that of No. 7, the float valve 47 operates in a closed state. However, the buoyancy of the float 49 at a level before the float 49 is submerged below the water surface 51 is set to be higher than the water pressure acting on the float valve 47 on the water surface 51 at the high level position.

【0035】 次に図5に示す前記貯水槽24に水道水2
0が少量づつ給水される場合の貯水および排水動作につ
いて説明する。図6の状態は、水道管39から水道水2
0が貯水槽24内に注水している状態を示したものであ
って、水面51が上昇中である。水面51の上昇ととも
にフロート49も上昇する。なお、排水弁40は閉じて
いる。図7は、フロート49が水面51とともに上昇す
ると、貯水槽24が水道水20によって満水になると同
時に、フロート49とフロートバルブ47を接続してい
る鎖50がフロート49によって引っ張られてフロート
バルブ47が上昇し、排水弁40が開かれ貯水槽24内
の水道水20が排水口48を通して流下する。フロート
バルブ47は、その内部が空気溜まりになっており、水
の浮力作用によって貯水槽24内の水道水20中に浮き
排水口48が開いた状態を保っている。
[0035] Next tap water 2 to the reservoir 24 shown in FIG. 5
The operation of storing and draining water when 0 is supplied little by little will be described. The state of FIG.
0 indicates a state where water is being injected into the water storage tank 24, and the water surface 51 is rising. As the water surface 51 rises, the float 49 also rises. Note that the drain valve 40 is closed. FIG. 7 shows that when the float 49 rises with the water surface 51, the water tank 24 is filled with the tap water 20, and at the same time, the chain 50 connecting the float 49 and the float valve 47 is pulled by the float 49 so that the float valve 47 is pulled up. As a result, the drain valve 40 is opened, and the tap water 20 in the water storage tank 24 flows down through the drain port 48. The float valve 47 has an air reservoir inside, and floats in the tap water 20 in the water storage tank 24 by the buoyancy of the water, and keeps a state in which the drain port 48 is open.

【0036】 図8の状態は、貯水槽24内の水道水20
が排水され始めて、フロート49が水面51とともに下
降し始め、また、水道水20の給水量よりも排水弁40
からの排水量が大きいので、フロート49が下降し始め
た状態である。図9に示される状態は、貯水槽24内の
水面51が下降し、フロートバルブ47に水の浮力が作
用しなくなり、フロートバルブ47が下降し、排水弁4
0が閉じた状態を示している。そして水道管39を通し
て水道水20が貯水槽24内に貯えられる。なお、図9
にはフロート49は図示しないがフロートバルブ40の
左に倒れこんでいる。この装置を用いることにより、人
力、電力を用いることなく、水道水を間欠的に地中に浸
透させることができる。
FIG . 8 shows the state of the tap water 20 in the water storage tank 24.
Begins to drain, the float 49 starts to descend together with the water surface 51, and the drain valve 40
Since the amount of drainage from the container 49 is large, the float 49 has begun to descend. In the state shown in FIG. 9, the water surface 51 in the water storage tank 24 goes down, the buoyancy of water does not act on the float valve 47, the float valve 47 goes down, and the drain valve 4
0 indicates a closed state. Then, tap water 20 is stored in the water tank 24 through the water pipe 39. Note that FIG.
Although the float 49 is not shown in FIG. By using this device, tap water can be intermittently penetrated into the ground without using human power or electric power.

【0037】 東京の下町や濃尾平野などのゼロメーター
地域1内の河川堤防2、防潮堤、防潮護岸壁3の基礎地
盤4中には、水位が高い河海側5から地面が低い堤内側
6に向けて定常的な浸透水8が流入している。定常的な
地下水流7が存在する地盤中に特願平09−19520
4号により出願中の地震時液状化防止工法により圧縮空
気を吹き込む方法によって一時的に空気混入範囲を造成
しても、空気混入範囲内の微小気泡内の空気が地下水流
中に徐々に溶解し去ることにより飽和度は徐々に上昇
し、最終的には地震時における地盤液状化防止の効果を
失う。
In the basement ground 4 of the river embankment 2, seawall, seawall 3 in the zero meter area 1 such as the downtown area of Tokyo or the Nobi plain, etc. The steady permeated water 8 is flowing toward 6. In the ground where a steady groundwater flow 7 exists, Japanese Patent Application No. 09-19520
Even if the air entrapment range is temporarily created by the method of blowing compressed air by the liquefaction prevention method of the patent application No. 4, the air in the microbubbles within the air entrapment range gradually dissolves in the groundwater flow. By leaving, the degree of saturation gradually increases and eventually loses the effect of preventing ground liquefaction during an earthquake.

【0038】 最近の研究によると都市部を貫流する河川
の水には溶解度が飽和に近い空気を溶存し、堤防2内を
浸透していく間に気泡が発生し、その気泡が堤内側6の
遮水壁25に沿う上昇浸透水流31によるボイリングを
助成激化している。このボイリングにより、堤体14か
ら多量の土砂が排出されるため堤体14内に空洞が生
じ、堤体14の劣化を招く原因になる。
[0038] Recent studies in water river flowing through the urban dissolved air close to the solubility saturation, bubbles are generated while continue to penetrate the embankment 2, the bubbles of the bank inner 6 Boiling by the ascending water flow 31 along the impermeable wall 25 is further intensified. Due to this boiling, a large amount of earth and sand is discharged from the embankment body 14, so that a cavity is formed in the embankment body 14, which causes deterioration of the embankment body 14.

【0039】 図1(a)に模式的に示すように、堤防2
の下流側の堤内側法尻9に流下してきた気泡を含む浸透
水流を適当な粒度分布のフィルタ材を詰めた盲溝16a
に集水し、盲溝16a中に敷設した多孔管17aを通じ
て下水道または雨水渠などの排水渠10に排水すれば、
上昇浸透流31を減勢させるので、これに起因するボイ
リングによる堤体14の劣化を防ぐことが出来る。堤防
2の堤内側6付近に適当な下水道または雨水渠などの排
水渠10がないかまたはそれら排水渠10が十分に深く
ない場合には、堤体14の堤内側6に排水用の十分に深
い排水渠10を別に設置する必要がある。
As schematically shown in FIG . 1A, the embankment 2
The infiltration water flow containing air bubbles flowing down to the inner side of the bank 9 on the downstream side of the river is filled with a blind groove 16a filled with a filter material having an appropriate particle size distribution.
And drained to a sewer 10 such as a sewer or storm sewer through a perforated pipe 17a laid in a blind groove 16a.
Since the ascending flow 31 is deenergized, it is possible to prevent the bank body 14 from deteriorating due to boiling caused by the flow. If there is no appropriate sewer or culvert 10 near the inner side 6 of the embankment 2 or if the drainage 10 is not sufficiently deep, the inner side 6 of the embankment 14 is sufficiently deep for drainage. The culvert 10 needs to be installed separately.

【0040】 図1に示すように、曝気処理して空気を飽
和または過飽和状態で溶存する水道水20を貯水槽24
に溜めて間欠的に地中に浸透させれば、水道水20中に
は、十分な溶存空気があるので、流入端から流出端に至
る間に水圧が低下する過程において、水道水20中の溶
存空気が溶出して気泡を形成するものと考えられる。し
かしこのように水道水20中に飽和または過飽和状態の
溶存空気がある場合でも、浸透経路26上に気泡発生の
核となるような微粒子がないと気泡は形成されない。図
1に示す圧縮空気送気管27の吹き出し端では圧縮空気
28がセラミックス等の超微細フィルタ材を通じて超微
細気泡となって吹き出され、この超微細気泡が気泡形成
の核となる。浸透経路26上に溶出した空気は、微小気
泡の形で地下水中に分布し、空気溶存水が絶えず補給さ
れるので、浸透水中を空気が占める容積と浸透水容積と
の比すなわち飽和度は低下することがあっても、向上す
ることはない。そして、地盤土の粒度分布、N値等にも
よるが飽和度が85%以下に半永久的に保たれれば、地
盤の地震時液状化を防止できるものと考えられる。
As shown in FIG . 1, tap water 20 dissolved in an air-saturated or supersaturated state by aeration is stored in a water storage tank 24.
If water is accumulated in the water intermittently and penetrated into the ground, there is sufficient dissolved air in the tap water 20, and in the process of decreasing the water pressure from the inflow end to the outflow end, the tap water 20 It is considered that dissolved air elutes to form bubbles. However, even if there is a saturated or supersaturated dissolved air in the tap water 20 as described above, no bubbles are formed unless fine particles serving as nuclei for bubble generation exist on the permeation path 26. At the outlet end of the compressed air supply pipe 27 shown in FIG. 1, compressed air 28 is blown out as ultrafine bubbles through an ultrafine filter material such as ceramics, and these ultrafine bubbles serve as nuclei for bubble formation. The air eluted on the infiltration path 26 is distributed in the groundwater in the form of microbubbles, and the dissolved water is constantly replenished. Therefore, the ratio of the volume occupied by the air in the infiltrated water to the infiltrated water volume, that is, the degree of saturation decreases. If you do, it will not improve. Then, depending on the particle size distribution and N value of the ground soil, it is considered that if the saturation is maintained semipermanently at 85% or less, liquefaction of the ground during an earthquake can be prevented.

【0041】 以上に述べたような堤防2の地震時液状化
防止法と同様な方法により、図3に示すように、空気を
飽和または過飽和状態で溶存する水道水20を防潮護岸
壁3の基礎地盤4中に浸透させることにより、地盤中の
地下水の飽和度を低位に保ち、防潮護岸壁3の基礎地盤
4の地震による液状化を防止できるものと考えられる。
ゼロメーター地域1周囲の防潮護岸壁3の場合の問題
は、堤内側6に壁面に沿って上昇浸透水流31が生じる
と、その上昇浸透水流31によりボイリングが起きて河
海側地盤32から土砂が排出され防潮護岸壁3の基礎地
盤4を劣化させるおそれがある。
As shown in FIG. 3, tap water 20 which is saturated or supersaturated with air is dissolved by the same method as the levee 2 liquefaction prevention method as described above. It is considered that by infiltrating into the ground 4, the saturation of groundwater in the ground can be kept at a low level, and the liquefaction of the foundation ground 4 of the seawall 3 due to the earthquake can be prevented.
The problem with the seawall 3 around the zero meter area 1 is that when the rising seepage water flow 31 occurs along the wall surface inside the embankment 6, the rising seepage water flow 31 causes a boil to cause sediment from the riverside ground 32. There is a possibility that the base ground 4 of the seawall 3 is discharged and deteriorated.

【0042】 このボイリングによる基礎地盤4の劣化を
防ぐには、堤防2の場合の堤内端遮水壁25に対して設
置したものと同様な適当な粒度分布のフィルタ材16a
を盲溝16中に詰め、そのフィルタ材16aを詰めた盲
溝16中に浸透水流を集水し、図3に示すように盲溝1
6中に敷設した多孔管17aを通じて下水道または雨水
渠などの排水渠10に排水すれば、ボイリングによる基
礎地盤4の劣化を防ぐことができると考えられる。
In order to prevent the deterioration of the foundation ground 4 due to the boiling, the filter material 16a having an appropriate particle size distribution similar to that installed on the inner wall 25 of the embankment in the case of the embankment 2 is used.
Is filled in the blind groove 16, and the permeated water flow is collected in the blind groove 16 filled with the filter material 16a, and as shown in FIG.
It is considered that the deterioration of the foundation ground 4 due to boiling can be prevented by draining the water to the drainage 10 such as a sewer or a rain sewer through the perforated pipe 17a laid in the inside.

【0043】 図3に示すような防潮護岸壁3の場合に
も、図1に示したように、河水15ではなく水道水20
を地中に間欠的に浸透させる方法がよい。図3に示す方
法でも、地中に浸透させる水には、圧縮空気をセラミッ
クス等の超微細フィルタ中を通過させて発生させた超微
細気泡を混入させておく必要があることは、図1に示し
た工法の場合と同様である。
In the case of the seawall 3 as shown in FIG . 3, as shown in FIG .
It is good to intermittently penetrate into the ground. In the method shown in FIG. 3 as well, it is necessary to mix ultra-fine bubbles generated by passing compressed air through an ultra-fine filter such as ceramics into water to be penetrated into the ground. It is the same as the case of the construction method shown.

【0044】 図4に示すような重力式護岸壁33の最大
の欠点は、地震時に基礎捨石34を支持する置換砂35
が液状化しやすいことにある。このような型式の護岸壁
に対する液状化防止法は、まず図4に模式的に示すよう
に、弁の切替えによって、圧縮空気供給源に接続されて
おり、かつ流体(空気)の送気または排気の切替え可能
な送排気管36を重力式護岸壁33下の置換砂35中に
配置して、置換砂35中に微小気泡からなる空気混入範
囲を造成すると同時に、ケーソン37の背面地盤38に
も前記送排気管36と同様な装置を使用して空気を吹き
込み、地盤土の粒度分布、N値等にもよるが地下水の飽
和度が85%以下の空気混入範囲を造成しておき、河海
側5の送排気管36(複数の弁の切り替えにより空気吹
き込み管にも排気管または集気管にもなる管)から空気
を飽和または過飽和状態で溶存する水道水20を定常的
または間欠的に流入させる方法が考えられる。前記の空
気混入範囲を造成した後に、空気を溶存する水道水を置
換砂35中に浸透させる理由は、予め微小気泡を置換砂
35中に形成させておいても、空気を十分に溶存してい
ない水が外部水域から置換砂35中に浸透流通すると気
泡中の空気が浸透流中に溶け去り飽和度が上昇して地震
時地盤液状化防止効果を失うためである。また、空気を
飽和または過飽和状態で溶存する水道水を地中に流入さ
せる送排気管36は、図4における河水15側の最左端
にある外部水(河水15)中を立ち上がる多数の送排気
管36からなる送排気管列を通じて自然流入させる。こ
の場合の空気を溶存する水を自然流入させるために、河
水15側の最左端にある送排気管36内の水面は、送排
気管36内と外部水との間を図2に示す制御弁91が付
いた管により連結し、送排気管36内の水位が外部水の
水面15aより上昇しないようにする。図4に示すよう
な重力式岸壁がゼロメーター地域の周囲にある場合に
は、外部水から岸壁基礎地盤を通じる自然的な地下水流
があるので、空気を十分に溶存する水を自然流入させる
と自然的な地下水流と同じような空気を溶存する水の浸
透流が生じるので、予備的に行う圧縮空気を地中に吹き
込む場合と異なり強制的な送水を行う必要がない。
The biggest disadvantage of the gravity type revetment wall 33 as shown in FIG . 4 is that the replacement sand 35 which supports the foundation rubble 34 during an earthquake.
Is easily liquefied. A liquefaction prevention method for a revetment wall of this type is, as schematically shown in FIG. 4, first connected to a compressed air supply source by switching a valve and supplying or discharging a fluid (air). A switchable air supply / exhaust pipe 36 is disposed in the displacement sand 35 below the gravity type revetment wall 33 to create an air entrapment range composed of microbubbles in the displacement sand 35, and at the same time, to the rear ground 38 of the caisson 37. Air is blown in using the same device as the air supply / exhaust pipe 36 to create an air entrapment range in which the degree of saturation of groundwater is 85% or less, depending on the particle size distribution of ground soil, N value, etc. The tap water 20 which dissolves air in a saturated or supersaturated state is constantly or intermittently introduced from the air supply / exhaust pipe 36 on the side 5 (a pipe which becomes an air blowing pipe or an exhaust pipe or a collecting pipe by switching a plurality of valves). There is a way to do this. The reason why the tap water that dissolves the air is permeated into the displacement sand 35 after the creation of the air mixing range is that the air is sufficiently dissolved even if fine bubbles are formed in the displacement sand 35 in advance. If no water permeates and circulates from the external water area into the displacement sand 35, the air in the bubbles is dissolved into the permeation flow, the saturation increases, and the effect of preventing ground liquefaction during an earthquake is lost. A supply / exhaust pipe 36 for flowing tap water dissolved in a saturated or supersaturated state into the ground is provided with a large number of supply / exhaust pipes which rise in external water (river water 15) at the leftmost end on the river water 15 side in FIG. The air is allowed to flow naturally through a row of air supply / exhaust pipes composed of 36. In this case, in order to allow the water that dissolves the air to flow in naturally, the water surface in the air supply / exhaust pipe 36 at the leftmost end on the river water 15 side is a control valve shown in FIG. The pipes 91 are connected to each other to prevent the water level in the air supply / exhaust pipe 36 from rising above the water surface 15a of the external water. When a gravity type quay as shown in FIG. 4 is located around the zero meter area, there is a natural groundwater flow from the external water through the quay foundation ground. Since a permeation flow of water that dissolves air is generated in the same manner as a natural groundwater flow, there is no need to perform forced water supply unlike the case where compressed air is blown into the ground to perform preliminary.

【0045】 図4に示す方法では、すでに水道水流通経
路上には十分な数量の微小気泡が生成されているので、
地中に浸透させる水には圧縮空気をセラミックス等の超
微細フィルタ中を通過させて発生させた超微細気泡を混
入させておく必要はない。図4に示す送気側の送気管3
6と排気側の排気管36としては、それぞれ別体の管と
して構成してもよいが、図4に示す送排気管36として
使用できると共に送排水管としても使用できる一実施形
態を図10に示す例に基づいて説明する。図10に示す
具体例では、送気弁60を有し送気装置に接続する送気
管61と、排気弁62を有し排気装置に接続する排気管
63とを合流させてなる送排気管36を、空気吹き込み
管64兼用集気管65としている。また、送排気管36
の先端部は前記送排気管36内に送水弁66を有し高圧
水送水装置に接続する送水管67を導いて両管で内外2
重管とし、送水管67を地盤掘進用の刃部68と噴射水
環形ノズル69機構を有する第1管体70に接続し、さ
らに、送排気管36を前記第1管体70に非連通的に連
設してあり、かつ送排気用ストレーナ71を有する第2
管体72にネジ結合部73で接続した構成としている。
In the method shown in FIG . 4, since a sufficient number of microbubbles have already been generated on the tap water distribution channel,
There is no need to mix ultrafine bubbles generated by passing compressed air through an ultrafine filter such as ceramics into the water that penetrates into the ground. Air supply pipe 3 on the air supply side shown in FIG.
The exhaust pipe 36 on the exhaust side and the exhaust pipe 36 may be configured as separate pipes. FIG. 10 shows an embodiment that can be used as the air supply / exhaust pipe 36 shown in FIG. Explanation will be made based on the example shown. In the specific example shown in FIG. 10, an air supply / exhaust pipe 36 formed by joining an air supply pipe 61 having an air supply valve 60 and connected to an air supply apparatus and an exhaust pipe 63 having an exhaust valve 62 and connecting to the exhaust apparatus. Are used as the air blowing pipe 64 and the air collecting pipe 65. Further, the air supply / exhaust pipe 36
Has a water supply valve 66 in the water supply / exhaust pipe 36, and guides a water supply pipe 67 connected to a high-pressure water supply apparatus, so that both pipes 2
A heavy pipe, a water pipe 67 is connected to a first pipe body 70 having a blade portion 68 for excavating the ground and a water ring-shaped nozzle 69 mechanism, and further, the water supply / exhaust pipe 36 is not communicated with the first pipe body 70. And a second air supply / exhaust strainer 71
It is configured to be connected to the tube body 72 by a screw connection portion 73.

【0046】 また、前記管体70には、前記噴射水環形
ノズル69とは別に噴射水環形ノズル69から地中に噴
出した水を取り込む集水孔74が設けられている。前記
噴射水環形ノズル69は、環状に噴射水を噴射すべく第
1管体70の内側に間隙を有して保持されたほぼ円錐形
のブロック75で構成され、かつ、前記第1管体70の
上端部には、集水孔74からの水圧で開口するリングバ
ルブ76が設けられている。リングバルブ76は、その
自重または引下げバネ(図示省略)により環形溝に嵌合
閉鎖しているが、集水孔74からの水圧で作動開口し、
集水孔74から進入した水を上方に排出する。図10に
示す装置により空気溶存水を使用する場合には、前記空
気吹き込み管64兼用送排気管65を送水用に使用し、
送排気用ストレーナ71を送水用に使用するようにすれ
ばよい。
Further , the pipe 70 is provided with a water collecting hole 74 for taking in water jetted into the ground from the water ring nozzle 69 separately from the water ring nozzle 69. The water ring-shaped nozzle 69 is composed of a substantially conical block 75 held with a gap inside the first tube 70 so as to spray water in a ring shape. A ring valve 76 that is opened by water pressure from the water collecting hole 74 is provided at the upper end of the ring valve 76. The ring valve 76 is fitted and closed in the annular groove by its own weight or a pull-down spring (not shown), but is opened by the water pressure from the water collecting hole 74.
The water that has entered through the water collecting hole 74 is discharged upward. When using the air-dissolved water by the apparatus shown in FIG. 10, the air blowing pipe 64 and the combined use air supply / exhaust pipe 65 are used for water supply,
What is necessary is just to use the air-supply / exhaust strainer 71 for water-supply.

【0047】 以上、図1、図3および図4に示したよう
な装置は、水道水を使用する形態であるので、河川15
の水を使用する場合に比べて、シルト分を除去するため
のフィルタ材にシルト分が溜まって目詰まりしたならば
洗浄して目詰まりを除く等の維持管理をする必要がない
ので、維持管理が非常に簡便になる。
As described above, since the apparatus shown in FIGS. 1, 3 and 4 uses tap water, the river 15
Compared to the case where water is used, there is no need to perform maintenance such as cleaning and removing clogging if silt accumulates in the filter material for removing silt and clogging occurs. Becomes very simple.

【0048】 なお、本発明を実施する場合、図1(a)
に示すように、曝気装置20a内に水道水20が有する
水圧または水道水水圧が低い場合には、ポンプ等により
水圧を高めて、曝気装置20a内において噴霧状に噴上
処理して造成した空気を飽和状態もしくは過飽和状態で
溶存する水道水20にして、この水道水20を水道管
(または供給管)39により貯水槽24に供給するよう
にする。
When implementing the present invention, FIG.
As shown in the figure, when the water pressure of the tap water 20 or the tap water pressure in the aeration apparatus 20a is low, the water pressure is increased by a pump or the like, and the air formed by spraying and spraying in the aeration apparatus 20a is formed. Is made into tap water 20 dissolved in a saturated state or a supersaturated state, and this tap water 20 is supplied to the water storage tank 24 by a water pipe (or supply pipe) 39.

【0049】 前記各実施形態を実施する場合、前述した
ように、通常一つの貯水槽24から一本の多孔管17に
給水するようになるが、これらの設置間隔は、堤防等の
規模、本件発明を実施する設備以外の堤防等に付属する
水門等の設備、堤体14および基礎地盤の土質などによ
り、決められるようになるが、通常、堤体14の長手方
向には50mないし100mの間隔をおいて設置するよ
うにするのが好ましい。
[0049] When carrying out the respective embodiments, as described above, although usually one reservoir 24 will be water in one of the perforated tube 17, these installation interval scale of embankments or the like, the present It depends on the facilities such as sluices attached to the dike etc. other than the facilities implementing the invention, the soil quality of the embankment body 14 and the foundation ground, etc., but usually, the interval of 50 m to 100 m in the longitudinal direction of the embankment body 14 It is preferable to set it up at a location.

【0050】 前述のような水道水20に代えて、地中に
浸透させる水には十分に空気を溶存する河水15も利用
できるが、河水15は一般にシルト分やゴミを含んでい
て、図1に示す盲溝16内のフィルタ材の間隙に目詰ま
りを起こし、地中に浸透させる水の円滑な流通を妨げる
おそれがあるので、河川の利用は好ましくない。
In place of the tap water 20 as described above, river water 15 which sufficiently dissolves air can be used as the water to be penetrated into the ground, but the river water 15 generally contains silt and trash, and The use of a river is not preferable because the gap between the filter materials in the blind groove 16 may be clogged and the smooth distribution of water that penetrates into the ground may be hindered.

【0051】[0051]

【発明の効果】請求項1の発明によれば、粘着力が微弱
な地盤中に、単に超微細気泡を含む空気溶存水を浸透さ
せ続けるという単純な手段により、地盤中に微小気泡混
入範囲を造成することができ、また定常的に地下水流が
ある地盤中にも、単に超微細気泡を含む空気溶存水を浸
透させる等の単純な手段により、微小気泡混入範囲の地
盤の地下水の飽和度を地震時に液状化が発生しない程度
まで低下させて、液状化を防止するので、地下水位を低
下させることにより飽和度低下を図る場合に起きる地盤
沈下の不具合を解消でき、しかも、地盤の液状化が原因
で、当該地盤に設置の基礎により支持される構造物が、
移動、傾斜または倒壊しないという優れた効果を有す
る。また本発明の液状化防止工法の場合は、超微細気泡
を含む空気溶存水のみを浸透させるだけであるので、施
工および維持管理が容易であり、しかも地盤沈下を誘発
する恐れがないので、都市地域内においても実施するこ
ともできるなどの効果がある。またさらに、上流側の盲
溝の上面を不透気性の被覆で覆うと共に、下流端の盲溝
中の多孔管に地中を浸透した微小気泡を含む空気溶存水
を集水し最寄りの下水管または雨水渠に流下させるの
で、上流側の超微細気泡を含む空気溶存水の流入を確実
に行うことができ、しかも残存する微小気泡を含む空気
溶存水を下流側において確実に集水回収して下水管また
は雨水渠に流下させるので、下流側端遮断壁に沿うボイ
リングによる堤体14または基礎地盤4の劣 化を防ぐこ
とができる。
According to the first aspect of the present invention, the range in which microbubbles are mixed into the ground is simply increased by simply allowing air-dissolved water containing ultrafine bubbles to continue to penetrate into the ground having weak adhesion. The groundwater saturation of the ground within the range of microbubble contamination can be reduced by simple means such as simply infiltrating air-dissolved water containing ultrafine bubbles into the ground where groundwater flows constantly. Liquefaction is reduced to a level that does not occur during an earthquake, and liquefaction is prevented.Therefore, it is possible to eliminate the problem of land subsidence that occurs when lowering the groundwater level to reduce saturation, and that the liquefaction of the ground Due to the structure supported by the foundation on the ground,
It has an excellent effect of not moving, tilting or collapsing. Further, in the case of the liquefaction prevention method of the present invention, since only air-dissolved water containing ultra-fine bubbles is permeated, construction and maintenance are easy, and there is no danger of inducing land subsidence. It has the effect that it can be implemented even in the region. Furthermore, upstream blindness
The upper surface of the groove is covered with an impervious coating, and the blind groove at the downstream end
Dissolved water containing microbubbles infiltrating the porous tube in the ground
To collect water and drain it to the nearest drain or sewer.
Ensures the flow of dissolved air containing ultra-fine bubbles on the upstream side
Air containing residual microbubbles
Collect and collect the dissolved water on the downstream side without fail.
Flows down into the storm sewer, so the boil
This to prevent the deterioration of the dam body 14 or the underlying ground 4 by the ring
Can be.

【0052】 請求項2の発明によれば、 容易に超微細濾
過層を備えた超微細濾過装置によりミクロンサイズの超
微細気泡を空気溶存水中に混入させて、上流端に設けた
盲溝中の多孔管中に流入させることができる。
[0052] According to the invention of claim 2, easily ultrafine bubbles micron sized ultrastructural filtration apparatus equipped with ultrafine filtration layer is mixed with air dissolved in water, in blind grooves provided on the upstream end It can flow into a perforated tube.

【0053】 請求項3の発明によれば、 空気を溶存する
水道水を地中に浸透させる場合、貯水槽の底面の高さが
中等海水面にほぼ一致する高さの貯水槽に水道水を溜
め、前記貯水槽に貯水した水を送水して、ポーラススト
ーンのような微細濾過装置を通じて発生させた超微細気
泡が混入する水道水にし、その超微細気泡が混入する水
道水を、上流端に設けた盲溝中の多孔管中に流入させる
ようにし、外部水の水圧より、多孔管中の水圧が著しく
高くならず比較的低い水圧で送水することができ、その
ため多孔管の内外の水圧を比較的小型の装置を使用して
容易に均衡させることができる。
[0053] According to the third aspect, when infiltrating tap water for dissolved air in the ground, the tap water approximately reservoir height that matches the height of the bottom to the secondary sea level reservoir Reservoir, the water stored in the water tank is sent to make tap water mixed with ultra-fine bubbles generated through a fine filtration device such as a porous stone, and the tap water mixed with the ultra-fine bubbles is supplied to the upstream end. It is made to flow into the perforated pipe in the blind groove provided, and the water pressure in the perforated pipe can be sent at a relatively low water pressure without significantly increasing the water pressure of the external water, so that the water pressure inside and outside the perforated pipe can be reduced. Balancing can be done easily using relatively small devices.

【0054】 請求項4および請求項5の発明によれば、
貯水槽に溜めた水道水に超微細濾過装置により生成した
超微細気泡を混入させて、これを上流端側の多孔管を通
じて、地中に浸透させることができ、したがって、比較
的容易に、地盤中の微小気泡混入範囲の地下水の飽和度
を地震時に液状化が発生しない程度まで低下させて液状
化を防止することができる。
According to the fourth and fifth aspects of the present invention,
The ultra-fine bubbles generated by the ultra-fine filtration device can be mixed into the tap water stored in the water storage tank, and can be permeated into the ground through the porous tube on the upstream end side. The liquefaction can be prevented by lowering the degree of saturation of groundwater in the range in which the microbubbles are mixed so that liquefaction does not occur during an earthquake.

【0056】 請求項6の発明によれば、 多孔管17に放
水機能を有する制御弁を備えた立管の基端部を接続し、
その放水機能を有する制御弁により、多孔管17内の水
圧を多孔管17周囲の地下水圧より高くならないように
するので、空気溶存水を多孔管17から外部水中に放散
させるこなく、空気溶存水を多孔管17から地中に向け
て効率よく浸透させることができる。
[0056] According to the invention of claim 6, connects the proximal end of the standpipe with a control valve having a water discharging function perforated pipe 17,
The control valve having the water discharging function prevents the water pressure in the perforated pipe 17 from becoming higher than the underground water pressure around the perforated pipe 17, so that the air-dissolved water is not diffused from the perforated pipe 17 into the external water. Can be efficiently penetrated from the porous tube 17 into the ground.

【0057】 請求項7の発明によれば、 多孔管に水を送
水する時に、多孔管17内の水圧を周囲の地下水圧に比
べて過大になることを抑制するために、多孔管に接続す
る送水管に、給水量制御弁を備えた給水量制御装置を設
けたので、空気溶存水を多孔管17から外部水中に放散
させるこなく、空気溶存水を多孔管17から地中に向け
て効率よく浸透させることができる。
[0057] According to the invention of claim 7, when water water in the porous tube, in order to suppress from becoming excessive than the water pressure in the porous tube 17 to groundwater pressure surrounding, connected to a perforated pipe Since the water supply pipe is provided with a water supply amount control device equipped with a water supply amount control valve, the air-dissolved water is directed from the perforated pipe 17 into the ground without dissipating the air-dissolved water from the perforated pipe 17 to the outside water. Can penetrate well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の液状化防止工法を適用するゼ
ロメーター地域周囲の堤防断面図である。(b)は
(a)における超微細濾過装置付近を拡大して示す縦断
側面図である。
FIG. 1A is a sectional view of a dike around a zero meter area to which a liquefaction prevention method of the present invention is applied. (B) is an enlarged longitudinal side view showing the vicinity of the ultrafine filtration device in (a).

【図2】本発明により、多孔管に接続するように設けら
れた給水量制御装置および多孔管内の水圧を制御するた
めの水圧制御装置を示す説明図である。
FIG. 2 is an explanatory view showing a water supply amount control device provided to be connected to a perforated pipe and a water pressure control device for controlling water pressure in the perforated pipe according to the present invention.

【図3】ゼロメーター地域周囲の防潮護岸壁の基礎地盤
液状化防止方法を示す断面説明図である。
FIG. 3 is an explanatory cross-sectional view showing a method for preventing liquefaction of the foundation ground of a tide barrier along a zero meter area.

【図4】ゼロメーター地域周囲の重力式護岸壁の基礎地
盤液状化防止方法を示す断面説明図である。
FIG. 4 is a cross-sectional explanatory view showing a method of preventing liquefaction of a foundation ground of a gravity type revetment wall around a zero meter area.

【図5】排水弁の自動開閉装置を備えた貯水槽を示す説
明図である。
FIG. 5 is an explanatory diagram showing a water storage tank provided with an automatic opening / closing device for a drain valve.

【図6】貯水槽内に貯水している状態を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a state where water is stored in a water storage tank.

【図7】排水弁が開いて、貯水槽から排水を開始してい
る状態を示す説明図である。
FIG. 7 is an explanatory diagram showing a state in which a drain valve is opened and draining from a water storage tank is started.

【図8】排水弁が浮力により開いた状態を保って、貯水
槽から排水している途中の状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a state where the drain valve is being drained from the water storage tank while being kept open by buoyancy.

【図9】排水弁が浮力を失って、自重により閉じると共
に、水道栓から給水している状態を示す説明図である。
FIG. 9 is an explanatory diagram showing a state in which the drain valve has lost its buoyancy, is closed by its own weight, and is being supplied with water from a faucet.

【図10】圧縮空気を地盤中へ吹き込み処理するため、
あるいは超微細気泡が混入した空気溶存水を地中に流入
浸透させるための、送排水管構造の断面説明図である。
FIG. 10 shows a process for blowing compressed air into the ground.
Alternatively, it is a cross-sectional explanatory view of a water pipe structure for flowing and dissolving air-dissolved water mixed with ultrafine bubbles into the ground.

【図11】空気溶存水の前端が下流側多孔管に到達した
ことを観測するための溢流立管を備えた排水設備を示す
縦断側面図である。
FIG. 11 is a vertical cross-sectional side view showing a drainage facility provided with an overflow standing pipe for observing that a front end of dissolved air water has reached a downstream porous pipe.

【図12】図11のI−I線断面図である。FIG. 12 is a sectional view taken along line II of FIG. 11;

【符号の説明】[Explanation of symbols]

1 ゼロメーター地域 2 堤防 3 防潮護岸壁 4 基礎地盤 5 河海側 6 堤内側 7 地下水流 8 浸透水 9 堤内側法尻 10 排水渠 10a 排水管 10b 排水管 11 堤防斜面 12 法面防護工 13 不透水性被膜 14 堤体 15 河水 16 盲溝 16a フィルタ材 17 多孔管 17a 下流側(堤内側)多孔管 20 水道水 20a 水道水曝気装置 24 貯水槽 25 遮水壁 26 浸透経路 27 圧縮空気送気管 28 圧縮空気 31 上昇浸透水流 32 河海側地盤 33 重力式護岸壁 34 基礎捨石 35 置換砂 36 送排気管 37 ケーソン 38 背面地盤 39 水道管 40 排水弁 47 フロートバルブ 48 排水口 49 フロート 50 鎖 51 水面 55 送水管または給水管 55a 分岐管 56 超微細濾過装置 56a 超微細濾過層 57 圧縮空気供給装置 58 雑石積 59 水底地盤 60 送気弁 61 送気管 62 排気弁 63 排気管 64 送水弁 65 集気管 66 空気吹き込み管 67 送水管 68 刃部 69 噴射水環形ノズル 70 第1管体 72 第2管体 73 結合部 74 集水孔 75 円錐形のブロック 76 リングバルブ 77 膨張性シール 78 継ぎ手 79 継ぎ手 80 ネジ結合部 81 支持腕 83 給水制御弁 84 ベローズ 85 制御筒 86 外部水圧導入用縦管 87 ブラケット 88 弁開閉操作用アーム 89 横軸 90 給水量制御装置 91 制御弁 92 立管 93 水圧制御装置 95 排出口 96 分岐管 97 ベローズ 98 制御筒 99 外部水圧導入用縦管 100 制御弁開閉操作用アーム 101 ブラケット 102 横軸 DESCRIPTION OF SYMBOLS 1 Zero meter area 2 Embankment 3 Embankment 4 Seawall 6 Riverside 6 Inner embankment 7 Groundwater flow 8 Infiltration water 9 Embankment inner bottom 10 Drainage culvert 10a Drainage pipe 10b Drainage pipe 11 Embankment slope 12 Slope protection 13 Non Water-permeable coating 14 Embankment body 15 River water 16 Blind groove 16a Filter material 17 Perforated pipe 17a Downstream (inside of the embankment) perforated pipe 20 Tap water 20a Tap water aeration apparatus 24 Water storage tank 25 Water barrier 26 Permeation path 27 Compressed air supply pipe 28 Compressed air 31 Ascending water flow 32 Riverside ground 33 Gravity-type revetment wall 34 Foundation rubble 35 Replacement sand 36 Air supply / exhaust pipe 37 Caisson 38 Back ground 39 Water pipe 40 Drain valve 47 Float valve 48 Drain port 49 Float 50 Chain 51 Water surface 55 Water pipe or water supply pipe 55a Branch pipe 56 Ultrafine filtration device 56a Ultrafine filtration layer 57 Compressed air supply Installation 58 Miscellaneous stones 59 Submerged ground 60 Air supply valve 61 Air supply pipe 62 Exhaust valve 63 Exhaust pipe 64 Water supply valve 65 Collecting pipe 66 Air blowing pipe 67 Water supply pipe 68 Blade part 69 Spray water ring nozzle 70 First pipe 72 Second pipe Body 73 Joint 74 Water collecting hole 75 Conical block 76 Ring valve 77 Inflatable seal 78 Joint 79 Joint 80 Screw joint 81 Support arm 83 Water supply control valve 84 Bellows 85 Control tube 86 Vertical pipe for external water pressure 87 Bracket 88 Valve opening / closing operation arm 89 Horizontal axis 90 Water supply amount control device 91 Control valve 92 Standing pipe 93 Water pressure control device 95 Outlet 96 Branch pipe 97 Bellows 98 Control tube 99 External water pressure introduction vertical pipe 100 Control valve opening / closing operation arm 101 Bracket 102 horizontal axis

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) E02D 3/10 E02D 3/11 E02D 3/12 101 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) E02D 3/10 E02D 3/11 E02D 3/12 101

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粘着力が微弱な地盤中に超微細気泡を含
む空気溶存水を浸透させ続けることにより地盤中に微小
気泡混入範囲を造成するため、定常的な地下水流の上流
端に、不透気性の被覆で上面を覆った盲溝中に多孔管を
設け、その多孔管に超微細気泡を含む空気溶存水を流入
させ、定常的な地下水流の下流端に設けた盲溝中の多孔
管に、地中を浸透した微小気泡を含む空気溶存水を集水
し、その集水した水を最寄りの下水管または雨水渠に流
下させることにより、ゼロメーター地域を囲む堤防また
は防潮壁基礎地盤中の微小気泡混入範囲の地盤の地下水
の飽和度を地震時に液状化が発生しない程度まで低下さ
せて液状化を防止することを特徴とする空気溶存水を地
中に浸透させることによる地盤の地震時液状化防止工
法。
(1) An air-dissolved water containing ultra-fine bubbles is continuously infiltrated into a ground having a weak adhesive strength to form a mixed range of micro-bubbles in the ground. A perforated pipe is provided in a blind groove whose upper surface is covered with a permeable coating, air-dissolved water containing ultrafine bubbles flows into the perforated pipe, and the perforated pipe in the blind groove provided at the downstream end of the steady groundwater flow Air-dissolved water containing microbubbles penetrating the ground is collected in pipes, and the collected water is allowed to flow down to the nearest sewer pipe or storm sewer, thereby embankment or seawall surrounding the zero meter area. Earthquake caused by infiltration of air-dissolved water into the ground, characterized by lowering the degree of groundwater saturation of the ground in the area where the microbubbles are mixed to the extent that liquefaction does not occur during an earthquake When liquefaction prevention method.
【請求項2】 ミクロンサイズの超微細気泡を空気溶存
水中に混入させるために、セラミックス等のポーラスス
トーンのような超微細濾過層を備えた超微細濾過装置を
通じて圧縮空気を流入させることにより発生する超微細
気泡が混入する水道水を、送水手段により、現存する定
常的な地下水流の上流端に設けた上面を不透気性の被覆
で覆った盲溝中の多孔管中に流入させることを特徴とす
請求項1に記載の空気溶存水を地中に浸透させること
による地盤の地震時液状化防止工法。
2. In order to mix micron-sized microbubbles into air-dissolved water, the air is generated by flowing compressed air through an ultrafine filtration device having an ultrafine filtration layer such as a porous stone made of ceramics or the like. Tap water mixed with ultra-fine bubbles is flowed into the perforated pipe in the blind groove whose upper surface provided at the upstream end of the existing steady groundwater flow is covered with an air-impermeable coating by means of water supply. A method for preventing liquefaction during ground earthquake by infiltrating air-dissolved water into the ground according to claim 1 .
【請求項3】 空気を溶存する水道水を地中に浸透させ
る場合、貯水槽の底面の高さが中等海水面にほぼ一致す
る高さの貯水槽に水道水を溜め、前記貯水槽に貯水した
水道水を前記定常的な地下水流の上流端に設けた多孔管
へ流入させる過程において、超微細濾過装置を通じて発
生させた超微細気泡を混入させた水道水にし、その超微
細気泡が混入する水道水を、上流端に設けた盲溝中の多
孔管を通じて地中に浸透流入させることにより、地下水
中に微小気泡を発生させることを特徴とする請求項1ま
たは2に記載の空気溶存水を地中に浸透させることによ
る地盤の地震時液状化防止工法。
3. When tap water in which air is dissolved is penetrated into the ground, tap water is stored in a water tank whose height at the bottom of the water tank substantially coincides with the middle sea level, and the water is stored in the water tank. In the process of flowing the tap water into the perforated pipe provided at the upstream end of the steady groundwater flow, the tap water is mixed with the ultra-fine bubbles generated through the ultra-fine filtration device, and the ultra-fine bubbles are mixed. tap water, by osmotic flows into the ground through the perforated pipe in blind grooves provided on the upstream end, or claim 1, characterized in that to generate microbubbles groundwater
Or the method for preventing liquefaction of ground during an earthquake by infiltrating the dissolved water of air according to item 2 or 2 into the ground.
【請求項4】 空気を溶存する水道水を地中に浸透させ
る場合、水道水を貯水槽に溜め、前記貯水槽に貯水した
水を超微細濾過装置を通じて、超微細気泡が混入した水
を生成させ、その水を上流端に設けた盲溝中の多孔管を
通じ地中に浸透させて、地盤中の微小気泡混入範囲の地
下水の飽和度を地震時に液状化が発生しない程度まで低
下させて液状化を防止することを特徴とする請求項1、
2および3のいずれかに記載の空気溶存水を地中に浸透
させることによる地盤の地震時液状化防止工法。
4. When tap water in which air is dissolved penetrates into the ground, the tap water is stored in a water storage tank, and the water stored in the water storage tank is generated through an ultra-fine filtration device to generate water mixed with ultra-fine bubbles. The water is allowed to penetrate into the ground through the perforated pipe in the blind groove provided at the upstream end to reduce the saturation of groundwater in the area where microbubbles are mixed in the ground to the extent that liquefaction does not occur during an earthquake. Claim 1, wherein
2. A method for preventing liquefaction of an earth during an earthquake by infiltrating the dissolved water of air according to any one of 2 and 3 into the ground.
【請求項5】 空気を溶存する水道水を地中に浸透させ
る場合、水道水を貯水槽に溜め、前記貯水槽が満水にな
れば、盲溝中の多孔管中に流入する水の排水栓が自動的
に開き一定時間、超微細濾過装置により発生させた超微
細気泡を混入する水道水を、地下水流の上流端に設けた
盲溝中の多孔管を通じ地中に浸透させて地盤中の微小気
泡混入範囲の地下水の飽和度を地震時に液状化が発生し
ない程度まで低下させて液状化を防止することを特徴と
する請求項1、2、3および4のいずれかに記載の空気
溶存水を地中に浸透させることによる地盤の地震時液状
化防止工法。
5. When tap water in which air is dissolved is permeated into the ground, the tap water is stored in a water storage tank, and when the water storage tank is full, a drain plug of water flowing into the perforated pipe in the blind groove is provided. Is automatically opened for a certain period of time, and tap water mixed with ultra-fine bubbles generated by the ultra-fine filtration device penetrates into the ground through a perforated pipe in a blind groove provided at the upstream end of the groundwater flow to penetrate the ground. The air-dissolved water according to any one of claims 1, 2, 3, and 4, wherein the liquefaction is prevented by reducing the degree of saturation of groundwater in the range in which the microbubbles are mixed so as not to cause liquefaction during an earthquake. Method to prevent liquefaction of the ground during an earthquake by infiltrating the ground.
【請求項6】 多孔管17に放水機能を有する制御弁を
備えた立管の基端部を接続し、その放水機能を有する制
御弁により、多孔管17内の水圧を多孔管17周囲の地
下水圧より高くならないようにすることを特徴とする
求項1、2、3、4および5のいずれかに記載の空気溶
存水を地中に浸透させることによる地盤の地震時液状化
防止工法。
6. Connect the proximal end of the standpipe with a control valve having a water discharging function perforated pipe 17, the control valve having the water discharge function, groundwater perforated tube 17 surrounding the water pressure in the perforated pipe 17 請, characterized in that so as not higher than pressure
A method for preventing liquefaction of a ground during an earthquake by infiltrating the air-dissolved water according to any one of claims 1, 2, 3, 4, and 5 into the ground.
【請求項7】 多孔管に水を送水する時に、多孔管17
内の水圧を周囲の地下水圧に比べて過大になることを抑
制するために、多孔管に接続する給水管に、給水量制御
弁を備えた給水量制御装置を設けることを特徴とする
求項1、2、3、4、5および6のいずれかに記載の
気溶存水を地中に浸透させることによる地盤の地震時液
状化防止工法。
7. When water is supplied to the perforated pipe, the perforated pipe 17 is used.
The water pressure inside to suppress to become excessive as compared with the underground water pressure surrounding the water supply pipe to be connected to the perforated pipe, and providing a water supply amount control apparatus having a water supply control valve
The method for preventing liquefaction of an earth during an earthquake by infiltrating air-dissolved water into the ground according to any one of claims 1, 2, 3, 4, 5, and 6 .
JP25435799A 1999-03-26 1999-09-08 Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground Expired - Fee Related JP3251927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25435799A JP3251927B2 (en) 1999-03-26 1999-09-08 Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8371599 1999-03-26
JP11-83715 1999-03-26
JP25435799A JP3251927B2 (en) 1999-03-26 1999-09-08 Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground

Publications (2)

Publication Number Publication Date
JP2000345549A JP2000345549A (en) 2000-12-12
JP3251927B2 true JP3251927B2 (en) 2002-01-28

Family

ID=26424747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25435799A Expired - Fee Related JP3251927B2 (en) 1999-03-26 1999-09-08 Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground

Country Status (1)

Country Link
JP (1) JP3251927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212255A1 (en) * 2020-04-20 2021-10-28 浙江大学 Pneumatic fracturing technology-based "mobile electrode" electro-osmotic drainage consolidation treatment method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467266B1 (en) 2002-09-17 2003-11-17 俊多 白石 Prevention of ground liquefaction due to earthquake and facilities used for this method
JP2012225143A (en) * 2011-02-09 2012-11-15 Asahi Techno:Kk Ground improvement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「基礎工」,Vol.25,No.9,p.120−127(1997.9),総合土木研究所発行

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212255A1 (en) * 2020-04-20 2021-10-28 浙江大学 Pneumatic fracturing technology-based "mobile electrode" electro-osmotic drainage consolidation treatment method and device

Also Published As

Publication number Publication date
JP2000345549A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
JP4972754B2 (en) Seismic storage dike and its installation method
JP2006257829A (en) Automatic tide gate equipment of land lock
CN200996153Y (en) Water-pressure reducing structure of base board
US11274408B2 (en) Flood mitigation system
RU2465398C1 (en) Device of automatic action to wash drain of low-head soil dams
WO2020044355A1 (en) Integration of multipurpose box tunnels with empty lakes and mini dam for effective flood control
JP3251927B2 (en) Prevention of liquefaction during ground earthquake by infiltration of dissolved air into the ground
CN205776409U (en) Control to exceed the quata in rock-soil layer pore water pressure device
CN109338982A (en) A kind of clear erosion and deposition regulating reservoir of diversion works head storage
KR100807404B1 (en) Method to generate power continuously and to purify folluted water by means of constructing reservoir water space having big capacity higher than bank of river
KR100957070B1 (en) A flood, water control and the underground storage of water apparatus for small hydropower generation
JP4560857B2 (en) Underground water storage system
JP2001123438A (en) Construction method for preventing liquefaction in earthquake of soil within city or the like by injecting air-dissolved water or compressed air into ground, device used therefor, and construction method therefor
JPH0921127A (en) Discharge method and equipment of sediment in dam reservoir
CN210887095U (en) Flood control dam for hydraulic engineering
CN107663848B (en) Water gate structure suitable for filtering and dividing sediment-laden river
CN209277087U (en) Diversion works head stores clear erosion and deposition regulating reservoir
JP6184252B2 (en) Water use and flood control system and manufacturing method thereof
KR20010008037A (en) Method for constructing flap weir
CN217026924U (en) Anti-seepage and anti-frost-heaving structure for earth-rock dam in cold region
Brink et al. Sediment control at river abstraction works in South Africa
JP2009270256A (en) Water level leveling method for river or the like
KR100496430B1 (en) Conductive automatic door lock with fixed shaft fixed to wall
KR20010069414A (en) Construction method of automatic sluice using double pressure rod
JP2567343B2 (en) River surface water intake method with intake strainer and automatic backwash device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees