JP3250840B2 - Paste electrode for alkaline secondary battery - Google Patents

Paste electrode for alkaline secondary battery

Info

Publication number
JP3250840B2
JP3250840B2 JP12730092A JP12730092A JP3250840B2 JP 3250840 B2 JP3250840 B2 JP 3250840B2 JP 12730092 A JP12730092 A JP 12730092A JP 12730092 A JP12730092 A JP 12730092A JP 3250840 B2 JP3250840 B2 JP 3250840B2
Authority
JP
Japan
Prior art keywords
active material
paste
cobalt
electrode
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12730092A
Other languages
Japanese (ja)
Other versions
JPH05325956A (en
Inventor
智夫 勝俣
邦彦 宮本
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP12730092A priority Critical patent/JP3250840B2/en
Publication of JPH05325956A publication Critical patent/JPH05325956A/en
Application granted granted Critical
Publication of JP3250840B2 publication Critical patent/JP3250840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ二次電池用のペ
ースト式電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type electrode for an alkaline secondary battery.

【0002】[0002]

【従来の技術】アルカリ二次電池用の電極、例えば正極
(負極についてもほぼ同様なので、以下正極について説
明する)は、従来より焼結式正極が用いられている。こ
の焼結式正極は、例えば穿孔鋼板或いはニッケル・ネッ
ト等の芯金にニッケル粉末を焼結し、その十数ミクロン
の孔にニッケル塩水溶液を含浸し、次いで、これをアル
カリ処理することによって前記含浸ニッケル塩を水酸化
ニッケルに変化させて得ていた。しかし、この焼結式正
極は、製造の際にニッケル塩の含浸及びアルカリ処理と
いった複雑な操作が必要であり、かつ所定量の活物質を
含浸するためには上記操作を通常4〜10回程度繰り返
し行なわなければならないので、製造コストが高くなっ
てしまうという問題があった。更に、ニッケル粉末焼結
体の機械的強度を維持できる多孔度が80%程度で限界
となるため、活物質の充填量そのものにも限界があると
いう問題もあった。
2. Description of the Related Art A sintered positive electrode has conventionally been used as an electrode for an alkaline secondary battery, for example, a positive electrode (the negative electrode is almost the same, so the positive electrode will be described below). This sintered positive electrode, for example, by sintering nickel powder on a core metal such as a perforated steel plate or nickel net, impregnating the pores of more than ten microns with a nickel salt aqueous solution, and then subjecting this to alkali treatment, It was obtained by changing the impregnated nickel salt to nickel hydroxide. However, this sintered type positive electrode requires complicated operations such as nickel salt impregnation and alkali treatment at the time of production, and the above operation is usually performed about 4 to 10 times to impregnate a predetermined amount of active material. Since it has to be repeated, there is a problem that the manufacturing cost is increased. Furthermore, since the porosity at which the mechanical strength of the nickel powder sintered body can be maintained is limited to about 80%, there is also a problem that the amount of the active material itself is limited.

【0003】これらの問題を解決するために、水酸化ニ
ッケル粉末に導電粉末、結着剤及び水を混合してペース
ト状にした後、平均多孔度が95%以上で、平均孔径が
数十〜数百ミクロンの3次元スポンジ状金属多孔体や金
属繊維マット等の耐アルカリ性金属多孔体に前記ペース
トを直接充填して正極を製造する方法が提案されてい
る。この方法は焼結式に対して非焼結式或いはペースト
式と呼ばれている。
In order to solve these problems, a nickel hydroxide powder is mixed with a conductive powder, a binder and water to form a paste, and then has an average porosity of 95% or more and an average pore size of several tens to A method has been proposed in which a positive electrode is manufactured by directly filling the paste into an alkali-resistant metal porous material such as a three-dimensional sponge-like metal porous material or a metal fiber mat of several hundred microns. This method is called a non-sintering method or a paste method as opposed to a sintering method.

【0004】このペースト式電極は、金属多孔体の多孔
度及び平均孔径が大きいので、活物質充填工程が容易で
あり、充填量を多くできるという利点を有する。しか
し、金属多孔体の細孔が焼結式の場合より大きいため
に、活物質から集電体バルクまでの距離により集電性を
悪くしており、その結果、活物質の利用率が焼結式電極
の95%に対して60%程度というように低く、実用化
にまで至らなかった。
[0004] Since the paste type electrode has a large porosity and an average pore diameter of the porous metal body, it has an advantage that the active material filling step is easy and the filling amount can be increased. However, since the pores of the porous metal body are larger than in the case of the sintering method, the current collecting property is degraded depending on the distance from the active material to the current collector bulk. It was as low as about 60% for 95% of the formula electrodes, and did not reach practical use.

【0005】このペースト式電極の活物質の利用率を向
上させる手段として、一般的にはコバルト酸化物、コバ
ルト水酸化物などのコバルト化合物、及び金属コバルト
のうちの2種以上の組合せで活物質ペースト中に添加す
る方法がある。しかし、このコバルト化合物等の添加に
よっても活物質利用率は最大85%程度であり、しかも
10%程度のバラツキがあるので焼結式電極の活物質利
用率のレベルには達していない。
As a means for improving the utilization rate of the active material of the paste type electrode, generally, a combination of two or more of cobalt compounds such as cobalt oxide and cobalt hydroxide and metallic cobalt is used. There is a method of adding it in the paste. However, even with the addition of the cobalt compound or the like, the active material utilization rate is at most about 85%, and there is a variation of about 10%, so that the active material utilization rate of the sintered electrode has not been reached.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の問題
点を解決するためになされたもので、活物質利用率を向
上させ、かつその活物質利用率をバラツキの少ない安定
したものとすることが可能なアルカリ二次電池用のペー
スト式電極を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the conventional problems, and it is intended to improve the active material utilization and to stabilize the active material utilization with little variation. It is an object of the present invention to provide a paste type electrode for an alkaline secondary battery, which is capable of being used.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は、耐ア
ルカリ性金属多孔体に活物質合剤を充填したアルカリ二
次電池用のペースト式電極において、前記活物質合剤
は、正極活物質または負極活物質と、Co 2 3 を含有す
るCoO粉末(以下、酸化コバルト粉末と称す)とを含
み、JISM8233.4に規定する方法により測定さ
れた前記CoO粉末中の前記Co 2 3 含有量が6重量%
以下であることを特徴とするアルカリ二次電池用のペー
スト式電極である。
SUMMARY OF THE INVENTION The present invention relates to a paste type electrode for an alkaline secondary battery in which an alkali-resistant porous metal is filled with an active material mixture.
It is to contain a positive electrode active material or negative electrode active material, a Co 2 O 3
CoO powder (hereinafter referred to as cobalt oxide powder).
Measured according to the method specified in JIS M8233.4.
The Co 2 O 3 content in the obtained CoO powder is 6% by weight.
It is a paste type electrode for an alkaline secondary battery characterized by the following.

【0008】前記耐アルカリ性金属多孔体としては、例
えば網状、スポンジ状、繊維状、フェルト状などの多孔
質構造のものが挙げられる。その材質としては、例えば
ニッケル、又はステンレス等の金属や樹脂にニッケルメ
ッキを施したものなどが挙げられる。前記正極活物質と
しては、例えば水酸化ニッケルが挙げられる。前記負極
活物質としては、例えばCd(OH)2 、金属カドミウ
ム、CdOなどが挙げられる。
[0008] Examples of the alkali-resistant porous metal include those having a porous structure such as a net, sponge, fiber, and felt. Examples of the material thereof include nickel or a metal such as stainless steel or a resin plated with nickel. Examples of the positive electrode active material include nickel hydroxide. Examples of the negative electrode active material include Cd (OH) 2 , metal cadmium, CdO, and the like.

【0009】前記酸化コバルト粉末中のCo2 3
は、JISM8233.4に規定する方法により測定さ
れるものである。かかる方法による酸化コバルト粉末中
のCo2 3 量の測定は、次のような原理により行なわ
れる。即ち、酸化コバルト粉末を硫酸酸性の硫酸鉄(I
I)水溶液に溶解するとCoOによるCo(II)イオ
ンとCo2 3 によるCo(III)イオンが生成し、
下記式(1)に示すようにCo(III)イオンがFe
(II)イオンにより還元される。 Fe2++Co3+ → Fe3++Co2+ …(1)
The amount of Co 2 O 3 in the above-mentioned cobalt oxide powder is measured by a method specified in JIS M8233.4. The measurement of the amount of Co 2 O 3 in the cobalt oxide powder by such a method is performed according to the following principle. That is, the cobalt oxide powder is converted to sulfuric acid-acidic iron sulfate (I
I) When dissolved in an aqueous solution, Co (II) ions due to CoO and Co (III) ions due to Co 2 O 3 are generated,
As shown in the following formula (1), the Co (III) ion is Fe
(II) reduced by ions; Fe 2+ + Co 3+ → Fe 3+ + Co 2+ (1)

【0010】この時に生成したFe(III)イオンを
過マンガン酸カリウム水溶液で定量することにより、C
o(III)イオンが間接的に定量されるため、酸化コ
バルト中のCo2 3 量を測定することができる。な
お、従来のペースト式電極では、酸化コバルト粉末中の
Co2 3 の存在の確認をX線回折法等で行なっていた
が、その定量については簡単な方法が見出だせず、Co
2 3 量が不明のままで酸化コバルト粉末を用いてい
た。
By quantifying the Fe (III) ion generated at this time with an aqueous potassium permanganate solution, C
Since o (III) ions are indirectly quantified, the amount of Co 2 O 3 in cobalt oxide can be measured. In the conventional paste type electrode, the presence of Co 2 O 3 in the cobalt oxide powder was confirmed by an X-ray diffraction method or the like.
Cobalt oxide powder was used without knowing the amount of 2 O 3 .

【0011】前記酸化コバルト粉末は、次のように製造
できる。即ち、粒径0.5〜20μmの水酸化コバルト
(Co(OH)2 )粉末を焼成温度300〜600℃、
焼成時間5〜48時間の条件下で焼成することにより、
酸化コバルト粉末を製造する。この焼成工程では、酸化
反応を必要以上に促進させないために不活性ガス雰囲気
で行なうことが望ましく、場合によっては更に酸化反応
の促進を抑制するために還元性雰囲気で行なうこともあ
る。このような水酸化コバルト粉末の焼成により酸化コ
バルト粉末を製造する方法は、単純な脱水反応によるも
のであるため、得られる酸化コバルト粉末の粒径及び表
面積等の物性を推測し易いという利点がある。
The above-mentioned cobalt oxide powder can be produced as follows. That is, a cobalt hydroxide (Co (OH) 2 ) powder having a particle size of 0.5 to 20 μm is fired at a firing temperature of 300 to 600 ° C.
By firing under the conditions of firing time 5 to 48 hours,
Manufacture cobalt oxide powder. This firing step is preferably performed in an inert gas atmosphere so as not to promote the oxidation reaction more than necessary. In some cases, the firing step may be performed in a reducing atmosphere to further suppress the acceleration of the oxidation reaction. Since the method of producing a cobalt oxide powder by firing such a cobalt hydroxide powder is based on a simple dehydration reaction, there is an advantage that it is easy to estimate physical properties such as a particle diameter and a surface area of the obtained cobalt oxide powder. .

【0012】前記正極活物質又は負極活物質を主体とす
る活物質合剤中には、前記酸化コバルト粉末の他に必要
に応じて増粘剤などを配合してもよい。前記増粘剤とし
ては、例えばカルボキシメチルセルロース、メチルセル
ロース、及びポリアクリル酸ナトリウムなどが挙げられ
る。
In the active material mixture mainly composed of the positive electrode active material or the negative electrode active material, a thickener and the like may be blended as required in addition to the cobalt oxide powder. Examples of the thickener include carboxymethylcellulose, methylcellulose, and sodium polyacrylate.

【0013】上述したペースト式電極は、例えば次のよ
うに製造できる。まず、正極活物質又は負極活物質に酸
化コバルト粉末を添加し、増粘剤及び水と共に混練して
ペースト状とする。次いで、このペーストを前記耐アル
カリ性金属多孔体に充填し、乾燥した後、成形すること
によって、ペースト式ニッケル極を製造する。次に、本
発明のペースト式電極の作用を説明する。
The above-mentioned paste type electrode can be manufactured, for example, as follows. First, cobalt oxide powder is added to the positive electrode active material or the negative electrode active material, and kneaded with a thickener and water to form a paste. Next, the paste-type nickel electrode is manufactured by filling the paste into the alkali-resistant metal porous body, drying and molding the paste. Next, the operation of the paste electrode of the present invention will be described.

【0014】ペースト式電極において、活物質合剤中に
コバルト化合物を添加すれば活物質の利用率を向上させ
ることができることがわかっているにもかかわらず、従
来、最大85%程度で焼結式電極のそれに至らない理由
の一つは、コバルト化合物そのものが不安定で貯蔵中に
酸化反応が進行して微妙に違うコバルト化合物になって
しまうためである。一般に、コバルト化合物の添加によ
って活物質利用率を向上させるメカニズムは、アルカリ
電解液中でコバルト化合物が溶解し、2価のいわゆるブ
ルーコンプレックスイオン(HCoO2 - )を生成し、
その後、活物質表面にまとわりつくように水酸化コバル
ト(Co(OH)2 )として吸着し、より貴な電位にお
いて導電性の高いオキシ水酸化コバルト(CoOOH)
に変化し、活物質表面をコーティングするからとされて
いる。これに基づけば、まず、アルカリ電解液中で速や
かに溶解するようなコバルト化合物であることが絶対条
件であるし、更にそれ以前の活物質を主体とするペース
ト調製時に、このコバルト化合物粒子が活物質粒子によ
く混じるものでなければならない。以上、コバルト化合
物がアルカリ二次電池用電極の活物質利用率を従来(8
5%程度)より向上させ、かつ安定化するためには、コ
バルト化合物が主として、(1)アルカリ電解液に速や
かに溶解すること、(2)ペースト調製時に活物質とよ
く混ざること、(3)貯蔵安定性に優れていること、の
3点を満たしていることが重要である。
In the past, it has been known that the addition of a cobalt compound to the active material mixture can improve the utilization rate of the active material. One of the reasons that the electrode does not reach that is that the cobalt compound itself is unstable and the oxidation reaction proceeds during storage, resulting in a slightly different cobalt compound. In general, the mechanism for improving the active material utilization rate by adding a cobalt compound is that the cobalt compound dissolves in an alkaline electrolyte and a divalent so-called blue complex ion (HCoO 2 ), And
After that, it is adsorbed as cobalt hydroxide (Co (OH) 2 ) so as to cling to the surface of the active material, and cobalt oxyhydroxide (CoOOH) having high conductivity at a more noble potential.
To coat the surface of the active material. Based on this, it is an absolute condition that the cobalt compound is such that it rapidly dissolves in the alkaline electrolyte. Further, when the paste mainly composed of the active material is prepared, the cobalt compound particles are activated. It must be well mixed with the material particles. As described above, the cobalt compound reduced the active material utilization rate of the electrode for an alkaline secondary battery by the conventional (8).
In order to improve and stabilize, the cobalt compound is mainly (1) rapidly dissolved in the alkaline electrolyte, (2) well mixed with the active material at the time of paste preparation, (3) It is important to satisfy the three points of excellent storage stability.

【0015】本発明のペースト式電極によれば、正極活
物質又は負極活物質を主体とする活物質合剤中に、Co
2 3 量が6重量%以下であり、残部がCoOからなる
酸化コバルト粉末を添加することによって、活物質利用
率を焼結式電極と同程度或いはそれ以上に向上させるこ
とが可能となる。これは、CoO及びCo2 3 が金属
コバルトや水酸化コバルトなどの他のコバルト化合物よ
りも活物質利用率を向上させるための添加剤としての効
果が大きいことによるものである。更に、前記酸化コバ
ルト粉末中のCo2 3 量を限定した理由を以下に説明
する。
According to the paste type electrode of the present invention, Co is contained in the active material mixture mainly composed of the positive electrode active material or the negative electrode active material.
By adding a cobalt oxide powder having an amount of 2 O 3 of 6% by weight or less and a balance of CoO, the utilization rate of the active material can be improved to the same level as or higher than that of the sintered electrode. This is because CoO and Co 2 O 3 are more effective as additives for improving the active material utilization rate than other cobalt compounds such as metallic cobalt and cobalt hydroxide. Further, the reason why the amount of Co 2 O 3 in the cobalt oxide powder is limited will be described below.

【0016】即ち、コバルト酸化物としては、CoO、
Co2 3 、Co3 4 がある。このうちCo3
4 は、極めて安定であることからアルカリ電解液中で2
価のブルーコンプレックスイオン(HCoO2 - )を生
成せず、電導性のCoOOHを得ることができないた
め、活物質の利用率を向上させることができない。
That is, as the cobalt oxide, CoO,
There are Co 2 O 3 and Co 3 O 4 . Co 3 O
4 is extremely stable, so 2
Value of the blue complex ion (HCoO 2 - ) Is not produced and conductive CoOOH cannot be obtained, so that the utilization rate of the active material cannot be improved.

【0017】ところで、これらコバルト酸化物のいずれ
か一種を完全に純粋な状態で得ることは困難であると言
われている。例えば、Co(OH)2 を不活性ガス中で
加熱することにより、酸素の含有量が最も少ないCoO
を合成することができるが、完全に純粋なCoOではな
く、少量のCo2 3 、Co3 4 が含まれる。このコ
バルト酸化物中のCo2 3 とCo3 4 との割合は、
Co2 3 が大部分であり、Co3 4 は極微量であ
る。
It is said that it is difficult to obtain any one of these cobalt oxides in a completely pure state. For example, by heating Co (OH) 2 in an inert gas, CoO having the lowest oxygen content can be obtained.
Can be synthesized, but contains a small amount of Co 2 O 3 and Co 3 O 4 instead of completely pure CoO. The ratio of Co 2 O 3 and Co 3 O 4 in this cobalt oxide is
Co 2 O 3 is the majority and Co 3 O 4 is very small.

【0018】このCo2 3 は、CoOと同様にアルカ
リ電解液に溶解され、2価のブルーコンプレックスイオ
ン(HCoO2 - )を生成し、導電性のCoOOHを得
て活物質の利用率を向上させることができるが、CoO
よりもアルカリ電解液への溶解性が低い。このため、添
加したコバルト酸化物のCo2 3 含有量が多くなると
該コバルト酸化物が完全にCoOOHに変化せず、活物
質利用率の低下を招く。従って、活物質利用率を高め、
かつその活物質利用率のバラツキを少なくするために
は、コバルト酸化物中のCo2 3 量の管理が非常に重
要となる。
[0018] The Co 2 O 3 is dissolved in an alkaline electrolyte as with CoO, 2 divalent blue complex ion (HCoO 2 - ) To obtain conductive CoOOH to improve the utilization of the active material.
Has a lower solubility in an alkaline electrolyte. For this reason, when the Co 2 O 3 content of the added cobalt oxide increases, the cobalt oxide does not completely change to CoOOH, which leads to a decrease in the active material utilization rate. Therefore, increase the active material utilization rate,
In addition, in order to reduce the variation in the utilization rate of the active material, it is very important to control the amount of Co 2 O 3 in the cobalt oxide.

【0019】本発明のペースト式電極はかかる見地に基
づいて見い出されたものであり、前記酸化コバルト粉末
中のCo2 3 量を6重量%以下に限定したことによっ
て、該酸化コバルト粉末のアルカリ電解液への溶解性に
起因する活物質の利用率の低下を防止できるため、活物
質利用率を焼結式電極と同程度或いはそれ以上に向上さ
せ、かつその活物質利用率をバラツキの少ない安定した
ものとすることが可能となる。
The paste-type electrode of the present invention has been found based on such a viewpoint. By limiting the amount of Co 2 O 3 in the cobalt oxide powder to 6% by weight or less, the paste-type electrode of the cobalt oxide powder has Since it is possible to prevent a decrease in the utilization rate of the active material due to solubility in the electrolytic solution, the utilization rate of the active material is improved to the same level as or higher than that of the sintered electrode, and the utilization rate of the active material is small. It becomes possible to be stable.

【0020】[0020]

【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.

【0021】まず、金属コバルト(m−Co)を硫酸水
溶液に溶解させた後、水酸化ナトリウム水溶液を徐々に
加えて中和することにより、α−水酸化コバルト(α−
Co(OH)2 )の結晶を得た。更にこれを熟成させる
ことにより、空気中でも比較的安定なβ−水酸化コバル
ト(β−Co(OH)2 )に変換した。
First, after dissolving metallic cobalt (m-Co) in an aqueous sulfuric acid solution, an aqueous solution of sodium hydroxide is gradually added to neutralize the solution to obtain α-cobalt hydroxide (α-Co).
A crystal of Co (OH) 2 ) was obtained. By further aging, it was converted to β-cobalt hydroxide (β-Co (OH) 2 ) which is relatively stable even in air.

【0022】次いで、前記β−水酸化コバルトを不活性
ガス雰囲気中(場合によっては還元性雰囲気中)、20
0〜600℃の任意の温度でそれぞれ20時間焼成する
ことにより、Co2 3 を含み、残部がCoOからなる
種々の酸化コバルト粉末を得た。こうして得られた各酸
化コバルト粉末中のCo2 3 量をJISM8233.
4に規定する方法により測定した。
Next, the β-cobalt hydroxide is placed in an inert gas atmosphere (in some cases, in a reducing atmosphere) for 20 minutes.
By sintering each at an arbitrary temperature of 0 to 600 ° C. for 20 hours, various cobalt oxide powders containing Co 2 O 3 and the balance being CoO were obtained. The amount of Co 2 O 3 in each cobalt oxide powder thus obtained was determined according to JIS M8233.
It measured by the method prescribed | regulated in 4.

【0023】得られた各酸化コバルト粉末を水酸化ニッ
ケル粉末100重量部に対して10重量部添加し、カル
ボキシメチルセルロースなどの増粘剤及び水と共に混練
してペースト状とした。つづいて、このペーズトを多孔
度95%、平均孔径200μmのニッケルメッキ金属多
孔体(耐アルカリ性金属多孔体)に充填し、乾燥した
後、成形することにより、ペースト式ニッケル正極を作
製した。
Each of the obtained cobalt oxide powders was added in an amount of 10 parts by weight based on 100 parts by weight of the nickel hydroxide powder, and kneaded with a thickener such as carboxymethyl cellulose and water to form a paste. Subsequently, the paste was filled into a nickel-plated metal porous body (alkali-resistant metal porous body) having a porosity of 95% and an average pore diameter of 200 μm, dried, and then molded to obtain a paste-type nickel positive electrode.

【0024】こうして得られた各ペースト式ニッケル正
極に、ペースト式カドミウム負極、ナイロン不織布から
なるセパレータ、水酸化カリウムを主体とするアルカリ
電解液、金属電池容器及び金属蓋の各パーツを組合わせ
ることにより、ニッケル・カドミウム二次電池を組立て
た。なお、電池組立から初充電までのエージング条件
は、25℃、19時間とした。
The paste-type nickel positive electrode thus obtained is combined with a paste-type cadmium negative electrode, a separator made of nylon nonwoven fabric, an alkaline electrolyte mainly composed of potassium hydroxide, a metal battery container, and a metal lid. , A nickel-cadmium secondary battery was assembled. The aging conditions from battery assembly to first charge were 25 ° C. and 19 hours.

【0025】前記各電池を0.5Cの電流で150%の
深度まで充電し、1Cの電流で放電することを10サイ
クル繰り返し、放電容量が十分に安定した10サイクル
目のペースト式ニッケル正極の活物質利用率を調べた。
その結果を図1に示す。図1は、前記JISM823
3.4に規定する方法により測定された酸化コバルト粉
末中のCo2 3 量に対するペースト式ニッケル正極の
活物質利用率の変化を示す特性図である。
Each of the batteries was charged at a current of 0.5 C to a depth of 150% and discharged at a current of 1 C repeatedly for 10 cycles, and the activity of the paste-type nickel positive electrode at the 10th cycle having a sufficiently stable discharge capacity was repeated. Material utilization was investigated.
The result is shown in FIG. FIG. 1 shows the JISM823.
FIG. 6 is a characteristic diagram showing a change in the active material utilization rate of the paste nickel positive electrode with respect to the amount of Co 2 O 3 in the cobalt oxide powder measured by the method specified in 3.4.

【0026】図1から明らかなように酸化コバルト粉末
中のCo2 3 量が6重量%以下であると、ペースト式
ニッケル正極の活物質利用率が十分に高いことがわか
る。
As is apparent from FIG. 1, when the amount of Co 2 O 3 in the cobalt oxide powder is 6% by weight or less, the active material utilization of the paste nickel positive electrode is sufficiently high.

【0027】従って、Co2 3 量が6重量%以下であ
り、残部がCoOからなる酸化コバルト粉末を添加する
ことによって、ペースト式ニッケル電極の活物質利用率
を向上させ、かつその活物質利用率をバラツキの少ない
安定したものとすることができることが確認された。
Therefore, by adding a cobalt oxide powder having a Co 2 O 3 content of 6% by weight or less and a balance of CoO, the active material utilization of the paste-type nickel electrode can be improved and the active material utilization can be improved. It was confirmed that the rate could be made stable with little variation.

【0028】[0028]

【発明の効果】以上詳述した如く、本発明によれば活物
質利用率を向上させ、かつその活物質利用率をバラツキ
の少ない安定したものとすることが可能なアルカリ二次
電池用のペースト式電極を提供することができる。
As described above in detail, according to the present invention, a paste for an alkaline secondary battery capable of improving the active material utilization rate and stabilizing the active material utilization rate with less variation. A formula electrode can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化コバルト粉末中のCo2 3 量に対するペ
ースト式ニッケル正極の活物質利用率の変化を示す特性
図。
FIG. 1 is a characteristic diagram showing a change in the active material utilization rate of a paste nickel positive electrode with respect to the amount of Co 2 O 3 in a cobalt oxide powder.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 耐アルカリ性金属多孔体に活物質合剤
充填したアルカリ二次電池用のペースト式電極におい
て、 前記活物質合剤は、正極活物質または負極活物質と、C
2 3 を含有するCoO粉末とを含み、JISM823
3.4に規定する方法により測定された前記CoO粉末
中の前記Co 2 3 含有量が6重量%以下であることを特
徴とするアルカリ二次電池用のペースト式電極。
1. A paste-type electrode for an alkaline secondary battery in which an alkali-resistant metal porous body is filled with an active material mixture , wherein the active material mixture comprises : a positive electrode active material or a negative electrode active material;
CoO powder containing o 2 O 3 and JIS M823.
The CoO powder measured by the method specified in 3.4.
A paste electrode for an alkaline secondary battery , wherein the content of Co 2 O 3 therein is 6% by weight or less .
JP12730092A 1992-05-20 1992-05-20 Paste electrode for alkaline secondary battery Expired - Lifetime JP3250840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12730092A JP3250840B2 (en) 1992-05-20 1992-05-20 Paste electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12730092A JP3250840B2 (en) 1992-05-20 1992-05-20 Paste electrode for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JPH05325956A JPH05325956A (en) 1993-12-10
JP3250840B2 true JP3250840B2 (en) 2002-01-28

Family

ID=14956553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12730092A Expired - Lifetime JP3250840B2 (en) 1992-05-20 1992-05-20 Paste electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP3250840B2 (en)

Also Published As

Publication number Publication date
JPH05325956A (en) 1993-12-10

Similar Documents

Publication Publication Date Title
EP0817291B1 (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JP4458725B2 (en) Alkaline storage battery
JPH11144723A (en) Non-sintered nickel electrode for sealed alkaline storage battery
JP3250840B2 (en) Paste electrode for alkaline secondary battery
JPH11219701A (en) Unsintered nickel electrode for sealed alkaline storage battery and battery
JP3408008B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3067928B2 (en) Paste electrode for alkaline secondary battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3188000B2 (en) Non-sintered nickel positive electrode
JP3268989B2 (en) Nickel electrode for alkaline storage battery
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2975129B2 (en) Electrodes for alkaline storage batteries
JPH05325955A (en) Paste type electrode for alkaline secondary battery
JP3073259B2 (en) Nickel electrode for alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP3789702B2 (en) Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery
JP2975130B2 (en) Electrodes for alkaline storage batteries
JP2001250538A (en) Non-sintered nickel pole for alkaline battery
JPH10294109A (en) Nonsintered nickel pole for alkaline storage battery
JPH04332471A (en) Nickel pole for alkaline storage battery
JP2001043856A (en) Non-sintered nickel electrode for alkali storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11