JP3244761B2 - Method of generating interpolation between teaching points of PTP type robot - Google Patents

Method of generating interpolation between teaching points of PTP type robot

Info

Publication number
JP3244761B2
JP3244761B2 JP07081792A JP7081792A JP3244761B2 JP 3244761 B2 JP3244761 B2 JP 3244761B2 JP 07081792 A JP07081792 A JP 07081792A JP 7081792 A JP7081792 A JP 7081792A JP 3244761 B2 JP3244761 B2 JP 3244761B2
Authority
JP
Japan
Prior art keywords
teaching
interpolation
points
point
teaching point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07081792A
Other languages
Japanese (ja)
Other versions
JPH05274026A (en
Inventor
泰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07081792A priority Critical patent/JP3244761B2/en
Publication of JPH05274026A publication Critical patent/JPH05274026A/en
Application granted granted Critical
Publication of JP3244761B2 publication Critical patent/JP3244761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、PTP型ロボットの教
示点間の補間発生方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for generating interpolation between teaching points of a PTP type robot.

【0002】[0002]

【従来の技術】従来のPTP型ロボットの教示点間の補
間発生方法を図2を参照して説明する。一定の経路に沿
って移動するロボットのアームに対し、複数の教示点P
0 、P 1 、P2 を与える教示方法では、ロボットに付設
した演算処理装置(図示省略)は、教示点P0 から教示
点P1 まで一定速度vで移動するために、複数の補間点
1(1)、H1(2)…H1(n)、を予め求め、演算処理装置付
設の記憶部に記憶しておくか、随時演算してロボットを
動作させる。また、教示点P1 からP2 までの補間点H
2(1)、H2(2)…H2(n)に対しても同様である。
2. Description of the Related Art Compensation between teaching points of a conventional PTP type robot.
The method for generating the interval will be described with reference to FIG. Along a certain route
A plurality of teaching points P for the robot arm
0, P 1, PTwoThe teaching method that gives
The arithmetic processing device (not shown) that has0Teaching from
Point P1Multiple interpolation points to move at a constant speed v up to
H1 (1), H1 (2)... H1 (n), Is obtained in advance, with an arithmetic processing unit
The robot can be stored in the storage
Make it work. Also, the teaching point P1To PTwoInterpolation point H up to
2 (1), H2 (2)... H2 (n)The same applies to.

【0003】即ち、従来のPTP型ロボットの教示点間
の補間発生方法では、教示点P0 から教示点P1 までの
距離をサンプリング時間に合わせて速度vとなるように
補間し、各補間点H1(1)、H1(2)…H1(n)に対して演算
或は記憶部からサンプリングして該位置となるように作
動させ、次の教示点P1 においては次なる教示点P2
向かって同様に補間点H2(1)、H2(2)…H2(n)を参照し
て動く。従って、補間点H1(1)、H1(2)…H1(n)、H
2(1)、H2(2)…H2(n)の間の距離sは、常に一定であ
り、次式で示される。 s=v×Δt 但し、vはロボットの速度、Δtはサンプリングタイム
である。
[0003] That is, the interpolation generating method between the teaching of the conventional PTP robot interpolates the distance from the teaching point P 0 to the teaching point P 1 such that the velocity v in accordance with the sampling time, each interpolation point H 1 (1) , H 1 (2) ... H 1 (n) are operated or sampled from the storage unit and operated so as to be at the position, and at the next teaching point P 1 , the next teaching point P Similarly interpolation points towards the 2 H 2 (1), move with reference to H 2 (2) ... H 2 (n). Therefore, interpolation points H 1 (1) , H 1 (2) ... H 1 (n) , H
The distance s between 2 (1) , H 2 (2) ... H 2 (n) is always constant and is expressed by the following equation. s = v × Δt where v is the speed of the robot and Δt is the sampling time.

【0004】[0004]

【発明が解決しようとする課題】前記した従来の補間発
生方法では、補間点間の距離を等しく間隔で与える為、
ロボットのアームを一定速度vで動作させることが出来
るが、教示点P1 に於てロボットを方向転換する場合に
は制御上の問題が発生する。即ち、教示点P0 、教示点
1 を結ぶ直線と、教示点P1 と教示点P2 とを結ぶ直
線とが大きく変化する教示点P1 では、ロボット自体に
衝撃を与え振動を発生させたり、破損事故に繋がる虞が
あった。
In the above-described conventional interpolation generating method, since the distance between interpolation points is given at equal intervals,
It is possible to operate the arm of the robot at a constant velocity v, but the control problems can occur in the case of turning the robot At a teaching point P 1. In other words, the teaching point P 0, the straight line connecting the teaching points P 1, the teaching point P 1 linear and varies greatly connecting the teaching points P 1 and the teaching point P 2, vibration is generated impact to the robot itself Or it may lead to a breakage accident.

【0005】本発明は、上記従来技術に鑑みてなされた
ものであり、方向転換する教示点おおいて減速させるこ
とのできるPTP型ロボットの教示点間の補間発生方法
を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned prior art, and provides an interpolation generating method between teaching points of a PTP type robot capable of decelerating at teaching points for changing directions.

【0006】[0006]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は教示点Pi-1 、Pi 、Pi+1 を与え、教示
点Pi-1 、Pi を結ぶ直線と教示点Pi 、Pi+1 を結ぶ
直線との交点での角度θi を求め、教示点Pi と教示点
i+1 の間における二つの補間点Hi(j),Hi(j+1)間の
距離si(j)を下式に基づいて算出することを特徴とする
PTP型ロボットの教示点間の補間発生方法である。 si(j)=vi ×Δt×ki(j) 但し、vi はロボットアームの教示点Pi から教示点P
i+1 間の移動速度、Δtはサンプリング時間、 ki(j)、速度v i で移動する区間は1とし、方向転換
を行なう教示点付近の補間においては、角度θ i に応じ
て1より小さい値となる、下式で示す補正係数である。 ki(j)=f(j、θi
According to the structure of the present invention for achieving the above object, the teaching points P i−1 , P i , P i + 1 are given, and a straight line connecting the teaching points P i−1 , P i is formed. teaching point P i, obtains an angle theta i at the intersection of a line drawn from P i + 1, the two interpolation points between the teaching points P i of the teaching point P i + 1 H i (j ), H i ( This is a method for generating an interpolation between teaching points of a PTP type robot, wherein a distance s i (j ) between j + 1) is calculated based on the following equation. s i (j) = v i × Δt × k i (j) However, v i is the teaching point P from the teaching point P i of the robot arm
moving speed between i + 1, Delta] t is the sampling time, k i (j) is the section which moves at a velocity v i is set to 1, turning
In interpolation around the teaching point to perform, depending on the angle theta i
Is a correction coefficient represented by the following equation. k i (j) = f (j, θ i )

【0007】[0007]

【作用】教示点間の補間点は、教示点における方向転換
の角度に対応して決定する。例えば、方向を大きく転換
する教示点付近の補間点間の距離は、小さく方向変換す
る場合に比較して、短くする。このことによって、大き
く方向転換を行う教示点付近でのロボットは減速し、そ
の為、衝撃を緩和することが出来る。
The interpolation point between the teaching points is determined in accordance with the direction change angle at the teaching point. For example, the distance between the interpolation points near the teaching point where the direction is largely changed is set shorter than when the direction is changed smaller. As a result, the robot in the vicinity of the teaching point where the direction is largely changed decelerates, and therefore, the impact can be reduced.

【0008】[0008]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図1に本発明の一実施例を示
す。本実施例は、例えば、塗装用ロボットに適用される
ものである。即ち、ロボットのアームに対してPTP方
式で教示点Pi-1 、Pi 、Pi+1 …を与える際、演算装
置(図示省略)は教示点Pi-1 、Pi の間に複数の補間
点H i(1)、Hi(2)…Hi(m)を以下の手順によって求め
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
This will be described in detail with reference to FIG. FIG. 1 shows an embodiment of the present invention.
You. This embodiment is applied to, for example, a painting robot.
Things. That is, the PTP method for the robot arm
Teaching point Pi-1, Pi, Pi + 1When giving ...
The position (not shown) is the teaching point Pi-1, PiMultiple interpolation between
Point H i (1), Hi (2)... Hi (m)By the following procedure
You.

【0009】(1)教示点Pi-1 と教示点Pi を結ぶ直
線をLi-1 とし、教示点Pi と教示点Pi+1 を結ぶ直線
をLi とし、直線Li-1 と直線Li との交点の角度θi
(deg)を求める。
(1) A straight line connecting the teaching point P i-1 and the teaching point P i is defined as L i-1 , a straight line connecting the teaching point P i and the teaching point P i + 1 is defined as L i , and the straight line L i- angle θ i of intersection between the 1 and the straight line L i
(deg).

【0010】(2)補正係数ki(j)を求める。本実施例
では、補正係数をki(1)=θi /180、ki(m)=θ
i+1 /180、他はki(j)=1とした。即ち、直線移動
する区間である補間点(j≒1,m)の補正係数ki(j)
を1とし、方向変換を行う教示点付近の補間点(j=
1,m)に対しては補正係数をki(j)=θi /180、
θi+1 /180とする。何れにしても、方向転換する教
示点付近の補間点は、他の直線移動する区間である補間
点に比較して、間隔が短くなっている。また、補正係数
i(j)は、直線Li-1 と直線Li の交点角度θi が大き
いときには、ロボットは殆ど方向転換しないので大きく
し、逆に直線Li-1 と直線Liの交点角度θi が小さい
ときには大きく方向転換するので、小さくしている。
(2) A correction coefficient k i (j) is obtained. In this embodiment, the correction coefficients are k i (1) = θ i / 180 and k i (m) = θ
i + 1/180, and others were set to k i (j) = 1. That is, the correction coefficient k i (j) of the interpolation point (j ≒ 1, m) which is a section that moves linearly.
Is set to 1 and an interpolation point (j =
1, m), the correction coefficient is k i (j) = θ i / 180,
θ i + 1/180. In any case, the interval between the interpolation points near the teaching point at which the direction is changed is shorter than the interpolation points which are the other sections that move linearly. Further, the correction coefficient k i (j) is the straight line L when i-1 and the straight line L i intersection angle theta i of is large, and large since the robot hardly turning, straight Conversely L i-1 and the straight line L i When the intersection angle θ i is small, the direction is largely changed, so that it is set small.

【0011】(3)次に、補間点Hi(j)と補間点H
i(j+1)間の距離をsi(j)を次式に基づいて算出する。 si(j)=vi ×Δti ×ki(j) 但し、vi はロボットアームの教示点Pi から教示点P
i+1 への移動速度、Δti はサンプリング時間、であ
る。
(3) Next, the interpolation points H i (j) and H
i a (j + 1) the distance between s i (j) is calculated based on the following equation. s i (j) = v i × Δt i × k i (j) where, v i is the teaching point P from the teaching point P i of the robot arm
The moving speed to i + 1 , Δt i is the sampling time.

【0012】以上の算出式で求められる補間位置Hi(j)
に対してロボットは、次のように動作する。先ず、ロボ
ットは、教示点Pi-1 から前記の算出式で求めた各補間
点間の距離si-1(j)(=vi-1 ×Δti-1 ×ki-1(j)
に従う補間点Hi-1(1),Hi-1(2),…Hi-1(j),H
i-1(j+1)…Hi-1(n)をたどって動く。ここで、補間点H
i-1(2)から補間点Hi-1(n-1)までは直線で動作させるこ
とが出来るため、動作速度を早くしても問題無い。従っ
て、補正係数Ki-1(1),Ki- 1(2),…Ki-1(j),K
i-1(j+1),ki-1(n-1)を1として各補間点間の距離s
i-1( j)を算出する。
The interpolation position H i (j) obtained by the above equation
The robot operates in the following manner. First, the robot moves from the teaching point P i-1 to the distance s i-1 (j) (= v i-1 × Δt i-1 × k i-1 (j ) )
, H i-1 (1) , H i-1 (2) ,... H i-1 (j) , H
i-1 (j + 1) ... H i-1 (n) follows. Here, the interpolation point H
Since the operation from i-1 (2) to the interpolation point H i-1 (n-1) can be performed in a straight line, there is no problem even if the operation speed is increased. Therefore, the correction coefficients Ki-1 (1) , Ki- 1 (2) , ... Ki-1 (j) , K
The distance s between the interpolation points, where i-1 (j + 1) and k i-1 (n-1) are set to 1.
Calculate i-1 ( j) .

【0013】しかしながら、教示点Pi に近付くに従っ
て、速度を遅くする必要が有るためj=nでは補正係数
i-1(n)=θi /180を用いて各補間点間の距離s
i-1(n)(=vi-1 ×Δti-1 ×ki-1(n))を算出する。
つまり、方向転換する教示点付近の補間点は、他の直線
移動する区間である補間点に比較して、間隔を短くする
のである。次いで、教示点Pi から次の教示点Pi+1
向かうが、この教示点Pi 付近の補間点Hi(1)も補正係
数ki(j)=θi /180を用いて各補間点間の距離s
i(j)(=vi ×Δti ×ki(j))を算出する。このこと
によって、ロボットは曲がり教示点付近での速度を減速
させることが出来る。
However, it is necessary to reduce the speed as approaching the teaching point P i. Therefore, when j = n, the distance s between the interpolation points is calculated using the correction coefficient k i-1 (n) = θ i / 180.
i−1 (n) (= v i−1 × Δt i−1 × ki -1 (n) ) is calculated.
That is, the interval between the interpolation points near the teaching point at which the direction is changed is shorter than that of the interpolation points which are other linearly moving sections. Then, although directed from the teaching point P i to the next teaching point P i + 1, the interpolation point H i (1) in the vicinity of the teaching point P i be the using the correction coefficient k i (j) = θ i / 180 Distance s between interpolation points
to calculate the i (j) (= v i × Δt i × k i (j)). This allows the robot to reduce the speed near the bend teaching point.

【0014】このように補間式で求められた補間点に対
してロボットは、直線においては一定速度で移動し、方
向転換する教示点付近ではでは減速して動作させること
が出来る。その為、従来に比して方向転換する教示点で
の衝撃を和らげることができる。また、曲がり角度θi
が小さい場合においては、従来ではサーボ機構の遅れの
ため曲がり教示点のかなり手前で方向転換を行っていた
が、本発明の補間点法によれば教示点の直前で減速する
ことができる。
The robot can move at a constant speed in a straight line with respect to the interpolation point obtained by the interpolation formula, and can operate at a reduced speed near the teaching point where the direction changes. Therefore, the impact at the teaching point where the direction changes can be reduced as compared with the related art. In addition, the bending angle θ i
In the case where is small, in the past, the direction was changed considerably before the bend teaching point due to the delay of the servo mechanism, but according to the interpolation point method of the present invention, it is possible to decelerate immediately before the teaching point.

【0015】尚、本実施例では加速側と減速側の両方の
係数を変えたが、この場合、θi はPi+1 が確定するま
で決まらないためHi-1(n)が定まらない欠点がある。そ
の対策としてはki-1(n)=1、ki(1)=θi /180と
すれば、Pi 確定と同時にH i-1(n)が定まり、かつk
i(1)の値により衝撃をやわらげることができる。
In this embodiment, both the acceleration side and the deceleration side are used.
The coefficients were changed, in this case θiIs Pi + 1Until is confirmed
Because it is not decided by Hi-1 (n)There is a disadvantage that is not determined. So
As a countermeasure fori-1 (n)= 1, ki (1)= Θi/ 180 and
Then, PiH at the same time as confirmation i-1 (n)Is determined and k
i (1)The value can reduce the impact.

【0016】[0016]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明のPTP型ロボットの教示点間の補間
発生方法によれば、方向転換する教示点付近において減
速させて衝撃を緩和することができるので、従来に比較
してより正確な移動を行わせることができる。
As described above in detail with reference to the embodiment, according to the method of generating interpolation between teaching points of the PTP type robot according to the present invention, the impact is reduced by decelerating near the teaching point where the direction changes. Since the movement can be eased, more accurate movement can be performed as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における教示点に対する補間
点の配置を示す説明図である。
FIG. 1 is an explanatory diagram showing an arrangement of interpolation points with respect to teaching points in one embodiment of the present invention.

【図2】従来の教示点に対する補間点の配置を示す説明
図である。
FIG. 2 is an explanatory diagram showing a conventional arrangement of interpolation points with respect to teaching points.

【符号の説明】[Explanation of symbols]

i-1 ,Pi ,Pi+1 教示点 Hi-1(1),Hi-1(2),…Hi-1(n),Hi(1),Hi(2),…
i(m) 補間点
Pi-1 , Pi , Pi + 1 Teaching points Hi-1 (1) , Hi-1 (2) , ... Hi-1 (n) , Hi (1) , Hi (2) ,…
Hi (m) interpolation point

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G05B 19/18 - 19/46 B25J 3/00 - 3/04 B25J 9/10 - 9/22 B25J 13/00 - 13/08 B25J 19/02 - 19/06 ────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G05B 19/18-19/46 B25J 3/00-3/04 B25J 9/10-9/22 B25J 13 / 00-13/08 B25J 19/02-19/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 教示点Pi-1 、Pi 、Pi+1 を与え、教
示点Pi-1 、Pi を結ぶ直線と教示点Pi 、Pi+1 を結
ぶ直線との交点での角度θi を求め、教示点Pi と教示
点Pi+1 の間における二つの補間点Hi(j),Hi(j+1)
の距離si(j)を下式に基づいて算出することを特徴とす
るPTP型ロボットの教示点間の補間発生方法。 si(j)=vi ×Δt×ki(j) 但し、vi はロボットアームの教示点Pi から教示点P
i+1 間の移動速度、Δtはサンプリング時間、 ki(j)、速度v i で移動する区間は1とし、方向転換
を行なう教示点付近の補間においては、角度θ i に応じ
て1より小さい値となる、下式で示す補正係数である。 ki(j)=f(j、θi
1. A teaching point P i−1 , P i , P i + 1 is given, and an intersection of a straight line connecting the teaching points P i−1 , P i and a straight line connecting the teaching points P i , P i + 1. obtains the angle theta i at, two interpolation points H i between the teaching points P i of the teaching point P i + 1 (j), H i (j + 1) the distance between s i (j) the formula A method for generating an interpolation between teaching points of a PTP type robot, wherein the interpolation is performed based on the following. s i (j) = v i × Δt × k i (j) However, v i is the teaching point P from the teaching point P i of the robot arm
moving speed between i + 1, Delta] t is the sampling time, k i (j) is the section which moves at a velocity v i is set to 1, turning
In interpolation around the teaching point to perform, depending on the angle theta i
Is a correction coefficient represented by the following equation. k i (j) = f (j, θ i )
JP07081792A 1992-03-27 1992-03-27 Method of generating interpolation between teaching points of PTP type robot Expired - Fee Related JP3244761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07081792A JP3244761B2 (en) 1992-03-27 1992-03-27 Method of generating interpolation between teaching points of PTP type robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07081792A JP3244761B2 (en) 1992-03-27 1992-03-27 Method of generating interpolation between teaching points of PTP type robot

Publications (2)

Publication Number Publication Date
JPH05274026A JPH05274026A (en) 1993-10-22
JP3244761B2 true JP3244761B2 (en) 2002-01-07

Family

ID=13442510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07081792A Expired - Fee Related JP3244761B2 (en) 1992-03-27 1992-03-27 Method of generating interpolation between teaching points of PTP type robot

Country Status (1)

Country Link
JP (1) JP3244761B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538859B2 (en) * 1999-03-31 2010-09-08 株式会社安川電機 Industrial robot

Also Published As

Publication number Publication date
JPH05274026A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP2524931B2 (en) Robot linear interpolation method
US5276383A (en) Route interpolation method for robot
JP3244761B2 (en) Method of generating interpolation between teaching points of PTP type robot
JPS59163614A (en) Driving of industrial robot in coordinate system alien to robot dynamic motion
KR100842978B1 (en) Servo control method
JP3460761B2 (en) Robot control device
WO1994017461A1 (en) Apparatus for controlling weaving of robot
JPH07120215B2 (en) Robot control method
JP2737725B2 (en) Robot control device and method
JP3121920B2 (en) Acceleration / deceleration control device
EP0605909B1 (en) Controller
JPH0818264B2 (en) Robot control method
JPH09267281A (en) Tracer control device and method of multiarticulate robot
JPS61253504A (en) Controller for circular arc locus of robot
JPH0258106A (en) Accelerating/decelerating time constant control system
JP2645551B2 (en) Robot controller
KR940002207B1 (en) Linear compensating method of robot
JPH05324086A (en) Servo motor control system
KR940001204B1 (en) Method of compensating linear movement of robot
JP2563318B2 (en) Position control device for industrial machinery
JPH0315908A (en) Acceleration/deceleration method for locus direction of moving member
Goto et al. A Modified Speed Data Method for Position Control of Mechanical Servo Systems
JPH05282032A (en) Track controller
JPH0346006A (en) Locus control method for numeric controller
JPH04257001A (en) Gain scheduling

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

LAPS Cancellation because of no payment of annual fees