JP3243499B2 - Earthquake prediction method by monitoring fault displacement and volume displacement - Google Patents

Earthquake prediction method by monitoring fault displacement and volume displacement

Info

Publication number
JP3243499B2
JP3243499B2 JP16430098A JP16430098A JP3243499B2 JP 3243499 B2 JP3243499 B2 JP 3243499B2 JP 16430098 A JP16430098 A JP 16430098A JP 16430098 A JP16430098 A JP 16430098A JP 3243499 B2 JP3243499 B2 JP 3243499B2
Authority
JP
Japan
Prior art keywords
fault
displacement
plane
earthquake
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16430098A
Other languages
Japanese (ja)
Other versions
JPH11337651A (en
Inventor
昌幸 小杉
勇記 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP16430098A priority Critical patent/JP3243499B2/en
Publication of JPH11337651A publication Critical patent/JPH11337651A/en
Application granted granted Critical
Publication of JP3243499B2 publication Critical patent/JP3243499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、断層の微小変位
及び岩盤の体積変位を計測監視することで地震発生の危
険度を予測する方法に関し、特に断層のすべり現象や地
震発生に関連した変形挙動を計測評価して地震発生を予
測する技術分野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the risk of earthquake occurrence by measuring and monitoring minute displacement of a fault and volume displacement of a bedrock, and more particularly to a deformation behavior associated with a slip phenomenon of a fault and an earthquake occurrence. The technical field of predicting earthquake occurrence by measuring and evaluating the earthquake.

【0002】[0002]

【従来の技術】従来より、地震工学あるいは地球物理学
の分野において、地震発生を予知あるいは予測すべく、
岩盤内を伝播する予震の地震波形計測や岩盤内のひずみ
エネルギに関連した体積ひずみ計測が行われている。そ
して、かかる岩盤内の地震動に関連する振動計測として
は、一般に地震計、加速度計によるものが採用されてい
る。これら従来の計測の内、地震波形計測は、「地震発
生に関連した断層のすべり現象が発生する前に微小のす
べり破壊に関連した微小地震が発生する」との仮定のも
とに、岩盤内を伝播する微小地震の波形を共振する振動
子の振幅あるいは振動圧力として計測してその後に発生
する地震を予知あるいは予測しようとするものであっ
た。
2. Description of the Related Art Conventionally, in the field of earthquake engineering or geophysics, to predict or predict the occurrence of an earthquake,
Measurements of seismic waveforms of prequakes propagating in the rock and volumetric strain related to the strain energy in the rock have been performed. In general, seismometers and accelerometers are used as vibration measurements related to such seismic motion in rock. Of these conventional measurements, seismic waveform measurement is based on the assumption that a microearthquake related to a small slip failure occurs before a slip phenomenon of a fault related to an earthquake occurs. The purpose of this study was to predict or predict the subsequent earthquake by measuring the waveform of a microearthquake propagating through the ground as the amplitude or vibration pressure of a vibrating resonator.

【0003】他方、かかる岩盤内の地震動に関連するひ
ずみ計測としては、一般に岩盤深くまで穿孔したボアホ
ール空洞の変形から岩盤のひずみ量を評価するものが採
用されている。この従来のひずみ計測は、地震発生の要
因となる地殻あるいはプレートのひずみエネルギに関連
した岩盤ひずみ量の増加傾向を把握することによって地
震発生を予知あるいは予測しようとするものであった。
On the other hand, as the strain measurement related to the seismic motion in the rock, a method of evaluating the strain amount of the rock from the deformation of a borehole cavity drilled deep into the rock is generally employed. This conventional strain measurement is intended to predict or predict the occurrence of an earthquake by grasping the increasing tendency of the amount of rock strain related to the strain energy of the crust or plate, which causes the occurrence of an earthquake.

【0004】ところで地震は、プレートテクニクスで明
らかにされているように、マントルの流動に密接に関連
する地殻プレートの移動によって蓄積されたひずみエネ
ルギが地下深部の断層などにおいて急激に解放される現
象とされており、その多くはプレートがぶつかり合うト
ランスフォーム(プレート境界面)において地震や岩盤
破壊の履歴をもつ既存の破壊面である断層において発生
している。
[0004] By the way, the earthquake is a phenomenon that, as revealed by plate technics, the strain energy accumulated by the movement of the crustal plate closely related to the flow of the mantle is rapidly released in a deep underground fault or the like. Many of these have occurred on existing faults, faults that have a history of earthquakes and rock failures at the plate-impacting transform (plate boundary).

【0005】つまり、地震工学的には、材料欠損部分の
降伏すべり現象であり、ひずみエネルギが断層近傍に誘
起した応力状態を限界条件として断層が降伏し、すべり
による地殻のポテンシャルエネルギと振動による運動エ
ネルギとして逐次解放されるスティックスリップ挙動を
呈するとされている。このような降伏を力学的に把握す
るには、応力分布や変形挙動が定性的にほぼ一定なトラ
ンスフォームにおいて直接的に断層微小挙動と応力変化
を検知することによってはじめて降伏時期やその範囲、
規模などが高い確度で推察される。
[0005] In other words, in seismic engineering, it is a yield-slip phenomenon in a material-deficient portion. The fault yields under the stress condition in which the strain energy is induced near the fault, and the crustal potential energy due to the slip and motion due to vibration. It is said to exhibit stick-slip behavior that is sequentially released as energy. In order to grasp such yielding mechanically, it is necessary to directly detect the fault microscopic behavior and stress change in a transform in which the stress distribution and deformation behavior are qualitatively almost constant.
The scale etc. are inferred with high accuracy.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の地震
計、加速度計による地震波形計測は、断層が降伏する力
学的挙動に直接的に関連する現象を対象として計測して
いるわけではなく、場合によっては発生することがある
小規模な断層の降伏によるすべり変形を前兆と仮定して
その震動から予測評価を試みる方法であった。又、従来
の岩盤内の体積ひずみ計測は、岩盤内のひずみエネルギ
の上昇を把握するものであり、断層に降伏すべりをもた
らす原因のひずみは検知されるものの、その降伏の限界
を知るデータとはならなかった。
However, the seismic waveform measurement by the conventional seismometers and accelerometers does not measure phenomena directly related to the mechanical behavior of the fault yielding. In this method, a slip deformation due to the yielding of a small-scale fault, which may occur in some cases, was assumed to be a precursor, and a prediction evaluation was attempted from the vibration. Conventional volumetric strain measurement in rocks is to grasp the rise of strain energy in the rocks, and the strain that causes yield slip on the fault is detected, but the data to know the limit of the yield is not did not become.

【0007】即ち、これら従来の地震波形計測や体積ひ
ずみ計測による地震予測方法では、断層の降伏すべりで
ある地震現象を予知しようとはするものの、断層の降伏
に至る挙動やメカニズムを直接的に計測する手段ではな
かったため、これら従来の計測から地震の時期やその範
囲、規模などを高い確度で予知評価することは困難であ
った。
In other words, these conventional earthquake prediction methods based on seismic waveform measurement and volume strain measurement attempt to predict the seismic phenomenon, which is the yield slip of a fault, but directly measure the behavior and mechanism leading to the yield of the fault. Therefore, it was difficult to predict and evaluate the timing, range, scale, etc. of the earthquake with high accuracy from these conventional measurements.

【0008】このように地震発生の原因となる断層の微
小挙動と断層周辺の体積変位の計測から地震発生を予知
した例は未だ無く、又地表面の変位データから導いたひ
ずみエネルギ分布と断層の微小挙動との関係を計測及び
評価した例もなかった。これは、上述したように従来の
地震計、加速度計が、地震動の発生を計測するものであ
ったため、大規模な地震発生の前に微小地震が規則的に
発生しない限り地震予知の手段としては有効にならなか
ったのに加え、従来の岩盤内体積ひずみ計測が断層の降
伏現象に関連しない地震の要因のみを計測するに過ぎな
かったため、これら従来の計測では地震の発生規模と発
生時期を予知評価できなかったのである。
[0008] As described above, there is no example of predicting the occurrence of an earthquake based on the measurement of the micro-behavior of the fault causing the occurrence of the earthquake and the volume displacement around the fault. There was no example of measuring and evaluating the relationship with the minute behavior. This is because, as mentioned above, conventional seismometers and accelerometers measure the occurrence of seismic ground motion, so unless a small earthquake regularly occurs before a large-scale earthquake occurs, it is a means of earthquake prediction. In addition to not being effective, conventional volumetric strain measurements in rock only measure the factors of earthquakes that are not related to fault yielding phenomena, so these conventional measurements predict the magnitude and timing of earthquakes. It could not be evaluated.

【0009】又、地震が岩盤欠損部分である断層の降伏
すべり現象であることを力学的に考えれば、その降伏に
至る挙動プロセスやメカニズムの把握が地震予知に不可
欠であり、地震の発生箇所である断層近傍あるいは断層
を含むトランスフォーム(プレート境界面)における微
小挙動の直接的な計測把握が初めて地震を予知するため
の手がかりとなるはずである。
[0009] Further, if it is considered mechanically that the earthquake is the yield slip phenomenon of a fault which is a rock mass defect, it is indispensable to grasp the behavior process and mechanism leading to the yield for earthquake prediction. For the first time, direct measurement and understanding of microscopic behavior near a fault or in a transform (plate boundary surface) including a fault should provide clues for earthquake prediction.

【0010】しかるに、従来の計測では、地震発生源で
ある断層を直接的に計測するものではなく、仮に従来の
変位計や圧力計を用いて地表あるいは地下空洞の岩盤で
これらの計測を行うとしても、地表や地下空洞における
ゆるみ領域、岩盤や亀裂などの風化、微小亀裂や地下水
などの影響を被る現象を計測せざるを得ず、微小な現象
を評価できないとする問題があった。
However, the conventional measurement does not directly measure the fault which is the source of the earthquake, but supposes that these measurements are performed on the ground surface or underground rock using a conventional displacement gauge or pressure gauge. In addition, there is a problem that it is necessary to measure phenomena affected by loose areas on the ground surface and underground cavities, weathering of rocks and cracks, microcracks, groundwater, and the like, and it is not possible to evaluate microscopic phenomena.

【0011】この発明は、上記のような従来の問題点を
鑑みてなされたものであり、地震の発生箇所である断層
近傍あるいは断層を含むトランスフォームにおける微小
挙動の直接的な計測を行い、断層が降伏すべり現象を起
こす挙動プロセスやメカニズムを把握すると共に、大規
模な地震発生前の微小地震が規則的に発生しなくとも地
震予知が可能で、又地震の発生時期やその範囲、規模な
どが高い確度で予知評価可能な断層変位及び体積変位監
視による地震予測方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and directly measures a microscopic behavior near a fault where an earthquake occurs or in a transform including the fault. The process and mechanism that causes the yield-slip phenomenon can be understood, and earthquake prediction can be made even if a small earthquake before a large-scale earthquake does not occur regularly. It is an object of the present invention to provide an earthquake prediction method by monitoring fault displacement and volume displacement which can be predicted and evaluated with high accuracy.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、この発明の断層変位及び体積変位監視による地震予
測方法は、地震の発生箇所となる地殻プレート等の境界
面トランスフォーム内にある断層面や地表近傍の活断層
面あるいはそれらの近傍において地震発生の降伏すべり
に至るプロセスの変形挙動と地震発生の要因となる岩盤
内孔井の体積変位から導く応力変化を直接的に断層ある
いは断層を含むトランスフォーム内で計測するものであ
り、すべり現象を発生する直前の断層面上の岩石微小破
壊や塑性変形に関連する挙動から地震発生の危険度を予
測することを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a method for predicting an earthquake by monitoring fault displacement and volume displacement, wherein a fault plane in a boundary transform such as a crustal plate or the like where an earthquake occurs is located. Involvement of the deformation behavior of the process leading to the yield-slip of an earthquake at or near an active fault plane near or at the surface and the stress change derived from the volumetric displacement of a borehole in a rock mass that causes an earthquake It is measured in the transform, and is characterized by predicting the risk of earthquake occurrence from the behavior related to rock microfracture and plastic deformation on the fault plane immediately before the occurrence of the slip phenomenon.

【0013】地震発生の要因となるひずみエネルギが蓄
積されている断層面あるいはその境界面に含まれる断層
面を横断してボアホールを穿孔して、断層面を挟んで両
岩盤の相対変化を三次元的に計測する断層変位計測装置
を設置し、更に断層近傍岩盤内の体積変化の計測から応
力変化を評価する体積変位計測装置を設置し、これらの
三次元微少変位計測データ及び三次元微小体積変位計測
データから断層の微小変形と断層近傍岩盤の応力変化を
計測評価する。
[0013] A borehole is drilled across a fault plane in which strain energy causing an earthquake is accumulated or a fault plane included in the boundary plane, and the relative change between the two rocks is three-dimensionally sandwiched by the fault plane. A three-dimensional micro-displacement measurement data and three-dimensional micro-displacement measurement data are installed, and a three-dimensional micro-displacement measurement device is installed. From the measurement data, the micro deformation of the fault and the stress change of the rock near the fault are measured and evaluated.

【0014】この断層の微小変形と断層近傍岩盤の応力
変化から、断層のすべり現象を発生させる方向の変位ベ
クトルとその方向の応力変化との相関関係を導くと共に
断層面に垂直方向の微少変位と応力変化の相関関係も併
せて導く。更に、上記計測評価の結果を経時変化として
整理し、その両者の相関関係における変形率を併せて監
視する。
From the microdeformation of the fault and the stress change of the rock near the fault, the correlation between the displacement vector in the direction in which the slip phenomenon of the fault occurs and the stress change in that direction is derived, and the small displacement in the direction perpendicular to the fault plane is obtained. The correlation of the stress change is also derived. Further, the results of the above-described measurement and evaluation are arranged as changes with time, and the deformation rate in the correlation between the two is also monitored.

【0015】地震発生の力学的なメカニズムはすべり破
壊の履歴を被った断層が再び降伏してすべり現象を呈す
るものであり、その降伏限界に到達する前には断層面上
の局所的な応力集中に伴う岩石微小破壊や塑性変形現象
が現れる。このような微小破壊や塑性変形に伴って発生
する応力波や電磁波などを計測する従来の間接的な方法
に変わり、断層の微小変形及び断層近傍の体積変位に基
づく応力変化を直接的に監視し、この手段によってこれ
らの前兆現象を変形率などの変化として識別して地震の
発生時期や発生危険度を評価するものである。
The mechanical mechanism of earthquake occurrence is that a fault that has undergone slip rupture has yielded again and exhibits a slip phenomenon, and local stress concentration on the fault plane before reaching the yield limit. Rock microfracture and plastic deformation phenomena appear. Instead of the conventional indirect method of measuring stress waves and electromagnetic waves generated by such micro-destruction and plastic deformation, it directly monitors the micro-deformation of the fault and the stress change based on the volume displacement near the fault. By this means, these precursor phenomena are identified as changes in the deformation rate and the like, and the occurrence time and occurrence risk of the earthquake are evaluated.

【0016】孔井は岩盤内に存在する断層面を横断して
穿孔し、この孔井内に設置される断層変位計測装置は、
断層を挟む岩盤内に各々独立して固定設置された計測部
及びセンサ部間の相対的な微小変位を三次元的に計測
し、又上記孔井内に設置する体積変位計測装置は、断層
が無い連続した岩盤内に各々独立して固定設置された計
測部及びセンサ部間の相対的な微少変位とセンサ部周囲
の孔井壁面の微小変位を計測することで三次元的な体積
変位を得る。
The borehole is drilled across a fault plane existing in the rock, and a fault displacement measuring device installed in the borehole is:
The three-dimensional measurement of the relative small displacement between the measurement unit and the sensor unit, which are independently fixed and installed in the rock mass sandwiching the fault, and the volume displacement measurement device installed in the borehole has no fault A three-dimensional volume displacement is obtained by measuring the relative small displacement between the measurement unit and the sensor unit, which are fixedly installed independently in a continuous rock mass, and the minute displacement of the borehole wall around the sensor unit.

【0017】[0017]

【発明の実施の形態】次にこの発明の実施の形態を添付
図面に基づき詳細に説明する。図1は岩盤内のプレート
境界層であるトランスフォーム1に存在する断層2を横
断して穿孔形成した孔井3内において、断層2を挟んで
断層微小変位計4を設置し、孔井3内の断層2を挟まな
い連続する岩盤部分に体積変位計5を設置した例を示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows that in a borehole 3 formed by drilling across a fault 2 existing in a transform 1 which is a plate boundary layer in a rock, a fault micro-displacement meter 4 is installed with the fault 2 interposed therebetween. An example is shown in which a volume displacement meter 5 is installed on a continuous rock mass portion that does not sandwich the fault 2 of FIG.

【0018】地殻プレートがぶつかり合う境界面である
トランスフォーム1には地殻プレートのひずみエネルギ
が対向して作用しあうため、すべり降伏前の状態にある
上記トランスフォーム1内の断層2やその近傍岩盤で
は、岩盤の弾性係数や深度に依存する変形係数や土覆り
圧の補正係数を乗じて等価となるような応力状態を呈し
ている。このため、断層微小変位計4、体積変位計5は
地震発生直前までのトランスフォーム1や断層2の微小
変形と岩盤の体積変化を高精度に計測できる。
Since the strain energy of the crustal plate opposes the transform 1 which is the boundary surface where the crustal plate collides, the fault 2 in the above-described transform 1 before the slip yielding and the bedrock in the vicinity thereof Shows a stress state that is equivalent by multiplying the deformation coefficient depending on the elastic modulus and depth of the rock mass and the correction coefficient of the earth covering pressure. For this reason, the fault micro-displacement meter 4 and the volume displacement meter 5 can measure the micro-deformation of the transform 1 and the fault 2 and the volume change of the bedrock with high accuracy until immediately before the occurrence of the earthquake.

【0019】図2は図1における断層微小変位計4を示
す拡大断面図である。断層微小変位計4は、断層2を横
断して岩盤6,7に穿孔形成した孔井3内において断層
2を挟んだ一方の岩盤7内に固定手段8によって固定設
置される計測部9と、他方の岩盤6内に同様な固定手段
8によって固定設置されるセンサ部10を有する。この
センサ部10は、少なくとも三方向以上の変位センサ1
1を有し、計測部9とは分離した部材であるが相互に接
触した状態で設置される。
FIG. 2 is an enlarged sectional view showing the tomographic displacement meter 4 in FIG. The fault micro-displacement meter 4 includes a measuring unit 9 fixedly installed by fixing means 8 in one of the rocks 7 sandwiching the fault 2 in the borehole 3 formed by drilling the rocks 6 and 7 across the fault 2, The other rock mass 6 has a sensor unit 10 fixedly installed by the same fixing means 8. The sensor unit 10 includes at least three directions of displacement sensors 1.
1 and is a member separated from the measuring unit 9 but is installed in a state of being in contact with each other.

【0020】なお、計測部9及びセンサ部10は着脱可
能な図示しない固定ガイド部材によって一体として孔井
3内に挿入し、各々を図示しない伸縮手段により固定し
た後、固定ガイド部材を抜き取って各々を独立固定す
る。又、計測部9及びセンサ部10を収容する筒状部材
の円周には少なくとも2面の孔壁圧着部8aを備え、油
圧シリンダやスプリングなどの伸縮手段によって固定手
段8を筒状部材の径方向外方に向って突出させて孔壁岩
盤面に加圧固定する構造を有している。
The measuring section 9 and the sensor section 10 are integrally inserted into the borehole 3 by a detachable fixed guide member (not shown), and are fixed by expansion and contraction means (not shown). Is fixed independently. The cylindrical member accommodating the measuring unit 9 and the sensor unit 10 is provided with at least two hole-wall pressing parts 8a around the circumference thereof, and the fixing means 8 is expanded and contracted by a hydraulic cylinder or a spring. It has a structure in which it is projected outward in the direction and is pressed and fixed to the rock surface of the hole wall.

【0021】計測部9は、先端が縮径する第一筒状部材
12の後端に設けるもので、平坦で互いに直角に交差す
る少なくとも三面の計測面9aを有する。一方、センサ
部10は第一筒状部材12に後続する第二筒状部材13
の先端に設けるもので、前記計測面9aに垂直に対向す
る少なくとも三軸方向に各々設けられた少なくとも三台
の変位センサ11が取付けられており、両固定部材間の
相対微小変位を三次元的に計測できる。
The measuring section 9 is provided at the rear end of the first cylindrical member 12 whose front end is reduced in diameter, and has at least three measuring surfaces 9a which are flat and intersect at right angles to each other. On the other hand, the sensor unit 10 includes a second cylindrical member 13 following the first cylindrical member 12.
At least three displacement sensors 11, which are provided in at least three axial directions and are vertically opposed to the measurement surface 9a, respectively, are attached to the tip of the sensor. Can be measured.

【0022】上記第一及び第二筒状部材12,13間の
相対変位を互いに直交する少なくとも三軸方向の計測結
果として捉え、これらの数値を断層面とその面に直交す
る座標系に変換することにより、断層面内の微小すべり
ベクトル(変形方向と変形量)と断層面の閉塞あるいは
開口の微小変位を評価することができる。
The relative displacement between the first and second cylindrical members 12 and 13 is taken as a result of measurement in at least three axial directions orthogonal to each other, and these numerical values are converted into a tomographic plane and a coordinate system orthogonal to the plane. Accordingly, it is possible to evaluate a small slip vector (a deformation direction and a deformation amount) in the tomographic plane and a micro-displacement of the closing or the opening of the tomographic plane.

【0023】図2の断層微小変位計4による計測例を図
3に示し、この計測結果から断層面に対して座標変換し
た例を図4に示す。これらは共に経時変化曲線を表わし
ており、図3の縦軸14は断層微小変位計4のセンサ部
10にある三軸方向の変位センサ11による変位量を表
わし、横軸15は計測の経過時間を表わしている。この
変位計測では、孔井3内に設置した時点からの相対変化
として変位を計測するため、計測の開始時が変位基準1
6となる。
FIG. 3 shows an example of measurement by the tomographic displacement meter 4 in FIG. 2, and FIG. 4 shows an example in which coordinates of the tomographic plane are converted from the measurement result. Both of them represent a time-dependent change curve, and the vertical axis 14 in FIG. 3 represents the displacement amount by the triaxial displacement sensor 11 in the sensor unit 10 of the tomographic displacement sensor 4, and the horizontal axis 15 represents the elapsed time of the measurement. Is represented. In this displacement measurement, the displacement is measured as a relative change from the time of installation in the well 3, so that the start of the measurement is based on the displacement reference 1.
It becomes 6.

【0024】図3で得られた計測データを断層面とその
面に直交する座標系に変換することにより、図4に例示
するように、断層面内の微小すべりベクトル(変形方向
と変形量)と断層面の閉塞あるいは開口の微小変位を評
価することができる。図4の縦軸17aは変位量、17
bは変位ベクトルの方位角を表わし、横軸18は計測の
経過時間を表わすもので、例えば断層面内のすべり変位
ベクトルの最大変位量を曲線19で表わし、その方位角
を曲線20で表わし、更に断層面に直交する方向の閉塞
あるいは開口変位を曲線21で表わす。
By converting the measurement data obtained in FIG. 3 into a tomographic plane and a coordinate system orthogonal to the tomographic plane, as shown in FIG. 4, a small slip vector (deformation direction and deformation amount) in the tomographic plane is obtained. It is possible to evaluate the occlusion of the tomographic plane or the minute displacement of the opening. The vertical axis 17a in FIG.
b represents the azimuth of the displacement vector, and the abscissa 18 represents the elapsed time of the measurement. For example, the maximum displacement of the slip displacement vector in the fault plane is represented by a curve 19, and the azimuth is represented by a curve 20; Further, a closing or opening displacement in a direction orthogonal to the tomographic plane is represented by a curve 21.

【0025】曲線19の断層面内の最大すべり変位の経
時曲線において、曲線の傾きが変化する変曲点22は断
層の変形が断層面内の微小破壊や塑性変形に関連した挙
動を呈することを示しており、この傾きの大きさで表わ
される断層の変形率の変化を評価することが可能にな
る。
In the time curve of the maximum slip displacement in the fault plane of the curve 19, the inflection point 22 where the slope of the curve changes indicates that the deformation of the fault exhibits a behavior related to microfracture or plastic deformation in the fault plane. This shows that it is possible to evaluate the change in the deformation rate of the fault represented by the magnitude of this inclination.

【0026】図5は図1における体積変位計5を示す拡
大断面図である。体積変位計5は、断層2を横断して穿
孔形成した孔井3内において、断層2を挟まない連続し
た岩盤6内に複数の固定手段108によって固定設置さ
れた計測部109とセンサ部110を有する。
FIG. 5 is an enlarged sectional view showing the volume displacement meter 5 in FIG. The volume displacement meter 5 includes a measurement unit 109 and a sensor unit 110 which are fixed and installed by a plurality of fixing means 108 in a continuous rock 6 which does not sandwich the fault 2 in a well 3 formed by drilling across the fault 2. Have.

【0027】計測部109は、先端が縮径する第一筒状
部材112の後端に設けるもので、平坦な計測面109
aを有する。一方、センサ部110は第一筒状部材11
2に後続する第二筒状部材113に設けるもので、孔井
3の壁面に対向する少なくとも三軸方向の変位センサ1
11aと、計測面109aに対向する少なくとも三軸方
向に設けられる変位センサ111bの少なくとも六台の
変位センサが取付けられており、孔井壁面の微小変位及
び両固定部材間の相対距離の微小変位を三次元的に計測
できる。
The measuring section 109 is provided at the rear end of the first cylindrical member 112 whose front end is reduced in diameter.
a. On the other hand, the sensor section 110 is the first cylindrical member 11
2 is provided on the second tubular member 113 following the at least three displacement sensors 1 facing the wall surface of the well 3.
At least six displacement sensors 11a and at least three displacement sensors 111b provided in at least three axial directions opposed to the measurement surface 109a are attached, and the minute displacement of the well wall surface and the minute displacement of the relative distance between the two fixed members are measured. It can measure in three dimensions.

【0028】上記第二筒状部材113の周囲の少なくと
も三方向の径方向変位と、上記両固定部材間の相対変位
を部材軸方向の少なくとも三軸の計測結果から、岩盤内
の応力状態を表する6個の応力テンソルに関連する6個
の体積変位テンソルあるいは6個の体積ひずみテンソル
として評価することができる。
The stress state in the rock is shown from the measurement results of the radial displacement around the second cylindrical member 113 in at least three directions and the relative displacement between the two fixed members in at least three axes in the member axial direction. It can be evaluated as six volume displacement tensors or six volume strain tensors related to the six stress tensors.

【0029】図5の体積変位計5による計測例を図6に
示し、この計測結果から導いた主応力変化曲線の例を図
7に、断層面内のすべりベクトル方向のせん断応力を評
価した例を図8に各々示しており、共に経時変化曲線を
表わしている。図6の縦軸23は体積変位計5のセンサ
部110にある少なくとも六方向の変位センサ111
a,111bによる変位量を表わし、横軸24は計測の
経過時間を表わしている。この変位計測では、孔井3内
に設置した時点からの相対変化として変位を計測してお
り、孔井3における計測間隔との比率から容易に体積ひ
ずみに換算できる。
FIG. 6 shows an example of measurement by the volume displacement meter 5 in FIG. 5, and FIG. 7 shows an example of a main stress change curve derived from the measurement results, and an example in which the shear stress in the slip plane direction in the fault plane is evaluated. 8 are respectively shown in FIG. 8, and both show a time-dependent change curve. The vertical axis 23 in FIG. 6 is a displacement sensor 111 in at least six directions in the sensor unit 110 of the volume displacement meter 5.
The horizontal axis 24 represents the elapsed time of the measurement. In this displacement measurement, the displacement is measured as a relative change from the time of installation in the well 3, and the volume strain can be easily converted from the ratio with the measurement interval in the well 3.

【0030】図6で得られた少なくとも六方向の計測デ
ータから6個の応力テンソルが導かれ、その内のせん断
応力テンソルに表わす3個の応力が0になるような評価
から主応力変化量が図7に示すように導かれる。図7の
縦軸25は主応力の大きさを表わし、横軸26は経過時
間を表わしており、主応力は計測が開始されてからの変
化量を表わすことになる。ここで、曲線27は最大主応
力の変化、曲線28は最小主応力の変化、又曲線29は
中間主応力の変化を表わしている。
Six stress tensors are derived from the measurement data in at least six directions obtained in FIG. 6, and from the evaluation that the three stresses represented by the shear stress tensor become 0, the main stress change amount is determined. It is derived as shown in FIG. The vertical axis 25 in FIG. 7 represents the magnitude of the principal stress, the horizontal axis 26 represents the elapsed time, and the principal stress represents the amount of change since the start of the measurement. Here, the curve 27 represents the change in the maximum principal stress, the curve 28 represents the change in the minimum principal stress, and the curve 29 represents the change in the intermediate principal stress.

【0031】上記断層面内のすべり変位ベクトルの方位
角の方向に従ってそのせん断応力テンソルを導くと、図
8に例示するように、断層面内の微小すべりベクトル方
向のせん断応力の変化を評価することができる。図8の
縦軸30は応力の大きさを表わし、横軸31は計測の経
過時間を表わしている。断層面内のせん断応力の経時変
化曲線32において曲線の傾きが変化する変曲点33は
断層の変形が断層面内の微小破壊や塑性変形に関連した
挙動を呈することを示しており、上記図4に示したすべ
り変位の経時曲線の変形率変化の評価と同様に、この傾
きの大きさで表わされる断層のせん断応力変化率が変化
する傾向を評価することが可能になる。
Deriving the shear stress tensor according to the direction of the azimuth of the slip displacement vector in the fault plane, the change in the shear stress in the direction of the small slip vector in the fault plane is evaluated as shown in FIG. Can be. The vertical axis 30 in FIG. 8 represents the magnitude of the stress, and the horizontal axis 31 represents the elapsed time of the measurement. The inflection point 33 where the slope of the curve changes in the time-dependent change curve 32 of the shear stress in the fault plane indicates that the deformation of the fault exhibits a behavior related to microfracture and plastic deformation in the fault plane. Similarly to the evaluation of the change in the deformation rate of the time curve of the slip displacement shown in FIG. 4, it is possible to evaluate the tendency of the change in the shear stress change rate of the fault represented by the magnitude of the slope.

【0032】図9は縦軸34に上記図4に示した断層面
内の最大すべり変位を表わし、横軸35に上記図8に示
した断層面内のせん断応力変化を表わしており、両者の
相関曲線36を示している。この相関曲線36において
曲線の傾きはせん断剛性37を表わしており、その剛性
が変化した曲線38は断層の変形が断層面内の微小破壊
や塑性変形に関連した挙動を呈することを示すことにな
り、断層のせん断剛性における変形率の変曲点39を評
価することによって断層における地震発生の危険度を認
知することが可能になる。
In FIG. 9, the vertical axis 34 represents the maximum slip displacement in the fault plane shown in FIG. 4, and the horizontal axis 35 represents the shear stress change in the fault plane shown in FIG. The correlation curve 36 is shown. In the correlation curve 36, the slope of the curve represents the shear stiffness 37, and the curve 38 in which the stiffness has changed indicates that the deformation of the fault exhibits a behavior related to microfracture or plastic deformation in the fault plane. By evaluating the inflection point 39 of the deformation rate in the shear rigidity of the fault, it becomes possible to recognize the risk of earthquake occurrence in the fault.

【0033】又、この曲線における変形率の変化に基づ
き、降伏状態の最大せん断応力40を収束する予想曲線
41から導くことによって地震発生の危険度を予測でき
ることになり、この予測結果と併せて、常に断層の微小
変位を監視し続けて予想曲線と比較することによって、
確度の高い地震発生の危険度評価が可能になる。
Further, based on the change of the deformation rate in this curve, the risk of earthquake occurrence can be predicted by deriving the maximum shear stress 40 in the yielded state from the predicted curve 41 that converges. By constantly monitoring the small displacement of the fault and comparing it with the expected curve,
It is possible to evaluate the risk of earthquake occurrence with high accuracy.

【0034】なお、人工衛星観測等で計測評価した地表
面の変位データを用いた地層内応力の数値解析から導い
たひずみエネルギ分布と、トランスフォーム内にある断
層面上の三次元微少変位に基づく断層を挟む岩盤のすべ
り変位から導いたポテンシャルエネルギーを比較し、そ
のひずみエネルギー解放のプロセスから断層面上のすべ
り変形の危険度を予測することも可能である。
The strain energy distribution derived from the numerical analysis of the stress in the stratum using the displacement data of the ground surface measured and evaluated by satellite observation and the like, and the three-dimensional minute displacement on the fault plane in the transform. It is also possible to compare the potential energy derived from the slip displacement of the rock sandwiching the fault and to predict the risk of slip deformation on the fault plane from the process of strain energy release.

【0035】[0035]

【発明の効果】以上説明したように、この発明の地震予
測方法は、地震発生の要因となるひずみエネルギが蓄積
されている断層面あるいはその境界面に含まれる断層面
を横断してボアホールを穿孔して、断層面を挟んで両岩
盤の相対変化を三次元的に計測する断層変位計測装置を
設置し、更に断層近傍岩盤内の体積変化の計測から応力
変化を評価する体積変位計測装置を設置し、これらの三
次元微少変位計測データ及び三次元微小体積変位計測デ
ータから断層の微小変形と断層近傍岩盤の応力変化を計
測評価する。
As described above, according to the earthquake prediction method of the present invention, a borehole is bored across a fault plane in which strain energy causing an earthquake is accumulated or a fault plane included in the boundary plane. Then, a fault displacement measuring device that measures the relative change between the two rocks three-dimensionally across the fault plane is installed, and a volume displacement measuring device that evaluates the stress change from the measurement of the volume change in the rock near the fault is installed. Then, from these three-dimensional micro displacement measurement data and three-dimensional micro volume displacement measurement data, the micro deformation of the fault and the stress change of the rock near the fault are measured and evaluated.

【0036】この断層の微小変形と断層近傍岩盤の応力
変化から、断層のすべり現象を発生させる方向の変位ベ
クトルとその方向の応力変化との相関関係を導くと共に
断層面に垂直方向の微少変位と応力変化の相関関係も併
せて導き、更に上記計測評価の結果を経時変化として整
理し、その両者の相関関係における変形率も併せて監視
する。
From the microdeformation of the fault and the stress change of the rock near the fault, a correlation between the displacement vector in the direction in which the slip phenomenon of the fault occurs and the stress change in that direction is derived. The correlation of the stress change is also derived, and the results of the above measurement and evaluation are arranged as a change with time, and the deformation rate in the correlation between the two is also monitored.

【0037】このように地震発生の要因となる断層ある
いは断層を含むトランスフォーム内で、すべり現象を発
生する直前の断層面上の岩石微小破壊や塑性変形に関連
する挙動を直接的に計測するので、断層が降伏すべり現
象を起こす挙動プロセスやメカニズムを把握することが
可能になる。又、これらの前兆現象を変形率などの変化
として識別することで地震の発生時期や発生危険度を評
価することが可能となる。従って大規模な地震発生前の
微小地震が規則的に発生しなくとも地震予知が可能で、
又地震の発生時期やその範囲、規模などが高い確度で予
知評価可能となるものである。
As described above, in the fault or the transform including the fault which causes the earthquake, the behavior related to the microfracture of the rock and the plastic deformation on the fault surface immediately before the occurrence of the slip phenomenon is directly measured. In addition, it is possible to understand the behavioral processes and mechanisms that cause the yield slip phenomenon of the fault. In addition, by identifying these precursor phenomena as changes in the deformation rate or the like, it becomes possible to evaluate the time and risk of occurrence of an earthquake. Therefore, it is possible to predict earthquakes even if small earthquakes before large-scale earthquakes do not occur regularly,
Further, it is possible to predict and evaluate the occurrence time, range, and scale of the earthquake with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】断層微小変位計及び体積変位計の設置状況を示
す断面図である。
FIG. 1 is a cross-sectional view showing the installation state of a tomographic displacement meter and a volume displacement meter.

【図2】断層微小変位計の設置状況を示す拡大断面図で
ある。
FIG. 2 is an enlarged sectional view showing an installation state of a tomographic displacement micrometer.

【図3】断層微小変位計による計測例のグラフである。FIG. 3 is a graph of a measurement example using a tomographic displacement micrometer.

【図4】断層微小変位計による計測結果を断層面に対し
て座標変換したグラフである。
FIG. 4 is a graph in which a measurement result obtained by a tomographic displacement meter is coordinate-transformed with respect to a tomographic plane.

【図5】体積変位計の設置状況を示す拡大断面図であ
る。
FIG. 5 is an enlarged cross-sectional view showing an installation state of a volume displacement meter.

【図6】体積変位計による計測例のグラフである。FIG. 6 is a graph of a measurement example using a volume displacement meter.

【図7】体積変位計による計測結果から導いた主応力変
化曲線のグラフである。
FIG. 7 is a graph of a main stress change curve derived from a measurement result by a volume displacement meter.

【図8】すべりベクトル方向のせん断応力を評価したグ
ラフである。
FIG. 8 is a graph showing an evaluation of a shear stress in a slip vector direction.

【図9】最大すべり変位とせん断応力変化の相関曲線の
グラフである。
FIG. 9 is a graph of a correlation curve between a maximum slip displacement and a change in shear stress.

【符号の説明】[Explanation of symbols]

1 トランスフォーム 2 断層 3 孔井 4 断層微小変位計 5 体積変位計 8 固定手段 9 計測部 10 センサ部 11 変位センサ DESCRIPTION OF SYMBOLS 1 Transform 2 Fault 3 Hole 4 Fault micro displacement meter 5 Volume displacement meter 8 Fixing means 9 Measurement part 10 Sensor part 11 Displacement sensor

フロントページの続き (72)発明者 小野寺 勇記 埼玉県春日部市大沼3丁目103番地 株 式会社テラ内 審査官 本郷 徹 (56)参考文献 特開 平9−145849(JP,A) 特開 昭57−40608(JP,A) 特表 平8−504941(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01V 1/00 Continuation of the front page (72) Inventor Yuki Onodera 3-103 Onuma, Kasukabe-shi, Saitama Examiner, Tera, Terra Co., Ltd. Toru Hongo (56) References JP-A-9-145849 (JP, A) JP-A-57- 40608 (JP, A) Table 8-8-504941 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01V 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 地殻プレート等の境界面トランスフォー
ム内にある断層面や地表近傍の活断層面を横断して穿孔
した孔井内に、断層変位計測装置を設置して計測する断
層の三次元的微少変位と、断層面近傍まで穿孔した孔井
内の断層を挟まない連続する岩盤部分に体積変位計測装
置を設置して計測する孔井内の三次元的微小体積変位の
監視データより地震発生の危険度を予測する方法であっ
て、前記三次元的微小変位から導く断層面の微小すべり
ベクトル及び微小開口変位あるいは微小閉塞変位と、前
記三次元的微小体積変位から導く断層面近傍の岩盤内の
微小地圧変化から、断層面のすべり方向と断層面に垂直
な方向における微小変形と微小地圧変化との相関関係を
評価し、これら計測評価の結果を経時変化として整理
し、更に前記相関関係における変形率も併せて監視する
ことで、断層面が地震としてのすべり現象を発生する直
前の断層面上の岩石微小破壊や塑性変形挙動を前記相関
関係及び経時変化における変形性の変化や変形率の変化
として認識することを特徴とする断層変位及び体積変位
監視による地震予測方法。
1. A three-dimensional structure of a fault to be measured by installing a fault displacement measuring device in a borehole pierced across a fault plane in a boundary plane transform such as a crustal plate or an active fault plane near the surface of the ground. Risk of earthquake occurrence based on monitoring data of micro-displacement and three-dimensional micro-volume displacement in borehole, which is measured by installing a volume displacement measuring device on a continuous rock part that does not sandwich the fault in the borehole drilled near the fault plane A small slip vector and a small opening displacement or a small occlusion displacement of the fault plane derived from the three-dimensional micro displacement, and a micro ground in the rock near the fault plane derived from the three-dimensional micro volume displacement. From the pressure change, the correlation between the small deformation in the slip direction of the fault plane and the direction perpendicular to the fault plane and the small ground pressure change is evaluated, and the results of these measurement evaluations are arranged as changes over time, and the correlation is further evaluated. By monitoring the deformation rate at the same time, the rock micro-fracture and plastic deformation behavior on the fault plane immediately before the slip plane occurs as a seismic phenomenon as an earthquake can be evaluated by the above-mentioned correlation and the change of the deformability and deformation rate over time. Earthquake prediction method by monitoring fault displacement and volume displacement, characterized by recognizing as change of earthquake.
JP16430098A 1998-05-28 1998-05-28 Earthquake prediction method by monitoring fault displacement and volume displacement Expired - Lifetime JP3243499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16430098A JP3243499B2 (en) 1998-05-28 1998-05-28 Earthquake prediction method by monitoring fault displacement and volume displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16430098A JP3243499B2 (en) 1998-05-28 1998-05-28 Earthquake prediction method by monitoring fault displacement and volume displacement

Publications (2)

Publication Number Publication Date
JPH11337651A JPH11337651A (en) 1999-12-10
JP3243499B2 true JP3243499B2 (en) 2002-01-07

Family

ID=15790509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16430098A Expired - Lifetime JP3243499B2 (en) 1998-05-28 1998-05-28 Earthquake prediction method by monitoring fault displacement and volume displacement

Country Status (1)

Country Link
JP (1) JP3243499B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648590B2 (en) * 2001-07-27 2011-03-09 株式会社竹中工務店 Building deformation analyzer
CN107843917A (en) * 2017-12-04 2018-03-27 美钻石油钻采系统(上海)有限公司 A kind of underwater kit antishock device
JP2021018172A (en) * 2019-07-22 2021-02-15 有限会社手島通商 Measuring method for data regarding earthquake
CN114692090B (en) * 2022-04-21 2024-05-31 重庆科技大学 Fault upper earth covering layer fault probability dangerous analysis method
CN117007003A (en) * 2023-08-17 2023-11-07 上海勘测设计研究院有限公司 Automatic monitoring system and method for activity fracture

Also Published As

Publication number Publication date
JPH11337651A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
Holeyman Keynote lecture: Technology of pile dynamic testing
Ortiz et al. Dynamic centrifuge testing of a cantilever retaining wall
Cai et al. Assessment of excavation damaged zone using a micromechanics model
Liao et al. Dynamic response of intact piles to impulse loads
Abate et al. Numerical modelling of centrifuge tests on tunnel–soil systems
Cox et al. An in situ test method for evaluating the coupled pore pressure generation and nonlinear shear modulus behavior of liquefiable soils
JP3243499B2 (en) Earthquake prediction method by monitoring fault displacement and volume displacement
EP0848264A1 (en) Seismic wave simulation apparatus
Miao et al. Stress intensity factor evolution considering fracture process zone development of granite under monotonic and stepwise cyclic loading
Svinkin Predicting soil and structure vibrations from impact machines
Chang et al. A SIMPLIFIED MODELING FOR SEISMIC RESPONSES OF RECTANGULAR FOUNDATION ON PILES SUBJECTED TO HORIZONTAL EARTHQUAKES.
Castelli et al. Monitoring of full scale diaphragm wall for a deep excavation
Lentini et al. Numerical modelling and experimental monitoring of a full-scale diaphragm wall
JP4818010B2 (en) Early prediction method of earthquake magnitude and early prediction program of earthquake magnitude based on building deformation during earthquake
Xie et al. Distributed acoustic sensing (DAS) for geomechanics characterization: A concise review
JP3263737B2 (en) Fault vibration displacement measuring device
Korre et al. Liquefaction in the presence of soil-structure interaction: Centrifuge tests of a sheet-pile quay wall in LEAP-2020
Ambrosini et al. Long Piles Integrity Trough Impact Echo Technique.
Todorovska et al. Impulse response analysis of the Van Nuys 7-story hotel during 11 earthquakes (1971-1994): one-dimensional wave propagation and inferences on global and local reduction of stiffness due to earthquake damage
JP2942789B1 (en) Measurement method of stress inside rock
EP1126290B1 (en) Improvements in or relating to seismic wave measuring devices
Elgamal et al. Liquefaction-induced lateral load on piles
Tu et al. Dynamic analysis model of open-ended pipe piles that considers soil plug slippage
Conti Numerical modelling of centrifuge dynamic tests on embedded cantilevered retaining walls
Luo et al. Seismic diagnosis of railway substructures by using secondary acoustic emission

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term