JP2021018172A - Measuring method for data regarding earthquake - Google Patents

Measuring method for data regarding earthquake Download PDF

Info

Publication number
JP2021018172A
JP2021018172A JP2019134643A JP2019134643A JP2021018172A JP 2021018172 A JP2021018172 A JP 2021018172A JP 2019134643 A JP2019134643 A JP 2019134643A JP 2019134643 A JP2019134643 A JP 2019134643A JP 2021018172 A JP2021018172 A JP 2021018172A
Authority
JP
Japan
Prior art keywords
side plate
measuring device
data
plate
sinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019134643A
Other languages
Japanese (ja)
Inventor
浩光 手島
Hiromitsu Tejima
浩光 手島
万里 手島
Mari TESHIMA
万里 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teshima Tsusho Kk
Original Assignee
Teshima Tsusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teshima Tsusho Kk filed Critical Teshima Tsusho Kk
Priority to JP2019134643A priority Critical patent/JP2021018172A/en
Publication of JP2021018172A publication Critical patent/JP2021018172A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

To promote clarification of cause of an earthquake, propagation of oscillation, and relationship with tsunami, to predict an occurrence of a disaster beforehand, and to prevent its damage before its occurrence by acquiring various information in a portion exposed in the vicinity of a composition surface of a sinking side plate and a fixed side plate and in an inside the underground after the sinking side plate sinks under the fixed side plate.SOLUTION: A method for measuring data regarding an earthquake enables transmission of measured data to a remote location by radio communication not only during the time a measuring device 100 is exposed on ground surface but also after sinking under the fixed side plate 2 by embedding a measuring device 100 for data regarding the earthquake within a pit 11 dug from a surface 10 exposing the sinking side plate 1 in the vicinity of a composition plane where the sinking side plate 1 and the fixed side plate 2 are in touch on land on the earth or on the sea bottom.SELECTED DRAWING: Figure 3

Description

本発明は、地震に関するデータの測定方法に関し、プレート境界の沈入活動データを測定して、災害の防止または緩和を実現するためのものである。 The present invention relates to a method for measuring data on earthquakes, and is intended to measure subduction activity data at a plate boundary to prevent or mitigate a disaster.

近年、地震・津波・気象災害の多発強大化による大災害が頻繁に報じられるたび、事前の防御や早期の避難の必要性が声高に叫ばれている。 In recent years, every time a major disaster caused by the frequent occurrence of earthquakes, tsunamis, and meteorological disasters is reported, the need for advance defense and early evacuation is being screamed.

しかし我が国における地震についての研究は、歴史上の地震発生の記録を解析したり、国内の複数個所に観測装置を設置して、地表の微弱な振動データを検知して解析するといった方法が主であって、地震の発生原因の追究や確度の高い予知などには程遠く、災害の発生を未然に防ぐための努力は大きく遅延していると言わざるを得ない。 However, research on earthquakes in Japan is mainly based on methods such as analyzing historical records of earthquake occurrences and installing observation devices at multiple locations in Japan to detect and analyze weak vibration data on the surface of the earth. Therefore, it is far from investigating the cause of an earthquake and predicting it with high accuracy, and it must be said that efforts to prevent the occurrence of a disaster have been greatly delayed.

地震の原因の大半は、プレート内外・境界接合面における水蒸気,海水混入,マグマ溜まり,摩擦,衝突,突き上げ,落下,爆発,影響破壊などによることが考えられるが、特に深海や地殻の内部などの情報収集の困難さなどから、それらがいつどのように発生し地震につながるかといった解明はほとんどされていない。 Most of the causes of earthquakes are considered to be water vapor, seawater contamination, magma chambers, friction, collisions, thrusts, drops, explosions, impact destruction, etc. on the inside and outside of the plate and at the boundary joint surface, but especially in the deep sea and inside the crust. Due to the difficulty of collecting information, little has been clarified when and how they occur and lead to earthquakes.

特開昭62−58184号公報Japanese Unexamined Patent Publication No. 62-58184 特開2012−237677号公報Japanese Unexamined Patent Publication No. 2012-237677

そこで、本発明は沈入側プレートと固定側プレートの接合面付近における露出している部分の各種情報のみならず、沈入側プレートが固定側プレートの下側に沈み込んだ後の地下内部での各種情報も、センサによって取得することで、地震の発生原因や振動の伝播や津波との関係などの解明を促進し、災害発生を事前に予測し、その被害を未然に防止することを課題とする。 Therefore, the present invention presents not only various information on the exposed portion near the joint surface between the sinking side plate and the fixed side plate, but also in the underground interior after the sinking side plate sinks to the lower side of the fixed side plate. By acquiring various information from the sensor, it is necessary to promote the elucidation of the cause of the earthquake, the propagation of vibration, and the relationship with the tsunami, predict the occurrence of a disaster in advance, and prevent the damage. And.

より具体的には、沈入側プレートに長期使用可能な情報発信装置を埋設することで、常時、温度・圧力・振動・時間・角度変化・深度変化・位置変化など最先端の技術内蔵によるあらゆる必要情報を沈入から消滅まで送り続ける仕組みによりプレート接合面の実態調査が一層進歩できるシステムを提供することを課題とするものである。 More specifically, by embedding an information transmission device that can be used for a long time in the sinking side plate, all of the state-of-the-art technologies such as temperature, pressure, vibration, time, angle change, depth change, and position change are always built in. The challenge is to provide a system that can further advance the fact-finding survey of the plate joint surface by a mechanism that keeps sending necessary information from sinking to disappearing.

前記課題を解決するためになされた本発明である地震に関するデータを測定する方法は、地球上の陸上または海底における沈入側プレートと固定側プレートとが接する接合面付近において、前記沈入側プレートの露出している表面を掘削した坑内に、地震に関するデータの測定装置を埋め込み、前記測定装置が地表に露出している間のみならず、前記固定側プレートの下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能としたことを特徴とする。 The method for measuring earthquake data according to the present invention, which has been made to solve the above problems, is to measure the subduction side plate near the joint surface where the subduction side plate and the fixed side plate are in contact with each other on land or sea floor on the earth. A measuring device for seismic data is embedded in the mine where the exposed surface of the earthquake is excavated, and measurement is performed not only while the measuring device is exposed to the ground surface but also after it sinks under the fixed side plate. The feature is that the generated data can be transmitted to a remote location by wireless communication.

もう一つの本発明である地震に関するデータを測定する方法は、地球上の陸上または海底における沈入側プレートと固定側プレートとが接する接合面付近において、前記沈入側プレートの露出している表面を掘削した坑内および前記固定側プレートの露出している表面を掘削した坑内の双方に、地震に関するデータの測定装置を埋め込み、前記測定装置が地表に露出している間のみならず、前記固定プレートの下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能な測定装置を埋め込んだことを特徴とする。 Another method of measuring seismic data according to the present invention is to expose the exposed surface of the submerged plate near the junction surface where the submerged plate and the fixed plate meet on land or sea floor on the earth. A measuring device for seismic data was embedded in both the mine where the earthquake was excavated and the exposed surface of the fixed side plate was excavated, and the fixed plate was not only while the measuring device was exposed to the ground surface. It is characterized by embedding a measuring device that can transmit the measured data to a remote place by wireless communication even after sinking to the lower side.

加えて、一方の測定装置は、他方の測定装置から送信された前記データを受信することが可能であって、前記測定装置は自身が測定したデータまたは前記他方の測定装置から受信したデータのうち少なくとも一方を無線通信により遠隔地に送信することが可能であることを特徴とするものとすれば、例えば比較的深度の深い沈入側プレートに取り付けた測定装置から送信された測定データを、比較的深度の浅い固定側プレートに取り付けた測定装置で受信することが可能となり、このように中継機能を備えることでより長期間深度の深い位置からの高性能な無線通信を期待することができる。 In addition, one measuring device can receive the data transmitted from the other measuring device, and the measuring device can receive the data measured by itself or the data received from the other measuring device. If at least one of them can be transmitted to a remote place by wireless communication, for example, measurement data transmitted from a measuring device attached to a relatively deep sinking side plate is compared. It is possible to receive data with a measuring device attached to a fixed side plate with a shallow target depth, and by providing a relay function in this way, high-performance wireless communication from a deep position for a longer period of time can be expected.

また、前記測定装置は、温度、圧力、振動、時間、角度、深度、位置のうち少なくとも1つを測定可能であることを特徴とする。 Further, the measuring device is characterized in that it can measure at least one of temperature, pressure, vibration, time, angle, depth, and position.

本発明によれば、沈入側プレートまたは沈入側プレートと固定側プレートの双方に測定装置を予め埋め込むことによって、固定側プレートの下方に沈み込んだ後も地下内部での各種情報を長期的に測定装置からプレート接合面における情報を得ることで、地震の発生原因や振動の伝播や津波との関係などの解明を促進し、災害発生を事前に予測し、その被害を未然に防止することができるものである。 According to the present invention, by embedding the measuring device in the sinking side plate or both the sinking side plate and the fixed side plate in advance, various information inside the underground can be obtained for a long period of time even after sinking below the fixed side plate. By obtaining information on the plate joint surface from the measuring device, it is possible to promote the elucidation of the cause of the earthquake, the propagation of vibration, the relationship with the tsunami, etc., predict the occurrence of a disaster in advance, and prevent the damage. Can be done.

日本列島周辺のプレート配置を示す図。The figure which shows the plate arrangement around the Japanese archipelago. 太平洋プレートと北アメリカプレートとの接合面付近を示す概略平面図。Schematic plan view showing the vicinity of the joint surface between the Pacific plate and the North American plate. 太平洋プレートと北アメリカプレートとの接合面付近を示す概略断面図。Schematic cross-sectional view showing the vicinity of the joint surface between the Pacific plate and the North American plate. 沈入側プレートである太平洋プレートに測定装置を埋設した状態を示す図。The figure which shows the state which the measuring device is embedded in the Pacific plate which is a sinking side plate.

以下、図面に基づいて本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は日本列島周辺のプレート配置を示す図であり、この図に示すように日本列島周辺は太平洋プレートP1、フィリピン海プレートP2、ユーラシアプレートP3、北アメリカプレートP4の4つのプレートに囲まれていることが知られている。 FIG. 1 is a diagram showing the plate arrangement around the Japanese archipelago. As shown in this figure, the area around the Japanese archipelago is surrounded by four plates, the Pacific plate P1, the Philippine Sea plate P2, the Eurasian plate P3, and the North American plate P4. It is known that there is.

図2および図3は太平洋プレートP1と北アメリカプレートP4の接合面付近を示す図であり、海洋プレートである太平洋プレートP1は沈入側プレート1として、大陸プレート(固定側プレート2)である北アメリカプレートP4に対して図示する黒矢印方向に沈み込むように移動している。 2 and 3 are views showing the vicinity of the junction surface between the Pacific plate P1 and the North American plate P4, and the Pacific plate P1 which is an oceanic plate is a continental plate (fixed side plate 2) as a subduction side plate 1. It is moving so as to sink in the direction of the black arrow shown in the figure with respect to the American plate P4.

図4は本発明における測定装置100を示す図であり、測定装置100は、センサと、送信機と、バッテリーと、ケースとからなり、前記ケースの内部に前記センサ、前記送信機および前記バッテリーが収容されており、前記バッテリーにより前記センサおよび前記送信機を駆動して前記センサにより取得したデータを遠隔地に送信可能である。 FIG. 4 is a diagram showing a measuring device 100 according to the present invention. The measuring device 100 includes a sensor, a transmitter, a battery, and a case, and the sensor, the transmitter, and the battery are inside the case. It is housed, and the sensor and the transmitter can be driven by the battery, and the data acquired by the sensor can be transmitted to a remote place.

尚、測定装置100が例えば地熱などの自然エネルギーにより発電する発電手段を備えている場合、測定装置の使用可能時間を延長することができるため特に望ましい。 When the measuring device 100 is provided with a power generation means for generating power by natural energy such as geothermal heat, it is particularly desirable because the usable time of the measuring device can be extended.

本発明の測定装置は、前記図4に示すように、沈入側プレート1の露出している表面10を掘削した坑11内に埋設されるものである。 As shown in FIG. 4, the measuring device of the present invention is to bury the exposed surface 10 of the sinking side plate 1 in the excavated pit 11.

また、前記図3に示すように、本発明の測定装置100は沈入側プレート1および固定側プレート2の双方の表面10,20を掘削した坑11,21内にそれぞれ埋設してもよい。 Further, as shown in FIG. 3, the measuring device 100 of the present invention may be embedded in the excavated pits 11 and 21 on the surfaces 10 and 20 of both the sinking side plate 1 and the fixed side plate 2, respectively.

前記測定装置100は、地表に露出している間のみならず、前記固定プレート1の下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能としたものであり、搭載したセンサによって温度、圧力、振動、時間、角度、深度、位置のうち少なくとも1つを測定可能である。 The measuring device 100 is equipped with a measuring device 100 capable of transmitting measured data to a remote place by wireless communication not only while it is exposed to the ground surface but also after it sinks under the fixed plate 1. The sensor can measure at least one of temperature, pressure, vibration, time, angle, depth and position.

例えば、時間、深度および位置を測定可能なものとすれば、単位時間あたりプレートがどれだけ移動するかを明確に測定することができることに加え、沈入側プレート1および固定側プレート2の双方に埋設した測定装置100により同時に時間、深度および位置を測定可能なものとした場合は、双方の垂直方向の変動などを相対的に測定することができるため特に望ましい。 For example, if the time, depth and position can be measured, it is possible to clearly measure how much the plate moves per unit time, and in addition, both the sinking side plate 1 and the fixed side plate 2 can be measured. When the time, depth and position can be measured simultaneously by the embedded measuring device 100, it is particularly desirable because the vertical fluctuations of both can be measured relatively.

このように、測定装置100を沈入側プレート1の露出した表面10を掘削した坑11内に埋設し、前記固定側プレート2の下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能としたことで、大深度の掘削などを必要とせず露出した表面を掘削するのみで、長期にわたってプレート接合面における地下内部での各種情報を得ることで、地震の発生原因や振動の伝播や津波との関係などの解明を促進し、災害発生を事前に予測し、その被害を未然に防止することができるものである。 In this way, the measuring device 100 is buried in the excavated pit 11 with the exposed surface 10 of the sinking side plate 1, and the measured data is remotely transmitted by wireless communication even after sinking under the fixed side plate 2. By making it possible to transmit to the ground, it is possible to obtain various information inside the underground at the plate joint surface over a long period of time by simply excavating the exposed surface without the need for deep excavation, etc. It is possible to promote the elucidation of the transmission of disasters and the relationship with tsunamis, predict the occurrence of disasters in advance, and prevent the damage.

また、測定装置100は、受信機を備えるものとしてもよい。前記受信機を備えることで、測定装置100を沈入側プレート1および固定側プレート2の双方に設置した際、例えば比較的深度の深い沈入側プレート1に取り付けた測定装置100から送信された測定データを、比較的深度の浅い固定側プレート2に取り付けた測定装置100で受信することが可能となり、このように中継機能を備えることでより長期間深度の深い位置からの高性能な無線通信を期待することができる。 Further, the measuring device 100 may include a receiver. By providing the receiver, when the measuring device 100 is installed on both the sinking side plate 1 and the fixed side plate 2, the measurement device 100 is transmitted from the measuring device 100 attached to the sinking side plate 1 having a relatively deep depth, for example. The measurement data can be received by the measuring device 100 attached to the fixed side plate 2 having a relatively shallow depth. By providing the relay function in this way, high-performance wireless communication from a deep position for a longer period of time can be performed. Can be expected.

大陸プレート、海洋プレートの沈入境界形状調査、修復工事と同時に、両プレートの垂直方向(上下)変動センサを配備して、双方の垂直方向の変動を常時観察することで、海水、プレート、マグマ、マントル各々の層による双方プレートの相互影響関連実態を把握でき、地震、津波の実態究明が可能になり、災害の緩和制御、未然防止策を追求する手段を発見できる。 At the same time as the subduction boundary shape survey and restoration work of the continental plate and the ocean plate, the vertical (vertical) fluctuation sensors of both plates are deployed to constantly observe the vertical fluctuations of both plates, so that seawater, plates, and magma can be observed. , It is possible to grasp the mutual influence-related actual conditions of both plates by each layer of the mantle, to investigate the actual conditions of earthquakes and tsunamis, and to discover means for pursuing disaster mitigation control and preventive measures.

すなわち、プレート境界の沈入活動の実態がプレート境界域で発生する地震の実態究明への大きな手掛かりになる。 In other words, the actual state of plate boundary subduction activity is a great clue to the actual state of earthquakes that occur in the plate boundary area.

沈入側プレート1(海洋プレート)と固定側プレート2(大陸プレート)との接合面における温度・圧力・振動・時間・角度・深度・位置などの情報をセンサにより取得することで、地震津波境界域の実態を既設の地震観測装置と合わせて、地震津波の発生現象、実態の検証をして、災害の緩和制御、未然防止策を追求する手段を発見できる。 Earthquake and tsunami boundary by acquiring information such as temperature, pressure, vibration, time, angle, depth, and position at the joint surface between the subduction side plate 1 (ocean plate) and the fixed side plate 2 (continental plate). By combining the actual conditions of the area with the existing seismic observation equipment, it is possible to verify the occurrence phenomenon of earthquakes and tsunamis and the actual conditions, and discover means for pursuing disaster mitigation control and preventive measures.

マグマ化と冷却を繰り返しているプレート・マグマの境界域の様々な変化、流動も、また、沈入側プレート1(海洋プレート)と固定側プレート2(大陸プレート)の接合面で如何にして地震が発生するか、多くの地底の活動実態を究明できる要素を引き出すことができる。 Various changes and flows in the plate-magma boundary area, which are repeatedly magnified and cooled, are also earthquakes at the junction surface of the subsidence side plate 1 (ocean plate) and the fixed side plate 2 (continental plate). It is possible to draw out the elements that can investigate the actual situation of many underground activities.

高温と地下水脈が出会って水蒸気爆発による地震発生の類、重力や圧力によるプレート一部の破壊による地震発生の類、マグマ溜まりに地下水が流入して水蒸気爆発による地震発生の類、などプレート境界接合面の相互影響によって引き起こされる地震の起因、現象を究明するためのデータを得るものである。 Plate boundary joints such as earthquakes caused by steam explosions due to high temperature and groundwater veins, earthquakes caused by partial destruction of plates due to gravity and pressure, groundwater flowing into magma chambers and earthquakes caused by steam explosions, etc. This is to obtain data for investigating the causes and phenomena of earthquakes caused by the mutual influence of surfaces.

沈入活動するプレートが融解するまでの過程における立体的変化変動の実態を把握することが最も重要である。 It is of utmost importance to understand the actual state of steric changes and fluctuations in the process of melting the sinking plate.

以上のように、本発明によれば、沈入側プレートに測定装置を予め埋め込むことによって、固定側プレートの下方に沈み込んだ後も長期的に測定装置からプレート接合面における情報を得ることで地震・津波等の災害発生を事前に予測し、その被害を未然に防止することによる防災を実現することができる。 As described above, according to the present invention, by embedding the measuring device in the sinking side plate in advance, information on the plate joint surface can be obtained from the measuring device for a long period of time even after sinking below the fixed side plate. Disaster prevention can be realized by predicting the occurrence of disasters such as earthquakes and tsunamis in advance and preventing the damage.

1 沈入側プレート、2 固定側プレート、10,20 表面、11,21 坑、100 測定装置、P1 太平洋プレート、P2 フィリピン海プレート、P3 ユーラシアプレート、P4 北アメリカプレート 1 Infiltration side plate, 2 Fixed side plate, 10,20 surface, 11,21 pit, 100 measuring device, P1 Pacific plate, P2 Philippine Sea plate, P3 Eurasian plate, P4 North American plate

Claims (4)

地球上の陸上または海底における沈入側プレートと固定側プレートとが接する接合面付近において、前記沈入側プレートの露出している表面を掘削した坑内に、地震に関するデータの測定装置を埋め込み、前記測定装置が地表に露出している間のみならず、前記固定プレートの下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能としたことを特徴とする地震に関するデータの測定方法。 In the vicinity of the joint surface where the submerged side plate and the fixed side plate meet on land or on the earth's bottom, an earthquake data measuring device is embedded in the mine where the exposed surface of the submerged side plate is excavated. Measurement of data related to earthquakes, which is characterized in that the measured data can be transmitted to a remote location by wireless communication not only while the measuring device is exposed to the ground surface but also after sinking under the fixed plate. Method. 地球上の陸上または海底における沈入側プレートと固定側プレートとが接する接合面付近において、前記沈入側プレートの露出している表面を掘削した坑内および前記固定側プレートの露出している表面を掘削した坑内の双方に、地震に関するデータの測定装置を埋め込み、前記測定装置が地表に露出している間のみならず、前記固定プレートの下側に沈み込んだ後も測定したデータを無線通信により遠隔地に送信可能な測定装置を埋め込んだことを特徴とする地震に関するデータの測定方法。 In the vicinity of the joint surface where the submerged side plate and the fixed side plate meet on land or on the earth's bottom, the exposed surface of the submerged side plate is excavated and the exposed surface of the fixed side plate is excavated. Seismic data measuring devices are embedded in both excavated mine shafts, and the measured data is transmitted by wireless communication not only while the measuring device is exposed to the ground surface but also after it sinks under the fixed plate. A method for measuring data on earthquakes, which comprises embedding a measuring device capable of transmitting to a remote location. 一方の測定装置は、他方の測定装置から送信された前記データを受信することが可能であって、
前記一方の測定装置は自身が測定したデータまたは前記他方の測定装置から受信したデータのうち少なくとも一方を無線通信により遠隔地に送信することが可能であることを特徴とする請求項2記載の地震に関するデータの測定方法。
One measuring device is capable of receiving the data transmitted from the other measuring device.
The earthquake according to claim 2, wherein the one measuring device can transmit at least one of the data measured by itself or the data received from the other measuring device to a remote place by wireless communication. How to measure data about.
前記測定装置は、温度、圧力、振動、時間、角度、深度、位置のうち少なくとも1つを測定可能であることを特徴とする請求項1,2または3記載の地震に関するデータの測定方法。 The method for measuring data relating to an earthquake according to claim 1, 2, or 3, wherein the measuring device can measure at least one of temperature, pressure, vibration, time, angle, depth, and position.
JP2019134643A 2019-07-22 2019-07-22 Measuring method for data regarding earthquake Pending JP2021018172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134643A JP2021018172A (en) 2019-07-22 2019-07-22 Measuring method for data regarding earthquake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134643A JP2021018172A (en) 2019-07-22 2019-07-22 Measuring method for data regarding earthquake

Publications (1)

Publication Number Publication Date
JP2021018172A true JP2021018172A (en) 2021-02-15

Family

ID=74566017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134643A Pending JP2021018172A (en) 2019-07-22 2019-07-22 Measuring method for data regarding earthquake

Country Status (1)

Country Link
JP (1) JP2021018172A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181266A (en) * 1993-12-21 1995-07-21 Koken Kogyo Kk Earthquake prevention method
JPH11337651A (en) * 1998-05-28 1999-12-10 Agency Of Ind Science & Technol Method for predicting earthquake by monitoring dislocating displacement and volume displacement
JP2001091665A (en) * 1999-09-28 2001-04-06 Agency Of Ind Science & Technol Method and device for predicting radio movement inside crust based upon electromagnetic field observation
JP2004286654A (en) * 2003-03-24 2004-10-14 Teiseki Sakusei Kogyo Kk Underground fault monitoring device
JP2012078233A (en) * 2010-10-04 2012-04-19 Association For The Development Of Earthquake Prediction Stress and distortion detection device
US20180031730A1 (en) * 2016-02-17 2018-02-01 South China Sea Institute Of Oceanology,Chinese Academy Of Sciences Device for monitoring temperature response to stress change in strata

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181266A (en) * 1993-12-21 1995-07-21 Koken Kogyo Kk Earthquake prevention method
JPH11337651A (en) * 1998-05-28 1999-12-10 Agency Of Ind Science & Technol Method for predicting earthquake by monitoring dislocating displacement and volume displacement
JP2001091665A (en) * 1999-09-28 2001-04-06 Agency Of Ind Science & Technol Method and device for predicting radio movement inside crust based upon electromagnetic field observation
JP2004286654A (en) * 2003-03-24 2004-10-14 Teiseki Sakusei Kogyo Kk Underground fault monitoring device
JP2012078233A (en) * 2010-10-04 2012-04-19 Association For The Development Of Earthquake Prediction Stress and distortion detection device
US20180031730A1 (en) * 2016-02-17 2018-02-01 South China Sea Institute Of Oceanology,Chinese Academy Of Sciences Device for monitoring temperature response to stress change in strata

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"地球深部探査船ちきゅうによるIODP第380次研究航海南海トラフ地震発生体掘削計画;南海トラフ前縁断層帯", [ONLINE], JPN7023000289, 2018, ISSN: 0004975220 *
"海溝型地震を対象とした地震発生予測の高精度化に関する調査観測の強化、地震動即時予測及び地震動予測の高", [ONLINE], JPN7023000290, 2017, ISSN: 0004975219 *

Similar Documents

Publication Publication Date Title
KR20160038595A (en) Monitoring method for underground state
CN1948998A (en) Multifunctional earthquake detecting and fore casting apparatus
JP2010266347A (en) Geological structure survey system and method therefor
NO20130807A1 (en) Fiber optic and electrical seismic sensor cable for acquisition and transmission of information on seismic events recorded by multiple multicomponent geophones in a subsurface reservoir
JP2006266866A (en) Underground observation system, and underground observation method
JP2021018172A (en) Measuring method for data regarding earthquake
Pantaleo et al. The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model
Okada et al. Chapter 18 Tectonic and volcanic deformation at São Miguel Island, Azores, observed by continuous GPS analysis 2008–13
Romanowicz et al. The MOBB experiment: A prototype permanent off‐shore ocean bottom broadband station
JP2011209200A (en) Seabed observation system
JPS62501583A (en) Method and apparatus for investigating transport processes in solid media in situ
Mosher et al. Coastal submarine failures in the Strait of Georgia, British Columbia: Landslides of the 1946 Vancouver Island earthquake
JP4250876B2 (en) Geological disposal waste monitoring system
Zeng et al. Sinkhole remedial alternative analysis on karst lands
Murdie et al. A new gravity map of southern Chile and its preliminary interpretation
Morris et al. Case studies of a borehole deployable robot for limestone mine profiling and mapping
Ulrich et al. Characterizing rock fractures and physical properties for Experiment 2 of the EGS Collab Project, Sanford Underground Research Facility
CN111780802A (en) Scouring monitoring system and method for buried pipeline
KR101531698B1 (en) Equipment for sink hole investigation
Sáez et al. The Seismic Failure of the Port of Iquique's Wharf: Field Study and Main Observations
Shinohara et al. Recent progress in ocean bottom seismic observation and new results of marine seismology
JP3243309U (en) Earthquake prediction observation system
Sato et al. The dynamic response of Horonobe Underground Research Center during the 2018 June 20 earthquake
JP5135706B2 (en) Geological disposal facility and its construction method
CN113932764A (en) Coal mine goaf surface subsidence data acquisition system based on microseismic monitoring technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230619