JP3243382B2 - Removal method of glycol polymer - Google Patents
Removal method of glycol polymerInfo
- Publication number
- JP3243382B2 JP3243382B2 JP27534494A JP27534494A JP3243382B2 JP 3243382 B2 JP3243382 B2 JP 3243382B2 JP 27534494 A JP27534494 A JP 27534494A JP 27534494 A JP27534494 A JP 27534494A JP 3243382 B2 JP3243382 B2 JP 3243382B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- liquid
- glycol polymer
- wet oxidation
- activated sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、切削油、作動油などの
水溶性油廃液に含まれるグリコールポリマーを除去処理
する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing a glycol polymer contained in a water-soluble oil waste such as cutting oil and hydraulic oil.
【0002】[0002]
【従来の技術】現在グリコールポリマーを含む水溶性油
は、切削・潤滑・油圧ポンプなどに用いられており、そ
の用途は拡大している。しかし、このグリコールポリマ
ーを含む水溶性油の使用済などの廃液は、そのまま廃棄
できず河川・海洋に放流可能なレベルにまでグリコール
ポリマーを分解・除去する処理をおこなわねばならな
い。そのため水溶性油の使用済廃液は、現在主として専
門の処理業者に引き渡され、そこで水を蒸発させ、残存
物を焼却する方法がとられている。しかしこの方法は、
焼却物中にダイオキシンなどの有害物が生成する可能性
があり、また水を蒸発させるために膨大な熱エネルギー
が必要となり、経済性にも難がある。したがって、この
方法に変わる新たな廃液処理方法の確立が望まれてい
る。2. Description of the Related Art At present, water-soluble oils containing a glycol polymer are used for cutting, lubrication, hydraulic pumps and the like, and their uses are expanding. However, the waste liquid such as the used water-soluble oil containing the glycol polymer cannot be discarded as it is, and must be treated to decompose and remove the glycol polymer to a level that can be discharged to rivers and oceans. For this reason, the used waste liquid of the water-soluble oil is currently mainly handed over to a specialized treatment company, where water is evaporated and the residue is incinerated. But this method
There is a possibility that harmful substances such as dioxin may be generated in the incinerated material, and enormous heat energy is required to evaporate water, which is economically difficult. Therefore, establishment of a new waste liquid treatment method instead of this method is desired.
【0003】従来の排水処理は、重力分離(凝集沈殿ま
たは凝集浮上)の後、活性汚泥による微生物処理がおこ
なわれ、残留懸濁物は濾過により、溶存物は活性炭など
を利用した吸着除去によって処理されている。特開昭5
9−69197号公報には、水溶性油を従来の排水処理
プロセスに適用した開示がある。すなわち、水−グリコ
ール系作動油を含む廃液に活性汚泥処理とベントナイト
あるいは活性炭による吸着処理をおこなって除去する方
法である。しかしながら、グリコールポリマーを含む水
溶性油廃液は、活性汚泥処理と吸着処理との併用では処
理液中に含まれるグリコールポリマーを河川・海洋に放
流可能なレベルにまで分解・除去するのが困難である。
また、イオン交換樹脂を用いて、グリコールポリマーを
含む水溶性油廃液を処理する方法もあるが、処理液を河
川・海洋に放流可能なレベルまで分解・除去するには、
イオン交換樹脂の交換を頻繁におこなわねばならず経済
性に難がある。[0003] In the conventional wastewater treatment, after gravity separation (coagulation sedimentation or coagulation flotation), microbial treatment with activated sludge is performed. Have been. JP 5
Japanese Patent Application No. 9-69197 discloses a water-soluble oil applied to a conventional wastewater treatment process. That is, the waste liquid containing the water-glycol hydraulic oil is subjected to activated sludge treatment and adsorption treatment with bentonite or activated carbon to remove the waste liquid. However, it is difficult to decompose and remove the water-soluble oil waste liquid containing the glycol polymer by using the activated sludge treatment and the adsorption treatment to a level at which the glycol polymer contained in the treatment liquid can be discharged to rivers and oceans. .
There is also a method of treating a water-soluble oil waste liquid containing a glycol polymer using an ion exchange resin.However, in order to decompose and remove the treated liquid to a level that can be discharged to rivers and oceans,
The exchange of the ion exchange resin must be performed frequently, which is not economical.
【0004】また、特開平6−9721号公報には、ア
クリル酸系ポリマーを酸化処理または光分解処理して得
られる分子量1000以下の水溶性ポリマーを、微生物
群を用いて分解する方法の開示がある。たとえば実施例
9では、湿式酸化したアクリル酸系ポリマーの主鎖の炭
素−炭素結合が切断されてポリマーが低分子量化させて
いる。このアクリル酸系ポリマーを低分子量化する酸化
条件でグリコールポリマーを湿式酸化すると、グリコー
ルポリマーはエーテル結合だけでなく、炭素−炭素結合
も切断され微生物の嫌う蟻酸が生成する。このため活性
汚泥の微生物の活動が抑制され、活性汚泥処理によるグ
リコールポリマーの除去効率が低下するという不具合が
ある。Japanese Patent Application Laid-Open No. Hei 6-9721 discloses a method for decomposing a water-soluble polymer having a molecular weight of 1,000 or less obtained by oxidizing or photodegrading an acrylic acid polymer using a microorganism group. is there. For example, in Example 9, the carbon-carbon bond in the main chain of the wet-oxidized acrylic acid-based polymer is broken to reduce the molecular weight of the polymer. When the glycol polymer is wet-oxidized under the oxidation conditions for lowering the molecular weight of the acrylic acid polymer, not only the ether bond but also the carbon-carbon bond of the glycol polymer is cleaved to produce formic acid which is disliked by microorganisms. Therefore, there is a problem that the activity of microorganisms in the activated sludge is suppressed, and the efficiency of removing the glycol polymer by the activated sludge treatment is reduced.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたもので、グリコールポリマーを含む水
溶性廃液からグリコールポリマーを効率よく除去し、処
理廃液をそのまま放流できる程度までにする処理方法を
提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and efficiently removes a glycol polymer from a water-soluble waste solution containing a glycol polymer so that the treated waste solution can be discharged as it is. It is an object to provide a processing method.
【0006】[0006]
【課題を解決するための手段】本発明のグリコールポリ
マーの除去方法は、グリコールポリマーを含む被処理液
と酸化剤とを接触させ、該被処理液を液相状態に保ち5
0〜370℃の温度範囲で加熱して湿式酸化反応をおこ
なう第1工程と、第1工程で酸化処理された被処理液を
活性汚泥処理する第2工程とからなる。According to the method for removing a glycol polymer of the present invention, a liquid to be treated containing a glycol polymer is brought into contact with an oxidizing agent, and the liquid to be treated is kept in a liquid phase to obtain a liquid.
It comprises a first step of performing a wet oxidation reaction by heating in a temperature range of 0 to 370 ° C., and a second step of treating the liquid to be treated, which has been oxidized in the first step, with activated sludge.
【0007】本発明は、第1工程でグリコールポリマー
を活性汚泥の微生物が分解し易い状態まで酸化した後、
第2工程の活性汚泥処理で河川に放流可能な程度までグ
リコールポリマーを除去する方法である。本発明でいう
グリコールポリマーは、ポリエチレングリコール、ポリ
プロピレングリコール、ポリブチレングリコールなどの
ようにエーテル結合を主鎖にもちポリマー末端の少なく
とも一方が水酸基である高分子量のグリコールである。
このグリコールポリマーを含むものとして、水溶性作動
油、水溶性切削油、水溶性圧延油、熱処理油、水溶性洗
浄油などが該当する。これらの使用後の廃液が主対象で
ある。According to the present invention, after the glycol polymer is oxidized in the first step to a state where microorganisms in the activated sludge are easily decomposed,
In the activated sludge treatment in the second step, the glycol polymer is removed to such an extent that it can be discharged to a river. The glycol polymer referred to in the present invention is a high molecular weight glycol such as polyethylene glycol, polypropylene glycol and polybutylene glycol having an ether bond in the main chain and at least one of the polymer terminals being a hydroxyl group.
Examples of those containing this glycol polymer include water-soluble hydraulic oil, water-soluble cutting oil, water-soluble rolling oil, heat-treating oil, and water-soluble cleaning oil. These waste liquids after use are the main objects.
【0008】第1工程は、グリコールポリマーを湿式酸
化する。湿式酸化とは、水等の液相状態において被処理
物を酸化させる反応であり、液相状態とは、系全体が液
体状である場合の他、系全体が半固体状であってもその
中に水等の液相が存在する状態も含む。本発明では、湿
式酸化の条件を、ポリマー主鎖中の炭素−炭素結合(た
とえばポリエチレングリコールのエチレン結合)が切断
して活性汚泥の微生物が嫌う蟻酸にまで分解させない条
件に保持することが必要である。そのため被処理液は液
相を保持するように適宜加圧し50〜370℃の範囲で
加熱しで湿式酸化をおこなう。湿式酸化の加熱温度が5
0℃未満ではグリコールポリマーの湿式酸化が充分進行
しないので好ましくない。また、加熱温度が370℃を
超える高温で長時間の酸化処理をおこなっても第2工程
での微生物処理をさらに向上させる効果は期待できな
い。特に100〜200℃の範囲の加熱がより好まし
い。湿式酸化時間は、通常1〜240分間程度とするの
が好ましい。湿式酸化条件は、容易かつ効果的に安価で
処理できる上記の範囲の条件が好ましい。[0008] The first step involves wet oxidation of the glycol polymer. Wet oxidation is a reaction that oxidizes an object to be treated in a liquid phase such as water.The liquid phase state refers to a case where the entire system is in a liquid state and a case where the entire system is in a semi-solid state. This includes the state in which a liquid phase such as water is present. In the present invention, it is necessary to maintain wet oxidation conditions such that carbon-carbon bonds in the polymer main chain (for example, ethylene bonds of polyethylene glycol) are broken so that activated sludge is not decomposed to formic acid which is disliked by microorganisms. is there. Therefore, the liquid to be treated is appropriately pressurized so as to maintain a liquid phase, and heated in a range of 50 to 370 ° C. to perform wet oxidation. Heating temperature of wet oxidation is 5
If the temperature is lower than 0 ° C., the wet oxidation of the glycol polymer does not sufficiently proceed, which is not preferable. Further, even if the oxidation treatment is performed for a long time at a heating temperature higher than 370 ° C., an effect of further improving the microorganism treatment in the second step cannot be expected. In particular, heating in the range of 100 to 200C is more preferable. The wet oxidation time is usually preferably about 1 to 240 minutes. The wet oxidation conditions are preferably those in the above-mentioned range where the treatment can be performed easily and effectively at low cost.
【0009】第1工程で使用する酸化剤としては、たと
えば空気などの酸素を含むガス、過酸化水素、オゾン等
が利用できる。酸化剤がガス状の場合は、液相に保った
被処理液にガスを吹き込むことで酸化剤と被処理液と接
触させることができる。また、酸化剤が液状の場合は被
処理液に混合して接触させることができる。第2工程で
は、湿式酸化処理液を活性汚泥槽に滞留させ、ばっ気を
おこないながら好気性微生物による処理をおこなう。処
理条件は特に限定されないが、活性汚泥槽における処理
液の滞留時間は3〜24時間で温度は20〜40℃の範
囲が望ましい。As the oxidizing agent used in the first step, for example, a gas containing oxygen such as air, hydrogen peroxide, ozone and the like can be used. When the oxidizing agent is in a gaseous state, the oxidizing agent can be brought into contact with the liquid to be treated by blowing a gas into the liquid to be treated kept in a liquid phase. When the oxidizing agent is in a liquid state, the oxidizing agent can be mixed with and contacted with the liquid to be treated. In the second step, the wet oxidation treatment liquid is retained in the activated sludge tank, and treatment with aerobic microorganisms is performed while aeration is performed. The treatment conditions are not particularly limited, but the residence time of the treatment liquid in the activated sludge tank is preferably 3 to 24 hours, and the temperature is preferably in the range of 20 to 40 ° C.
【0010】[0010]
【作用】本発明の方法によれば、第1工程でグリコール
ポリマーを活性汚泥の微生物が有効に処理できる状態ま
でに酸化分解し、第2工程で活性汚泥の微生物により分
解処理して河川に放流可能な状態までグリコールポリマ
ーを除去できる。グリコールポリマー類は、有機高分子
の中でも湿式酸化により分解して低分子量化しやすい物
質であるが、本発明のグリコールポリマーを含む液の湿
式酸化処理液条件で低分子量化して末端基は主にカルボ
ン酸になっているが、さらに炭素結合が切断されて蟻酸
にまでは酸化分解されず、活性汚泥の微生物により容易
に分解除去することができる。According to the method of the present invention, in the first step, the glycol polymer is oxidatively decomposed until the activated sludge microorganisms can be effectively treated, and in the second step, the activated sludge is decomposed by the microorganisms and discharged into a river. The glycol polymer can be removed to the extent possible. Glycol polymers are substances that are easily decomposed by wet oxidation and reduced in molecular weight among organic polymers, but the molecular weight of the liquid containing the glycol polymer of the present invention is reduced under wet oxidation treatment conditions, and the terminal groups are mainly carboxyl. Although it is an acid, the carbon bond is further broken and it is not oxidatively decomposed to formic acid, and can be easily decomposed and removed by microorganisms of activated sludge.
【0011】したがって、本発明による酸化処理液中に
は、活性汚泥の微生物の働きを阻害する蟻酸などの物質
が存在しないので、活性汚泥が効率よく酸化処理液中の
グリコールポリマーを除去することができる。Therefore, the oxidation sludge according to the present invention does not contain a substance such as formic acid which inhibits the action of microorganisms of the activated sludge, so that the activated sludge can efficiently remove the glycol polymer in the oxidation sludge. it can.
【0012】[0012]
【実施例】以下、実施例により具体的に説明する。 (実施例1)グリコールポリマーを含む水溶性作動油
(COD496000ppm.TOC330000pp
m)を、酸化剤に空気を用いて加圧容器内で200℃で
水溶性作動油が液相を保つように加圧(30気圧)して
60分間の湿式酸化処理をおこなった。処理および酸化
未処理の作動油の分子量分布のグラフを図1に示す。図
1において未処理の作動油は、実線の空白域に示すよう
に100〜1000の領域と生物処理が困難な1000
0以上の部分が存在する。湿式酸化処理により点模様の
領域の様に分解されて低分子量化し、生物処理困難領域
はなくなっている。この酸化処理液のCOD除去率(未
処理の作動泊のCODをA、処理後の液のCODをBと
して、COD除去率=A−B/Aと定義する。)は54
%であった。The present invention will be specifically described below with reference to examples. (Example 1) A water-soluble hydraulic oil containing a glycol polymer (COD 496000 ppm. TOC 330,000 pp
m) was subjected to a wet oxidation treatment for 60 minutes by applying pressure (30 atm) to the water-soluble hydraulic oil at 200 ° C. in an autoclave using air as an oxidizing agent so as to maintain a liquid phase. FIG. 1 shows a graph of the molecular weight distribution of the treated and oxidized untreated hydraulic oil. In FIG. 1, the untreated hydraulic oil has an area of 100 to 1000 as shown by the solid line blank area,
There are zero or more parts. The wet oxidation treatment decomposes to a low molecular weight like a dot-patterned region, and there is no biologically difficult region. The COD removal rate of this oxidized solution (COD of the untreated working bed is defined as A, COD of the treated solution is defined as B, and the COD removal rate is defined as 54−A / B / A).
%Met.
【0013】(実施例2)実施例1の水溶性作動油(C
OD496000ppm.TOC330000ppm)
に、酸化剤としてCOD換算で5倍当量の過酸化水素を
混合して、加圧容器内で200℃で30気圧に保って液
相状態で60分間湿式酸化処理をおこなった。得られた
処理液の分子量分布は、図2の点模様領域に示すように
低分子量領域の量も減少すると共に高分子量域は低分子
量化している。図2において、実線の空白域で示したの
が未処理の作動油の分子量分布のグラフである。(Example 2) The water-soluble hydraulic oil (C
OD496000 ppm. TOC 330000 ppm)
Then, 5 times equivalent of COD in terms of COD was mixed as an oxidizing agent, and the mixture was subjected to wet oxidation treatment in a liquid state for 60 minutes at 200 ° C. and 30 atm in a pressurized container. In the molecular weight distribution of the obtained processing solution, the amount of the low molecular weight region is reduced and the high molecular weight region is reduced in molecular weight as shown by the dot pattern region in FIG. In FIG. 2, the blank area of the solid line is a graph of the molecular weight distribution of the untreated hydraulic oil.
【0014】この酸化処理液のCOD除去率は61%で
あった。この湿式酸化処理液を20℃で12時間の常法
による活性汚泥処理をおこなった。活性汚泥処理後のC
OD除去率は92%であった。活性汚泥処理後のグリコ
ールポリマーの分子量分布は図2の斜線領域で示すよう
に1000〜1000領域に少量存在しているのみであ
る。図2の高分子領域を3倍に拡大したのが図3であ
る。生物処理困難成分の高分子量域が酸化処理で減少
し、酸化処理で活性汚泥の微生物の処理を受けやすくな
り活性汚泥処理で高分子側が減少して低分子量化してい
る。The COD removal rate of the oxidized solution was 61%. This wet oxidation treatment solution was subjected to activated sludge treatment by a conventional method at 20 ° C. for 12 hours. C after activated sludge treatment
The OD removal rate was 92%. The molecular weight distribution of the glycol polymer after the activated sludge treatment is only present in a small amount in the 1000 to 1000 region as shown by the hatched region in FIG. FIG. 3 is an enlarged view of the polymer region of FIG. 2 three times. The high molecular weight region of the biologically difficult component is reduced by the oxidation treatment, and the oxidation treatment makes the activated sludge more susceptible to microbial treatment, and the activated sludge treatment reduces the polymer side to lower the molecular weight.
【0015】(実施例3)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で100℃で200分間液
相を保つように加圧して湿式酸化処理をおこなったとこ
ろ、処理物のCOD除去率は41%であった。この湿式
酸化処理液を20℃で12時間の活性汚泥処理をおこな
った。汚泥処理後のCOD除去率は84%であった。Example 3 Water-soluble hydraulic oil (COD496)
000 ppm. (TOC 330,000 ppm) was pressurized using air as an oxidizing agent in a pressurized container at 100 ° C. for 200 minutes to maintain a liquid phase, and the COD removal rate of the processed product was 41%. Was. This wet oxidation treatment liquid was subjected to activated sludge treatment at 20 ° C. for 12 hours. The COD removal rate after the sludge treatment was 84%.
【0016】(実施例4)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で180℃で60分間液相
を保つように加圧して湿式酸化処理をおこなったとこ
ろ、処理物のCOD除去率は53%であった。この湿式
酸化処理液を20℃で12時間の活性汚泥処理をおこな
った。汚泥処理後のCOD除去率は98%であった。Example 4 Water-soluble hydraulic oil (COD496)
000 ppm. (TOC 330,000 ppm) was pressurized using air as an oxidizing agent at 180 ° C. for 60 minutes in a pressurized container so as to maintain a liquid phase, and the COD removal rate of the processed product was 53%. Was. This wet oxidation treatment liquid was subjected to activated sludge treatment at 20 ° C. for 12 hours. The COD removal rate after the sludge treatment was 98%.
【0017】(実施例5)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で300℃で20分間液相
を保って湿式酸化処理をおこなったところ、処理物のC
OD除去率は83%であった。この湿式酸化処理液を2
0℃で12時間活性汚泥処理をおこなった。汚泥処理後
のCOD除去率は88%であった。(Example 5) Water-soluble hydraulic oil (COD496)
000 ppm. TOC 330,000 ppm) was subjected to wet oxidation treatment while maintaining the liquid phase in a pressurized container at 300 ° C. for 20 minutes using air as an oxidizing agent.
The OD removal rate was 83%. This wet oxidation treatment solution is
Activated sludge treatment was performed at 0 ° C. for 12 hours. The COD removal rate after the sludge treatment was 88%.
【0018】(実施例6)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で180℃で200分間湿
式酸化処理をおこなったところ、処理物のCOD除去率
は58%であった。この湿式酸化処理液を20℃で12
時間活性汚泥処理をおこなった。汚泥処理後のCOD除
去率は98%であった。(Example 6) Water-soluble hydraulic oil (COD496)
000 ppm. (TOC 330,000 ppm) was subjected to wet oxidation treatment at 180 ° C. for 200 minutes in a pressurized container using air as an oxidizing agent. As a result, the COD removal rate of the treated product was 58%. This wet oxidation treatment solution is subjected to 12
Activated sludge treatment was performed for hours. The COD removal rate after the sludge treatment was 98%.
【0019】(実施例7)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で180℃で8分間湿式酸
化処理をおこなったところ、処理物のCOD除去率は5
1%であった。この湿式酸化処理液を20℃で12時間
活性汚泥処理をおこなった。汚泥処理後のCOD除去率
は96%であった。(Example 7) Water-soluble hydraulic oil (COD496)
000 ppm. TOC 330,000 ppm) was subjected to wet oxidation treatment at 180 ° C. for 8 minutes in a pressurized container using air as an oxidizing agent.
1%. This wet oxidation treatment solution was subjected to an activated sludge treatment at 20 ° C. for 12 hours. The COD removal rate after the sludge treatment was 96%.
【0020】(実施例8)水溶性作動油(COD496
000ppm.TOC330000ppm)を、酸化剤
に空気を用いて、加圧容器内で70℃で200分間湿式
酸化処理をおこなったところ、処理物のCOD除去率は
22%であった。この湿式酸化処理液を20℃で12時
間活性汚泥処理をおこなった。汚泥処理後のCOD除去
率は57%であった。 (実施例9)水溶性作動油(COD496000pp
m、TOC330000ppm)を、酸化剤に空気を用
いて、加圧容器内で180℃で0.5分間湿式酸化処理
をおこなった場合の処理物のCOD除去率は13%であ
った。この湿式酸化処理液を20℃で12時間活性汚泥
処理をおこなった。汚泥処理後のCOD除去率は30%
であった。Example 8 Water-soluble hydraulic oil (COD496)
000 ppm. (TOC 330,000 ppm) was subjected to wet oxidation treatment at 70 ° C. for 200 minutes in a pressurized container using air as an oxidizing agent. As a result, the COD removal rate of the treated product was 22%. This wet oxidation treatment solution was subjected to an activated sludge treatment at 20 ° C. for 12 hours. The COD removal rate after the sludge treatment was 57%. (Example 9) Water-soluble hydraulic oil (COD496000 pp)
m, TOC 330,000 ppm) was subjected to wet oxidation treatment at 180 ° C. for 0.5 minute in a pressurized container using air as the oxidizing agent, and the COD removal rate of the treated product was 13%. This wet oxidation treatment solution was subjected to an activated sludge treatment at 20 ° C. for 12 hours. 30% COD removal rate after sludge treatment
Met.
【0021】(比較例1)水溶性作動油(COD496
000ppm.TOC330000ppm)を、20℃
で12時間活性汚泥処理をおこなった。活性汚泥処理液
のCOD除去率は18%であった。 (比較例2)水溶性作動油(COD496000pp
m.TOC330000ppm)を、酸化剤に空気を用
いて、40℃で60分間湿式酸化処理をおこなったとこ
ろ、処理物のCOD除去率は11%であった。この湿式
酸化処理液を20℃で12時間活性汚泥処理をおこなっ
た。汚泥処理後のCOD除去率は23%であった。Comparative Example 1 Water-soluble hydraulic oil (COD496)
000 ppm. TOC 330000 ppm) at 20 ° C
For 12 hours. The COD removal rate of the activated sludge treatment liquid was 18%. (Comparative Example 2) Water-soluble hydraulic oil (COD496000 pp
m. (TOC 330,000 ppm) was subjected to a wet oxidation treatment at 40 ° C. for 60 minutes using air as an oxidizing agent. As a result, the COD removal rate of the treated product was 11%. This wet oxidation treatment solution was subjected to an activated sludge treatment at 20 ° C. for 12 hours. The COD removal rate after the sludge treatment was 23%.
【0022】以上の実施例より加熱温度が100〜20
0℃の範囲では短時間の湿式酸化処理で汚泥処理後のC
OD除去率が高い。比較例1のように湿式酸化処理をお
こなわないと、COD除去率は18%と低い。比較例2
の湿式酸化処理が40℃と低いと酸化は進行せず、活性
汚泥処理後もCOD除去率が23%と低い。According to the above embodiment, the heating temperature is 100 to 20.
In the range of 0 ° C, C after sludge treatment by wet oxidation treatment for a short time
High OD removal rate. If the wet oxidation treatment is not performed as in Comparative Example 1, the COD removal rate is as low as 18%. Comparative Example 2
If the wet oxidation treatment is as low as 40 ° C., the oxidation does not proceed, and the COD removal rate is as low as 23% even after the activated sludge treatment.
【0023】[0023]
【発明の効果】本発明の方法によれば、グリコールポリ
マーを含む被処理液を湿式酸化をおこなうことにより、
活性汚泥処理による分解が容易となり処理液の河川の放
流が可能となるまで除去できる。その結果、グリコール
ポリマーを含む被処理液の処理コストが大幅に低減でき
る。According to the method of the present invention, the liquid to be treated containing the glycol polymer is subjected to wet oxidation,
Decomposition by the activated sludge treatment becomes easy, and the treatment liquid can be removed until it can be discharged into a river. As a result, the processing cost of the liquid to be treated containing the glycol polymer can be greatly reduced.
【図1】この図は実施例1の条件で湿式酸化した作動油
の分子量分布を示すグラフである。FIG. 1 is a graph showing the molecular weight distribution of a hydraulic oil wet-oxidized under the conditions of Example 1.
【図2】この図は実施例2の条件で湿式酸化した作動油
の分子量分布を示すグラフである。FIG. 2 is a graph showing the molecular weight distribution of a hydraulic oil wet-oxidized under the conditions of Example 2.
【図3】この図は図2の高分子領域を3倍に拡大した図
である。FIG. 3 is an enlarged view of the polymer region of FIG. 2 three times.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 健吾 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 村山 浩二郎 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 水谷 克弥 愛知県名古屋市中村区名駅4丁目7番23 号 豊田通商株式会社内 (72)発明者 関川 朋弘 愛知県名古屋市中村区名駅4丁目7番23 号 豊田通商株式会社内 (56)参考文献 特開 平5−23696(JP,A) 特開 昭61−197093(JP,A) 特開 昭54−69253(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 3/12 C02F 9/00 501 C02F 1/72 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kengo Ando 1st Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Kojiro Murayama 1st Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 72) Inventor Katsuya Mizutani 4-7-23 Meiji Station, Nakamura-ku, Nagoya City, Aichi Prefecture Inside Toyota Tsusho Co., Ltd. (56) References JP-A-5-23696 (JP, A) JP-A-61-197093 (JP, A) JP-A-54-69253 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 3/12 C02F 9/00 501 C02F 1/72
Claims (3)
化剤とを接触させ、該被処理液を液相状態に保ち50〜
370℃の温度範囲で加熱して湿式酸化反応をおこなう
第1工程と、 第1工程で酸化処理された被処理液を活性汚泥処理する
第2工程とからなるグリコールポリマーの除去方法。1. A liquid to be treated containing a glycol polymer is brought into contact with an oxidizing agent, and the liquid to be treated is kept in a liquid phase state.
A method for removing a glycol polymer, comprising: a first step of performing a wet oxidation reaction by heating in a temperature range of 370 ° C .; and a second step of performing an activated sludge treatment on the liquid to be treated oxidized in the first step.
素である請求項1記載のグリコールポリマーの除去方
法。2. The method according to claim 1, wherein said oxidizing agent is hydrogen peroxide, ozone or oxygen.
200℃の範囲である請求項1記載のグリコールポリマ
ーの除去方法。3. The heating temperature of the wet oxidation reaction is 100 to 100.
The method for removing a glycol polymer according to claim 1, wherein the temperature is in a range of 200 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27534494A JP3243382B2 (en) | 1994-11-09 | 1994-11-09 | Removal method of glycol polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27534494A JP3243382B2 (en) | 1994-11-09 | 1994-11-09 | Removal method of glycol polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08132086A JPH08132086A (en) | 1996-05-28 |
JP3243382B2 true JP3243382B2 (en) | 2002-01-07 |
Family
ID=17554171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27534494A Expired - Fee Related JP3243382B2 (en) | 1994-11-09 | 1994-11-09 | Removal method of glycol polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3243382B2 (en) |
-
1994
- 1994-11-09 JP JP27534494A patent/JP3243382B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08132086A (en) | 1996-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004042043A (en) | Method of treating waste by oxidation | |
EP0758304B1 (en) | Process for treating a medium containing organic constituents | |
JP2005058854A (en) | Method and apparatus for waste water treatment | |
KR950003170A (en) | Wastewater treatment method by electron beam of electron accelerator | |
JPH10277568A (en) | Treatment of organic matter-containing waste water | |
JP3243382B2 (en) | Removal method of glycol polymer | |
JP2003088892A (en) | Organic waste water treatment apparatus | |
JP2000061497A (en) | Treatment of organic wastewater and equipment therefor | |
JP3223145B2 (en) | Organic wastewater treatment method | |
JP3178975B2 (en) | Water treatment method | |
JP4812261B2 (en) | Method for solubilizing solid content in high-concentration organic substance, and method for treating high-concentration organic substance | |
JP3495318B2 (en) | Advanced treatment method for landfill leachate | |
JP2915214B2 (en) | Method for treating wastewater containing alkyl sulfoxide | |
JP2008155075A (en) | Sewage treatment method and apparatus | |
JP2002192175A (en) | Method and apparatus for decomposing organic matter | |
JP3373138B2 (en) | Organic wastewater treatment method and apparatus | |
JP4103099B2 (en) | Water treatment method | |
JP3556515B2 (en) | Wastewater treatment method using ozone and hydrogen peroxide | |
JPS606718B2 (en) | Wastewater treatment method | |
JP3138449B2 (en) | Ozone reaction catalyst consisting of methylphenol | |
JP2004081904A (en) | Treatment method for organic matter-containing wastewater | |
JP4024772B2 (en) | Sludge reduction method | |
JP3897098B2 (en) | Organic drainage treatment method and organic drainage treatment system | |
JP2001104996A (en) | Water treatment method and apparatus | |
JP4065743B2 (en) | Treatment method of organic wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |