JP3241209B2 - Flue gas desulfurization method - Google Patents

Flue gas desulfurization method

Info

Publication number
JP3241209B2
JP3241209B2 JP14022494A JP14022494A JP3241209B2 JP 3241209 B2 JP3241209 B2 JP 3241209B2 JP 14022494 A JP14022494 A JP 14022494A JP 14022494 A JP14022494 A JP 14022494A JP 3241209 B2 JP3241209 B2 JP 3241209B2
Authority
JP
Japan
Prior art keywords
liquid
mist
flue
gas
discharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14022494A
Other languages
Japanese (ja)
Other versions
JPH08951A (en
Inventor
直彦 鵜川
沖野  進
清水  拓
浩一郎 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14022494A priority Critical patent/JP3241209B2/en
Publication of JPH08951A publication Critical patent/JPH08951A/en
Application granted granted Critical
Publication of JP3241209B2 publication Critical patent/JP3241209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は石炭焚き排ガスや重質油
燃焼排ガスのようなSO2 を含む排ガスからSO2 を除
去する排煙脱硫方法に関する。
The present invention relates to a flue gas desulfurization process for removing SO 2 from the exhaust gas containing SO 2, such as coal fired exhaust gas or heavy oil combustion exhaust gas.

【0002】[0002]

【従来の技術】石灰石(CaCO3 )を吸収剤として排
ガスのSO2 を吸収除去し、副生品として石膏を回収す
る湿式石灰石膏法排煙脱硫装置は広く実用化されてい
る。我が国では1970年代初頭に、まず重質油燃焼排
ガス処理用として実用化され、1982年の第2次エネ
ルギ危機以降には石炭を使用するボイラが増加し、これ
に伴って石炭焚き排ガスを処理する排煙脱硫装置が増加
したのは周知のとおりである。これらの装置を使用した
排煙脱硫プロセスにおいて吸収剤であるCaCO3 は粉
体として供給され、吸収液中で溶解しながら酸性ガスで
あるSO2 を中和する。ところが一般にはCaCO3
溶解速度は比較的遅く、そのために高効率な脱硫を行う
ためには、次式で示す反応当量以上に吸収剤であるCa
CO3 を添加する必要がある。
2. Description of the Related Art A wet lime-gypsum method flue gas desulfurization apparatus which absorbs and removes SO 2 from exhaust gas using limestone (CaCO 3 ) as an absorbent and recovers gypsum as a by-product has been widely used. In Japan in the early 1970's, it was first put into practical use for heavy oil combustion exhaust gas treatment. Since the second energy crisis in 1982, boilers using coal have increased, and the coal-fired exhaust gas has been treated accordingly. It is well known that flue gas desulfurization equipment has increased. In the flue gas desulfurization process using these devices, CaCO 3 as an absorbent is supplied as a powder, and neutralizes SO 2 as an acidic gas while dissolving in an absorbent. However, in general, the dissolution rate of CaCO 3 is relatively slow. Therefore, in order to perform desulfurization with high efficiency, the amount of Ca as an absorbent must be more than the reaction equivalent shown by the following formula.
It is necessary to add CO 3 .

【化1】 SO2 +CaCO3 +1/2O2 → CaSO4 +CO2 (1) 一般には過剰にCaCO3 を入れるほど脱硫率は向上す
るが、過剰なCaCO 3 は副生物である石膏に混入し、
石膏の純度を低下させる上、CaCO3 の消費量増大を
招く欠点があった。
Embedded image SOTwo+ CaCOThree+ 1 / 2OTwo→ CaSOFour+ COTwo (1) Generally, excessive CaCOThree, The desulfurization rate increases
But excess CaCO ThreeIs mixed into the by-product gypsum,
In addition to reducing the purity of gypsum, CaCOThreeIncrease consumption of
There were drawbacks to invite.

【0003】これを解決する目的で従来の湿式脱硫方法
において、CaCO3 溶解度を増加させ、これにより脱
硫率を向上させる各種脱硫助剤が提案されている。例え
ば、脱硫助剤として、Na2 SO4 、Na2 SO3 、N
aOH、Na2 CO3 、NaHCO3 、NaHSO3
どのナトリウム化合物を使用する方法は特開昭60−8
4133号公報や特許第894725号明細書や特許第
903276号明細書を始め、特開昭53−12916
7号、特開昭55−124530号、特開昭56−65
615号、及び特開昭51−97597号各公報におい
て開示されており、マグネシウム化合物を脱硫助剤とす
る方法については特開昭53−17565号公報により
開示されている。さらに、本発明者らは、従来全く触れ
られていなかったアンモニウム塩が、従来使用されてい
たナトリウム塩やマグネシウム塩の脱硫助剤としての効
果に比べて著しく高い効果を示すことを新たに見い出
し、アンモニウム塩を吸収助剤として吸収液に共存させ
る排ガスの処理方法を出願中である(特願平05−25
2723,特願平05−260561)。
[0003] In order to solve this problem, various desulfurization auxiliaries have been proposed which increase the solubility of CaCO 3 in the conventional wet desulfurization method and thereby improve the desulfurization rate. For example, Na 2 SO 4 , Na 2 SO 3 , N
NaOH, the method of using a sodium compound such as Na 2 CO 3, NaHCO 3, NaHSO 3 JP 60-8
No. 4133, Japanese Patent No. 894725, Japanese Patent No. 903276, and Japanese Patent Application Laid-Open No. 53-12916.
7, JP-A-55-124530, JP-A-56-65
No. 615 and JP-A-51-97597, and a method of using a magnesium compound as a desulfurization aid is disclosed in JP-A-53-17565. Furthermore, the present inventors have newly found that ammonium salts, which have not been mentioned at all, show a significantly higher effect than conventionally used sodium salts and magnesium salts as desulfurization aids, A method for treating exhaust gas in which an ammonium salt is coexisted in an absorbing solution as an absorption aid is pending (Japanese Patent Application No. 05-25 / 1993).
2723, Japanese Patent Application No. 05-260561).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、アンモ
ニウム塩を吸収助剤、CaCO3 を吸収剤として使用す
るプロセスにおいては、新たに吸収液からのアンモニア
ガスの放散という技術課題が浮上してきた。通常石灰石
膏方法で使用する吸収液は酸性であるため次の解離平衡
式によってアンモニウム塩の大部分は吸収液中でアンモ
ニウムイオン(NH4 + )として存在し、吸収液中より
ガス中に放散する恐れのあるアンモニアガス(NH3
の存在量はごく僅かである。
However, in a process using an ammonium salt as an absorption aid and CaCO 3 as an absorption agent, a technical problem has emerged that ammonia gas is released from the absorption liquid. Since the absorbing solution usually used in the lime-gypsum method is acidic, most of the ammonium salts are present as ammonium ions (NH 4 + ) in the absorbing solution according to the following dissociation equilibrium equation and are released into the gas from the absorbing solution. Ammonia gas (NH 3 )
Is very small.

【化2】 ところが、吸収助剤としてのアンモニウム塩の効果は、
その濃度が高いほど大きいため、高い脱硫効率を得るた
めには、吸収液中のアンモニウム塩濃度を高めることが
望ましい。アンモニウム塩濃度が高くなると、前記解離
平衡式からわかるように、ほぼそれに比例して吸収液中
に存在するNH3 量が増大し、吸収液中からガス中に放
散するアンモニアガスが増大することとなる。アンモニ
アガスがSO2 除去後の浄化ガスに同伴されると、アン
モニウム塩の過剰消費を招く上に、その量次第では、臭
気など二次的な環境問題を引き起こす恐れも出てくる。
本発明は前記従来技術の問題点を解消し、アンモニウム
塩の吸収助剤効果を向上させるため吸収液中に高濃度の
アンモニウム塩を溶存させた条件下でも、処理ガス中へ
のアンモニアガスの拡散が無い排煙脱硫方法を提供しよ
うとするものである。
Embedded image However, the effect of ammonium salts as absorption aids is
Since the higher the concentration, the higher the concentration, it is desirable to increase the ammonium salt concentration in the absorbing solution in order to obtain a high desulfurization efficiency. As can be seen from the above dissociation equilibrium equation, when the ammonium salt concentration increases, the amount of NH 3 present in the absorbing solution increases in proportion thereto, and the amount of ammonia gas released from the absorbing solution into the gas increases. Become. If ammonia gas is entrained in the purified gas after SO 2 removal, excessive consumption of ammonium salts may occur, and depending on the amount, secondary environmental problems such as odor may be caused.
The present invention solves the above-mentioned problems of the prior art, and the diffusion of ammonia gas into the processing gas even under conditions in which a high concentration of ammonium salt is dissolved in the absorbing solution in order to improve the effect of the ammonium salt on the absorption aid. It is an object of the present invention to provide a flue gas desulfurization method without any problem.

【0005】[0005]

【課題を解決するための手段】本発明はSO2 を含む排
ガスを石灰石とアンモニウム塩を含む吸収液スラリと接
触させてSO2 を湿式除去する排煙脱硫方法において、
吸収塔の後段の煙道内に設置したミストエリミネータの
ガス入口側の煙道内に酸性液を連続的に噴霧し、該ミス
トエリミネータから排出される補集ミスト排出液のpH
値を5以下に維持するようにすると共に、該酸性液とし
て前記補集ミスト排出液の一部に酸を加えた液を循環使
用することを特徴とする排煙脱硫方法及びSO2 を含む
排ガスを石灰石とアンモニウム塩を含む吸収液スラリと
接触させてSO2 を湿式除去する排煙脱硫方法におい
て、吸収塔の後段の煙道内に設置したミストエリミネー
タのガス入口側の煙道内に酸性液を連続的に噴霧し、該
ミストエリミネータから排出される補集ミスト排出液の
pH値を5以下に維持するようにすると共に、該酸性液
として前記補集ミスト排出液の一部に酸を加えた液を循
環使用し、補集ミスト排出液の残部は前記吸収液に添加
することを特徴とする排煙脱硫方法である。
According to the present invention, there is provided a flue gas desulfurization method for wet-removing SO 2 by bringing exhaust gas containing SO 2 into contact with an absorbent slurry containing limestone and ammonium salt.
Acid liquid is continuously sprayed into the flue on the gas inlet side of the mist eliminator installed in the flue behind the absorption tower, and the pH of the collected mist discharged from the mist eliminator is adjusted.
A flue gas desulfurization method and an exhaust gas containing SO 2 , wherein a value obtained by adding an acid to a part of the collection mist discharge liquid is used as the acidic liquid while maintaining the value at 5 or less. in a flue gas desulfurization method absorption liquid is contacted with the slurry to wet removal of SO 2 and containing limestone and ammonium salts, continuous acid liquid to the gas inlet side of the flue of the mist eliminator installed downstream of the flue of the absorption tower A liquid in which acid is added to a part of the collected mist effluent as the acidic liquid while maintaining the pH value of the collected mist effluent discharged from the mist eliminator at 5 or less. Wherein the remaining portion of the collected mist effluent is added to the absorbing solution.

【0006】[0006]

【作用】以下図面を参照して本発明の方法を詳細に説明
する。図1は本発明の実施態様の1例を示す説明図であ
る。図1のプロセスにおいて、燃焼排ガスは煙道1より
吸収塔2に導かれ、SO2を除去された後、ミストエリ
ミネータ3を通って浄化ガスとして煙道4より系外に排
出される。吸収塔2内では、排ガスは循環ポンプ5によ
りラインaを通して送液された吸収液と接触し、SO2
が吸収除去される。塔底タンク6中の吸収液中にはライ
ンbより石灰石粉体、ラインcより吸収助剤であるアン
モニウム塩が供給され、SO2 を高効率で脱硫除去す
る。石灰石粉体供給量は吸収液のpHが設定値(通常、
pH4.5〜6.5)となるよう調整される。また塔底
タンク6にはタンク底部にラインeより空気が供給さ
れ、SO2 吸収により生成した亜硫酸イオンを酸化して
石膏とする。ラインdからは補給水が加えられ、吸収液
中のスラリー濃度が一定に維持される。
The method of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention. In the process of FIG. 1, the flue gas is guided from the flue 1 to the absorption tower 2, where SO 2 is removed, and then discharged through the mist eliminator 3 as a purified gas from the flue 4 to the outside of the system. In the absorption tower 2, the exhaust gas comes into contact with the absorption liquid sent through the line a by the circulation pump 5, and the SO 2
Is absorbed and removed. The limestone powder is supplied from the line b into the absorption liquid in the tower bottom tank 6 and the ammonium salt as an absorption aid is supplied from the line c to desulfurize and remove SO 2 with high efficiency. The supply amount of limestone powder depends on the pH of the absorbing solution (usually,
(pH 4.5 to 6.5). Air is supplied to the bottom tank 6 from the line e at the bottom of the tank, and the sulfite ions generated by SO 2 absorption are oxidized into gypsum. Replenishing water is added from the line d, and the slurry concentration in the absorbing solution is kept constant.

【0007】吸収塔2でSO2 を除去された排ガスはミ
ストエリミネータ3を備えた煙道4から排出されるが、
ミストエリミネータ3のガス入口側煙道内にはミストエ
リミネータに向かって複数の噴霧ノズル7が配置され、
これにより送液ポンプ8によりラインfを介して供給さ
れた酸性液が連続的にガス中に噴霧される。噴霧された
酸性液は、ガスに同伴されてミストエリミネータ3に達
し、ここで、吸収塔から飛沫同伴された吸収液の一部と
共に捕集される。通常ミストエリミネータ3は2段とな
っているため、その捕集効率は極めて高く、噴霧された
酸性液と飛沫同伴された吸収液のほとんど全部が捕集さ
れ、ラインgより捕集ミスト排出液として排出される。
SO2 除去後の排ガス中に一部放散されたアンモニアガ
スは噴霧された酸性液と接触し吸収除去されるため捕集
ミスト排出液中にはアンモニウム塩が含有される。
The exhaust gas from which SO 2 has been removed in the absorption tower 2 is discharged from a flue 4 provided with a mist eliminator 3.
A plurality of spray nozzles 7 are arranged in the gas inlet side flue of the mist eliminator 3 toward the mist eliminator,
As a result, the acidic liquid supplied by the liquid supply pump 8 via the line f is continuously sprayed into the gas. The sprayed acidic liquid reaches the mist eliminator 3 together with the gas, where it is collected together with a part of the absorbing liquid splashed from the absorption tower. Normally, the mist eliminator 3 has two stages, so that its collection efficiency is extremely high, and almost all of the sprayed acidic liquid and the absorbed liquid absorbed are collected, and the collected mist is discharged from the line g as a collected mist discharge liquid. Is discharged.
The ammonia gas partially diffused in the exhaust gas after the removal of SO 2 comes into contact with the sprayed acidic liquid and is absorbed and removed. Therefore, the collected mist discharge liquid contains an ammonium salt.

【0008】ここでアンモニウム塩を含んだ捕集ミスト
排出液のpHが高いと、前述の(2)式で示した解離平
衡関係により排出液のアンモニア分圧が高くなるため、
酸性液噴霧によるアンモニアガスの吸収が不可能とな
る。本発明者らは図2に1例を示した捕集ミスト排出液
のpHとアンモニアガスの平衡分圧測定結果、及び吸収
速度の実測等により鋭意検討した結果、ラインgより抜
き出される捕集ミスト排出液のpHを5以下に保持する
ことで、極く低濃度、例えば1ppm以下までアンモニ
アガス濃度を低減できることを見出し、この事実に基づ
いて本発明を完成するに至った。すなわち捕集ミスト排
出液のpH値をpHメータ9で検出し、このpH値が5
以下となるよう、ラインhより硫酸または塩酸等の酸を
酸性液タンク10に加える量を調整し、噴霧ノズル7か
ら排ガス中に噴霧する酸性液のpHを調整する。ここで
ラインgより抜き出される捕集ミスト排出液の一部を循
環使用することで噴霧ノズル7から噴霧する酸性液量を
増大し排ガスからのアンモニアガスの除去効率の向上を
はかることができる。捕集ミスト排出液の残部はライン
iを介して塔底タンク6に供給して吸収液として使用
し、アンモニウム塩を有効利用することができる。な
お、固液分離装置11において吸収液より副生石膏12
が分離された後のアンモニウム塩を含むろ液の大部分は
ラインjを介して塔底タンク6に循環され、一部はライ
ンkにより系外に排出される。
Here, if the pH of the trapping mist effluent containing the ammonium salt is high, the partial pressure of ammonia in the effluent increases due to the dissociation equilibrium shown in the above equation (2).
It becomes impossible to absorb ammonia gas by spraying the acidic liquid. The inventors of the present invention have shown an example in FIG. 2 and have conducted a thorough study by measuring the equilibrium partial pressure of the ammonia gas and the pH of the collected mist effluent. It has been found that by maintaining the pH of the mist discharged liquid at 5 or less, the ammonia gas concentration can be reduced to an extremely low concentration, for example, 1 ppm or less, and based on this fact, the present invention has been completed. That is, the pH value of the collected mist effluent is detected by the pH meter 9 and the pH value is set to 5
The amount of an acid such as sulfuric acid or hydrochloric acid to be added to the acidic liquid tank 10 from the line h is adjusted so that the pH of the acidic liquid sprayed from the spray nozzle 7 into the exhaust gas is adjusted as follows. Here, by circulating and using a part of the collected mist discharged from the line g, the amount of the acidic liquid sprayed from the spray nozzle 7 can be increased and the efficiency of removing ammonia gas from exhaust gas can be improved. The remaining part of the collected mist discharge liquid is supplied to the tower bottom tank 6 via the line i and used as an absorbing liquid, so that ammonium salts can be effectively used. In the solid-liquid separation device 11, the by-product gypsum 12
Most of the filtrate containing the ammonium salt after is separated is circulated to the bottom tank 6 via the line j, and a part is discharged out of the system via the line k.

【0009】[0009]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。 (実施例1)石炭焚き排ガスを図1の形式の吸収装置で
処理した。吸収装置はパイロット規模とし、テスト条件
を表1に示す。ミストエリミネータの型式は折れ板式
で、2段設置とした。吸収液中のアンモニウム塩濃度は
0.18〔mol/l asNH4 + 〕となるようライ
ンcからの供給硫酸アンモニウム量を調整した。またラ
インgより排出される捕集ミスト排出液のpH値は4.
0となるよう酸性液タンク10に硫酸を加えて調整し
た。定常状態での浄化ガス中のアンモニアガス濃度及び
脱硫率を測定した結果、浄化ガス中のアンモニア濃度は
0.2ppm、脱硫率は98.8%であった。なお、ア
ンモニア濃度の測定は0.5%ホウ酸水によるアンモニ
アガスの吸収後、インドフェノール法によって定量する
JISK0099法によった。後述する比較例に比べ、
浄化ガス中のアンモニア濃度は顕著に低減した。
EXAMPLES The method of the present invention will be described more specifically with reference to the following examples. (Example 1) Coal-fired exhaust gas was treated by an absorber of the type shown in FIG. The absorber is a pilot scale and the test conditions are shown in Table 1. The model of the mist eliminator was a folded plate type and was installed in two stages. The amount of ammonium sulfate supplied from the line c was adjusted so that the ammonium salt concentration in the absorbing solution was 0.18 [mol / l asNH 4 + ]. The pH value of the collected mist discharged from line g is 4.
Sulfuric acid was added to the acidic liquid tank 10 to adjust the value to 0. As a result of measuring the ammonia gas concentration and the desulfurization rate in the purified gas in the steady state, the ammonia concentration in the purified gas was 0.2 ppm and the desulfurization rate was 98.8%. The ammonia concentration was measured by the JIS K0099 method in which the ammonia gas was absorbed by 0.5% boric acid water and then quantified by the indophenol method. Compared to a comparative example described later,
The ammonia concentration in the purified gas was significantly reduced.

【0010】[0010]

【表1】 [Table 1]

【0011】(実施例2)実施例1のパイロットプラン
トテスト運転条件のうち、硫酸添加後の捕集ミスト排出
液のpH値を5.0とし、他は実施例1と全く同一条件
で運転した。定常状態での浄化ガス中のアンモニアガス
濃度は0.3ppm、脱硫率は98.8%であった。実
施例1と比較し、同オーダーまで浄化ガス中のアンモニ
ア濃度が低減されていることがわかった。
(Embodiment 2) Of the pilot plant test operation conditions of Embodiment 1, the pH value of the trapped mist discharge after sulfuric acid addition was set to 5.0, and the other operation was carried out under exactly the same conditions as in Embodiment 1. . The ammonia gas concentration in the purified gas in a steady state was 0.3 ppm, and the desulfurization rate was 98.8%. Compared with Example 1, it was found that the ammonia concentration in the purified gas was reduced to the same order.

【0012】(比較例1)実施例1のパイロットプラン
トテスト運転条件のうち、硫酸添加後の捕集ミスト排出
液のpH値を6.0とし、他は実施例1と全く同一条件
で運転した。定常状態での浄化ガス中のアンモニアガス
濃度は3ppm、脱硫率は98.9%であった。実施例
1及び2と比較すると、浄化ガス中のアンモニア濃度が
著しく上昇していることが判明した。これは捕集ミスト
排出液のpHが、実施例1及び2より高いため、酸性液
によるアンモニア吸収除去効率が低下したためと推定さ
れ、捕集ミスト排出液のpHが本発明の範囲である5以
下となるよう酸性液を噴霧する必要があることが明らか
となった。
(Comparative Example 1) Among the pilot plant test operating conditions of Example 1, the operation was performed under exactly the same conditions as in Example 1 except that the pH value of the trapped mist discharge after sulfuric acid addition was set to 6.0. . The ammonia gas concentration in the purified gas in a steady state was 3 ppm, and the desulfurization rate was 98.9%. As compared with Examples 1 and 2, it was found that the ammonia concentration in the purified gas was significantly increased. This is presumed to be due to the fact that the pH of the trapped mist effluent was lower than in Examples 1 and 2 and the efficiency of ammonia absorption and removal by the acidic liquid was reduced. It became clear that it was necessary to spray an acidic solution so that

【0013】(比較例2)実施例1と同一装置を使用
し、酸性液の噴霧を停止した以外は、実施例1と同一条
件で運転を行った。定常状態での浄化ガス中のアンモニ
ア濃度は5ppm、脱硫率は98.8%であった。
Comparative Example 2 The same apparatus as in Example 1 was used, and the operation was carried out under the same conditions as in Example 1 except that the spraying of the acidic liquid was stopped. The ammonia concentration in the purified gas in a steady state was 5 ppm, and the desulfurization rate was 98.8%.

【0014】[0014]

【発明の効果】本発明の適用によりアンモニウム塩の吸
収助剤としての顕著な効果を損ねることなく、吸収助剤
として添加されたアンモニウム塩がアンモニアガスとし
て浄化ガス中に放散されるのを防止することができる。
また、捕集されたアンモニウム塩は、吸収助剤として再
使用できるのでアンモニウム塩の過剰消費の問題も解消
でき、アンモニアガスの放出による臭気問題も解決され
る。
According to the present invention, the ammonium salt added as an absorption aid is prevented from being diffused as ammonia gas into the purified gas without impairing the remarkable effect of the ammonium salt as an absorption aid. be able to.
Further, the collected ammonium salt can be reused as an absorption aid, so that the problem of excessive consumption of ammonium salt can be solved and the problem of odor due to the release of ammonia gas can be solved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施態様を示す概略断面図。FIG. 1 is a schematic sectional view showing one embodiment of the present invention.

【図2】補集ミスト排出液のpH値と平衡ガス中のアン
モニア濃度との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between a pH value of a collected mist discharge and an ammonia concentration in an equilibrium gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩下 浩一郎 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社 本社内 (56)参考文献 特開 平7−108131(JP,A) 特開 平7−112117(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 B01D 53/50 B01D 53/77 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koichiro Iwashita 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Heavy Industries, Ltd. Headquarters (56) References JP-A-7-108131 (JP, A) JP-A Heisei 7-112117 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B01D 53/34 B01D 53/50 B01D 53/77

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SO2 を含む排ガスを石灰石とアンモニ
ウム塩を含む吸収液スラリと接触させてSO2 を湿式除
去する排煙脱硫方法において、吸収塔の後段の煙道内に
設置したミストエリミネータのガス入口側の煙道内に酸
性液を連続的に噴霧し、該ミストエリミネータから排出
される補集ミスト排出液のpH値を5以下に維持するよ
うにすると共に、該酸性液として前記補集ミスト排出液
の一部に酸を加えた液を循環使用することを特徴とする
排煙脱硫方法。
1. A flue gas desulfurization method for wet-removing SO 2 by bringing exhaust gas containing SO 2 into contact with an absorbent slurry containing limestone and an ammonium salt, the gas of a mist eliminator installed in a flue downstream of the absorption tower. Acid liquid is continuously sprayed into the flue on the inlet side so that the pH value of the collected mist discharged from the mist eliminator is maintained at 5 or less, and the collected mist is discharged as the acidic liquid. A flue gas desulfurization method comprising circulating a liquid obtained by adding an acid to a part of the liquid.
【請求項2】 SO2 を含む排ガスを石灰石とアンモニ
ウム塩を含む吸収液スラリと接触させてSO2 を湿式除
去する排煙脱硫方法において、吸収塔の後段の煙道内に
設置したミストエリミネータのガス入口側の煙道内に酸
性液を連続的に噴霧し、該ミストエリミネータから排出
される補集ミスト排出液のpH値を5以下に維持するよ
うにすると共に、該酸性液として前記補集ミスト排出液
の一部に酸を加えた液を循環使用し、補集ミスト排出液
の残部は前記吸収液に添加することを特徴とする排煙脱
硫方法。
2. A flue gas desulfurization method in which exhaust gas containing SO 2 in contact with the absorption liquid slurry containing limestone and ammonium salts wet removal of SO 2, the gas mist eliminator installed downstream of the flue of the absorption tower Acid liquid is continuously sprayed into the flue on the inlet side so that the pH value of the collected mist discharged from the mist eliminator is maintained at 5 or less, and the collected mist is discharged as the acidic liquid. A flue gas desulfurization method comprising circulating a liquid obtained by adding an acid to a part of the liquid, and adding the remaining part of the collected mist discharged liquid to the absorbing liquid.
JP14022494A 1994-06-22 1994-06-22 Flue gas desulfurization method Expired - Fee Related JP3241209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14022494A JP3241209B2 (en) 1994-06-22 1994-06-22 Flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14022494A JP3241209B2 (en) 1994-06-22 1994-06-22 Flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPH08951A JPH08951A (en) 1996-01-09
JP3241209B2 true JP3241209B2 (en) 2001-12-25

Family

ID=15263799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14022494A Expired - Fee Related JP3241209B2 (en) 1994-06-22 1994-06-22 Flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JP3241209B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863875B1 (en) 1998-04-13 2005-03-08 Mitsubishi Heavy Industries, Ltd. Flue gas treating system and process
KR100517408B1 (en) * 2003-07-03 2005-09-27 삼성전자주식회사 Contamination control system and Air-conditioning system of substrate processing apparatus using the same
JP4893617B2 (en) * 2007-12-27 2012-03-07 株式会社Ihi Mercury removal apparatus and mercury removal method
JP5335740B2 (en) * 2010-08-03 2013-11-06 株式会社日立製作所 Exhaust gas treatment method and equipment
CN103041682B (en) * 2012-10-02 2016-05-11 云南云天化国际化工股份有限公司 The application process of a kind of smart desulfurization in sulfuric acid tail is inhaled

Also Published As

Publication number Publication date
JPH08951A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
CN1326767C (en) Nox, Hg, and SO2 removal using ammonia
US4085194A (en) Waste flue gas desulfurizing method
US20010007647A1 (en) Exhaust gas treatment process
US20150174526A1 (en) Wet Type Flue-Gas Desulfurization Method
WO2009093575A1 (en) System and method for treating discharge gas from coal-fired boiler
CN102188882B (en) Integrated method for simultaneously realizing denitrification, desulfurization and heavy metal removal from flue gas, and special equipment
JP2011177674A (en) Finishing flue gas desulfurization apparatus and exhaust gas treatment system using the same
JP3241209B2 (en) Flue gas desulfurization method
KR0136645B1 (en) Method and apparatus for treating waste gas
JPH0523535A (en) Removal of acidic gas from combustion exhaust gas
CN109173642A (en) Processing system and method containing nitrite and nitrate absorbing liquid after a kind of wet flue gas denitration
US5266287A (en) Regenerable flue gas desulfurization system
JP3174665B2 (en) Flue gas desulfurization method
JPS597493B2 (en) Exhaust gas desulfurization equipment
KR100521398B1 (en) Scrubber system for removing acidic gases
US4178348A (en) Process for removing sulfur oxides in exhaust gases
JPH05212239A (en) Exhaust gas treatment
JPH07108131A (en) Treatment of waste gas
JP2007050334A (en) Exhaust gas purification method and facility
WO2016175163A1 (en) Method and device for treating wastewater from gas-cooler cleaning
JPH06165912A (en) High performance stack gas desulfurizing method
JPH0663353A (en) Wet flue gas desulfurizer and its method
JP2583902B2 (en) Control device for wet flue gas desulfurization unit
JPH08206446A (en) Treatment of exhaust gas
JP3200076B2 (en) Wet flue gas desulfurization method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

LAPS Cancellation because of no payment of annual fees