JP3239628B2 - Pyroelectric infrared sensor - Google Patents

Pyroelectric infrared sensor

Info

Publication number
JP3239628B2
JP3239628B2 JP20842894A JP20842894A JP3239628B2 JP 3239628 B2 JP3239628 B2 JP 3239628B2 JP 20842894 A JP20842894 A JP 20842894A JP 20842894 A JP20842894 A JP 20842894A JP 3239628 B2 JP3239628 B2 JP 3239628B2
Authority
JP
Japan
Prior art keywords
chopper
shim
piezoelectric
sensor
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20842894A
Other languages
Japanese (ja)
Other versions
JPH0875546A (en
Inventor
勝政 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20842894A priority Critical patent/JP3239628B2/en
Publication of JPH0875546A publication Critical patent/JPH0875546A/en
Application granted granted Critical
Publication of JP3239628B2 publication Critical patent/JP3239628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、物体から放出される赤
外線を非接触で検知する焦電型赤外線センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric infrared sensor for detecting infrared rays emitted from an object in a non-contact manner.

【0002】[0002]

【従来の技術】近年、焦電型赤外線センサは、電子レン
ジにおける調理物の温度測定や、エアコンにおける人体
の位置検出などの幅広い分野で利用され、今後ますます
需要が大きくなると思われる。焦電型赤外線センサは、
LiTaO3単結晶等の焦電体による焦電効果を利用し
たものである。焦電体は自発分極を有しており常に表面
電荷が発生するが、大気中における定常状態では大気中
の電荷と結びついて電気的に中性を保っている。この焦
電体に赤外線が入射すると焦電体の温度が変化し、これ
にともない表面の電荷状態も中性状態が壊れて変化す
る。この表面に発生する電荷を検知し、赤外線入射量を
測定するのが、焦電型赤外線センサである。物体はその
温度に応じた赤外線を放射しており、このセンサを用い
ることにより物体の位置や温度を検出できる。焦電効果
は赤外線の入射量の変化に起因するものであり、焦電型
赤外線センサとして物体の温度を検出する場合、赤外線
入射量を変化させる必要がある。この手段として用いら
れるのがチョッパであり、入射する赤外線を強制的に断
続し検出物体の温度を検出する。従来のチョッパとして
は、電磁モータ及び圧電アクチュエータ等が用いられて
いた。
2. Description of the Related Art In recent years, pyroelectric infrared sensors have been used in a wide range of fields such as measuring the temperature of food in a microwave oven and detecting the position of a human body in an air conditioner, and the demand is expected to increase in the future. Pyroelectric infrared sensors are
This utilizes the pyroelectric effect of a pyroelectric material such as a LiTaO 3 single crystal. The pyroelectric body has spontaneous polarization and always generates a surface charge. However, in a steady state in the atmosphere, the pyroelectric body is electrically neutral with the charge in the atmosphere. When infrared light is incident on the pyroelectric body, the temperature of the pyroelectric body changes, and accordingly, the charge state of the surface changes due to the neutral state being broken. A pyroelectric infrared sensor detects charges generated on the surface and measures the amount of incident infrared light. An object emits infrared rays according to its temperature, and by using this sensor, the position and temperature of the object can be detected. The pyroelectric effect is caused by a change in the amount of incident infrared light. When a pyroelectric infrared sensor detects the temperature of an object, it is necessary to change the amount of incident infrared light. A chopper is used as this means, and forcibly interrupts the incident infrared rays to detect the temperature of the detection object. As a conventional chopper, an electromagnetic motor, a piezoelectric actuator, and the like have been used.

【0003】図4は弾性体平板に圧電体を接着したアク
チュエータをチョッパとして用いた焦電型赤外線センサ
の従来例である。一般的に、金属等の弾性体平板に圧電
体を接着して貼り合わせ素子を構成して片端を固定し、
圧電体による歪を利用して全体を屈曲運動を発生させる
アクチュエータは、一般には弾性体平板の両面に圧電体
を接着したものはバイモルフ型、片面にのみ接着したも
のはユニモルフ型と呼ばれており、また弾性体平板はシ
ムと呼ばれており、以下各部材をそのように呼ぶ。
FIG. 4 shows a conventional example of a pyroelectric infrared sensor using an actuator in which a piezoelectric body is bonded to an elastic flat plate as a chopper. Generally, a piezoelectric element is bonded to an elastic flat plate made of metal or the like to form a bonding element and one end is fixed,
In general, actuators that generate a bending motion using the distortion caused by a piezoelectric body are generally called a bimorph type, in which a piezoelectric body is bonded to both sides of an elastic flat plate, and a unimorph type, in which only one side is bonded. The elastic flat plate is called a shim, and each member is hereinafter referred to as such.

【0004】図4はバイモルフ型素子を焦電型赤外線セ
ンサ用チョッパとして用いたものであり、61はシム、
62a,62bは圧電体、63は遮蔽板、64は台座、
65は固定具、66はシム用配線、67a,67bは圧
電体用配線、68は赤外線検出部、69はスリット、7
0は赤外線である。シム61の両面には圧電体62a,
62bがそれぞれ接着され、三者が一体となりバイモル
フ型素子が構成されている。圧電体62a,62bは表
面に電極が印刷され、また接着面に対し垂直方向に分極
処理が施されており、圧電体62a,62bそれぞれの
分極の方向は、シムから取り出された配線66と圧電体
から取り出された配線67a,67bによりシム61と
圧電体62a,62bそれぞれの間に加えられる電界の
向きにより異なるが、圧電体62a,62bが常に互い
に逆の方向に歪を発生するように決められる。すなわ
ち、圧電体62a,62bの片方が分極方向に伸びる方
向で歪むとき、もう一方は分極方向に縮むように印加電
界の方向と分極方向は決められる。バイモルフ型素子は
台座64と固定具65とによりシム61の部分と圧電体
62a,62bの部分が同時に挟み込まれることにより
保持されている。シム61の圧電体62a,62bが接
着されていない部分にはシム用配線66が取り付けら
れ、また圧電体62a,62b表面には圧電体用配線6
7a,67bが取り付けられている。バイモルフ型素子
の自由端の先端部分には遮蔽板63が取り付けられ、遮
蔽板63にはスリット69が設けられている。遮蔽板6
3の近傍には赤外線検出部68が遮蔽板63及び、バイ
モルフ型素子に接触しないように配置される。シム用配
線66及び圧電体用配線67a,67bによりシム61
と圧電体62a,62bの間にそれぞれ電界が印加され
ると、バイモルフ型素子は片端固定の屈曲運動を発生
し、先端に取り付けられた遮蔽板63及びスリット69
は電界の印加方向の変化に応じて図4上で矢印で示す移
動方向に往復運動を行う。このスリット69の往復運動
により赤外線検出部68に入射する赤外線70を断続的
に遮断する。
FIG. 4 shows a bimorph-type element used as a chopper for a pyroelectric infrared sensor.
62a and 62b are piezoelectric bodies, 63 is a shielding plate, 64 is a pedestal,
65 is a fixture, 66 is shim wiring, 67a and 67b are piezoelectric wiring, 68 is an infrared detector, 69 is a slit, 7
0 is an infrared ray. A piezoelectric body 62a is provided on both sides of the shim 61,
62b are adhered to each other, and the three are integrated to form a bimorph-type element. Electrodes are printed on the surfaces of the piezoelectric bodies 62a and 62b, and a polarization process is performed in a direction perpendicular to the bonding surface. The direction of polarization of each of the piezoelectric bodies 62a and 62b is determined by the wiring 66 taken out from the shim and the piezoelectric body. Although it differs depending on the direction of the electric field applied between the shim 61 and the piezoelectric members 62a and 62b due to the wirings 67a and 67b taken out of the body, the piezoelectric members 62a and 62b are always determined to generate strain in directions opposite to each other. Can be That is, the direction of the applied electric field and the polarization direction are determined so that when one of the piezoelectric bodies 62a and 62b is distorted in the direction of extension in the polarization direction, the other contracts in the polarization direction. The bimorph-type element is held by the shim 61 and the piezoelectric members 62a and 62b being simultaneously sandwiched between the pedestal 64 and the fixture 65. A shim wiring 66 is attached to a portion of the shim 61 where the piezoelectric bodies 62a and 62b are not bonded, and a piezoelectric wiring 6 is provided on the surfaces of the piezoelectric bodies 62a and 62b.
7a and 67b are attached. A shielding plate 63 is attached to the free end of the bimorph-type element, and a slit 69 is provided in the shielding plate 63. Shield plate 6
In the vicinity of 3, the infrared detecting section 68 is arranged so as not to contact the shielding plate 63 and the bimorph type element. The shim 61 is formed by the shim wiring 66 and the piezoelectric wirings 67a and 67b.
When an electric field is applied between the piezoelectric element and the piezoelectric members 62a and 62b, the bimorph-type element generates a bending movement fixed at one end, and the shielding plate 63 and the slit 69 attached to the tip end.
Reciprocates in the movement direction indicated by the arrow in FIG. 4 according to the change in the direction of application of the electric field. The reciprocating motion of the slit 69 intermittently blocks the infrared ray 70 incident on the infrared ray detector 68.

【0005】しかしながら、上記の構成のバイモルフ型
チョッパは、赤外線を断続的に遮断するのに十分な移動
距離を得るために、固定部から先端の移動部までの寸法
を大きくする必要があり、また非常に高い駆動電圧が必
要である。
However, the bimorph-type chopper having the above configuration needs to have a large dimension from the fixed portion to the tip moving portion in order to obtain a moving distance sufficient to intermittently block infrared rays. Very high drive voltages are required.

【0006】そこで、従来の改善方法として、バイモル
フ型素子あるいはユニモルフ型素子の先端移動部分に荷
重負荷を設けて共振周波数を低下させ、固定をシム部分
のみで行うことにより圧電体が脆性破壊することを防止
し、更に必要に応じて固定部近傍のシムに切り欠きを設
けるなどの手段により共振周波数をより低下させること
で、低電圧駆動で大きな変位を得ることができる。以下
に上記の特徴を持つチョッパの構造の一例を示す。
Therefore, as a conventional improvement method, a piezoelectric body is brittlely broken by applying a load to the tip moving portion of a bimorph-type element or a unimorph-type element to lower the resonance frequency and fixing only the shim. By further reducing the resonance frequency by, for example, providing a notch in the shim near the fixed portion as necessary, a large displacement can be obtained with low voltage driving. An example of the structure of the chopper having the above characteristics will be described below.

【0007】図5は従来の改善例における、焦電型赤外
線センサ用チョッパとしてのユニモルフ型素子を、シム
部分の固定場所の幅が細くなるように成形した場合の一
例を示す斜視図である。図5において、71a,71b
はシム、72a,72bは圧電体、73a,73bは重
り、74はセンサ台座、75a,75bはユニモルフ型
素子固定具、76a,76bはシム用配線、77a,7
7bは圧電体用配線、78は赤外線検出部、79a,7
9b,79c,79dはユニモルフ型素子固定ネジ、8
0は赤外線である。
FIG. 5 is a perspective view showing an example of a conventional improved example in which a unimorph-type element as a chopper for a pyroelectric infrared sensor is formed so that a width of a fixing portion of a shim portion is reduced. In FIG. 5, 71a, 71b
Is a shim, 72a and 72b are piezoelectric bodies, 73a and 73b are weights, 74 is a sensor pedestal, 75a and 75b are unimorph-type element fixing tools, 76a and 76b are shim wirings, 77a and 7
7b is a wiring for a piezoelectric body, 78 is an infrared detector, 79a and 7
9b, 79c and 79d are unimorph type element fixing screws, 8
0 is an infrared ray.

【0008】また図6はシム71a,71bの詳細を示
す斜視図であり、81は遮蔽部、82は圧電体接着部、
83は切り欠き部、84は位置決め部、85a,85b
は固定用穴である。遮蔽部81と圧電体接着部82は折
曲げによって直角をなし、圧電体接着部82から位置決
め部84にいたる間に幅が圧電体接着部82よりも小さ
くなるように成形された切り欠き部83を設け、位置決
め部84の両端には固定用穴85a,85bが設けられ
ている。
FIG. 6 is a perspective view showing details of the shims 71a and 71b, where 81 is a shielding portion, 82 is a piezoelectric bonding portion,
83 is a notch, 84 is a positioning part, 85a and 85b
Is a fixing hole. The shielding portion 81 and the piezoelectric bonding portion 82 form a right angle by bending, and a cutout portion 83 formed so that the width becomes smaller than the piezoelectric bonding portion 82 from the piezoelectric bonding portion 82 to the positioning portion 84. And fixing holes 85a and 85b are provided at both ends of the positioning portion 84.

【0009】シム71a,71bは図6に示すように幅
が細い切り欠き部83が設けられ、切り欠き部83にお
いて図5に示すようにセンサ台座74とユニモルフ型素
子固定具75a,75bによって挟まれ、更にユニモル
フ型素子固定ネジ79a,79bをそれぞれ固定用穴8
5a,85bに挿入して位置決め及び片端固定され、互
いに平行に向かい合うように配置されている。またシム
71a,71bのそれぞれ向かい合う面すなわち圧電体
接着部82には圧電体72a,72bが、センサ台座7
4やユニモルフ型素子固定具75a,75b及びシム7
1a,71b先端の遮蔽部、加えて切り欠き部83に接
触しない位置で接着されてユニモルフ型圧電アクチュエ
ータを構成している。赤外線検出部78はセンサ台座7
4上にてユニモルフ型素子の自由端近傍にて配され、赤
外線80の入射あるいは遮断を受ける。赤外線80を断
続する遮蔽部はシム71a,71bの固定する側とは反
対側の端部を折り曲げて構成され、この部分の平面部分
に重り73a,73bがそれぞれ接着されている。シム
71a,71bの可動部以外の一箇所すなわち位置決め
部84の一箇所にはシム用配線76a,76bが、圧電
体72a,72bには圧電体用配線77a,77bがそ
れぞれユニモルフ型素子の固定部に近い位置で取り付け
られており、シム用配線76a,76b及び圧電体用配
線77a,77bによりシム71aと圧電体72a、シ
ム71bと圧電体72bの間に電界を加えるとユニモル
フ型素子は曲げを起こし、先端の遮蔽部が移動する。2
つのユニモルフ型素子を同一周波数にて反対方向に駆動
し、赤外線80を断続的に遮断する。
The shims 71a and 71b are provided with a notch 83 having a small width as shown in FIG. 6, and the notch 83 is sandwiched between the sensor pedestal 74 and the unimorph-type element fixtures 75a and 75b as shown in FIG. Further, the unimorph-type element fixing screws 79a and 79b are respectively inserted into fixing holes 8a.
5a and 85b, are positioned and fixed at one end, and are arranged so as to face each other in parallel. Piezoelectric bodies 72a and 72b are provided on the opposing surfaces of the shims 71a and 71b, that is, on the piezoelectric body bonding portion 82, respectively.
4 and unimorph-type element fixtures 75a, 75b and shim 7
The unimorph type piezoelectric actuator is formed by being bonded at a position where it does not come into contact with the shielding portion at the tip of 1a, 71b and the notch portion 83. The infrared detecting section 78 is provided for the sensor base 7.
4 is disposed near the free end of the unimorph-type element, and receives or blocks infrared rays 80. The shielding portion for intermitting the infrared light 80 is formed by bending the end of the shim 71a, 71b opposite to the side to which the shim 71a, 71b is fixed, and the weights 73a, 73b are bonded to the flat portion of this portion. The shim wirings 76a and 76b are provided at one position other than the movable portions of the shims 71a and 71b, that is, at one position of the positioning portion 84, and the piezoelectric wirings 77a and 77b are provided at the piezoelectric members 72a and 72b, respectively. When the electric field is applied between the shim 71a and the piezoelectric body 72a and between the shim 71b and the piezoelectric body 72b by the shim wirings 76a and 76b and the piezoelectric wirings 77a and 77b, the unimorph type element bends. Wakes up and the shield at the tip moves. 2
The two unimorph elements are driven in the opposite direction at the same frequency to intermittently block infrared light 80.

【0010】圧電体とユニモルフ型素子の固定部の間の
シム部に切り欠き部を設けることで、同一寸法で切り欠
き部を設けないユニモルフ型素子に比べてより共振周波
数を低下させることができるので、切り欠き部を設けな
いものに比べてチョッパの小型化と低周波数駆動時の変
位量の増大が図れる。
By providing a notch in the shim between the piezoelectric body and the fixed portion of the unimorph element, the resonance frequency can be further reduced as compared with a unimorph element having the same dimensions and no notch. Therefore, it is possible to reduce the size of the chopper and increase the amount of displacement at the time of low-frequency driving, as compared with the case where the notch is not provided.

【0011】また、切り欠き部にかわり、孔加工を施し
た場合においても、同様の効果を得ることができる。
The same effect can be obtained even when a hole is formed in place of the notch.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記従来
の改善例による、切り欠き部と先端部に重りを配した構
成を持ち、共振周波数をバイモルフ型あるいはユニモル
フ型チョッパは、共振周波数近傍での駆動であるので、
共振周波数が固体間でばらついた場合、個々の変位量の
差が大きくなり、チョッパの共振周波数を固体間で合わ
せ込むための微細な調整が必要であった。
However, according to the conventional improvement described above, the notch and the tip have weights, and the resonance frequency of the bimorph type or unimorph type chopper is controlled by driving near the resonance frequency. Because there is
When the resonance frequency varies between the solids, the difference between the individual displacement amounts increases, and fine adjustment is required to match the resonance frequency of the chopper between the solids.

【0013】また、センサ台座において赤外線検出部と
複数のチョッパの固定が行われているので、組立時に固
定がしにくく、また一度組み立てた場合、1つの部品を
修理あるいはチョッパの共振周波数の調整などを行う
際、全体の固定がしにくく、また他の部品によって目的
の部品の移動や交換が阻害されて作業性が悪く、全体を
解体した場合はチョッパの固定位置の移動により共振周
波数が変化して駆動特性が変動して余分な調整が必要に
なり、さらにチョッパの剛性が低いので作業の途中に作
業目的以外のチョッパを破損し易いといった問題を有し
ていた。
Further, since the infrared detector and the plurality of choppers are fixed on the sensor pedestal, it is difficult to fix them at the time of assembly, and once assembled, one component is repaired or the resonance frequency of the chopper is adjusted. When performing the entire operation, it is difficult to fix the whole, and the movement and replacement of the target part is hindered by other parts, resulting in poor workability.If the whole is disassembled, the resonance frequency changes due to the movement of the fixed position of the chopper. As a result, the drive characteristics fluctuate and extra adjustment is required. Further, since the rigidity of the chopper is low, there is a problem that the chopper other than the work purpose is easily damaged during the work.

【0014】以上の点に鑑み本発明は、より共振周波数
のばらつきの少ない、共振周波数近傍の周波数において
駆動するチョッパを用い、組立の際の作業性の向上した
焦電型赤外線センサを提供する事を目的とする。
In view of the above, the present invention provides a pyroelectric infrared sensor that uses a chopper that is driven at a frequency near the resonance frequency with less variation in the resonance frequency and has improved workability during assembly. With the goal.

【0015】[0015]

【課題を解決するための手段】この目的を達成するた
め、本発明の焦電型赤外線センサは、センサを固定する
台座を分割可能として前記台座にそれぞれチョッパを固
定し、あるいはチョッパを別の剛性部材に固定した後、
前記剛性部材をセンサ用台座に固定する構造とする。
In order to achieve this object, a pyroelectric infrared sensor according to the present invention comprises a pedestal for fixing a sensor, a chopper fixed to each of the pedestals, or a different rigidity. After fixing to the member,
The rigid member is fixed to the sensor base.

【0016】[0016]

【作用】チョッパを固定するための部材を赤外線検出部
の台座とし、かつ前記台座を複数に分割可能としておの
おのにチョッパを固定する構造とする事により、それぞ
れのチョッパ、及び赤外線検出部の組立、固定、修理、
チョッパの共振周波数の調整等を個別に行うことがで
き、センサ全体としての組立、管理が容易になり、かつ
修理や調整を行う目的のチョッパ以外の部品の破損、特
に剛性の低い他のチョッパの破損を防止でき、また各部
品の取り替え作業が簡易化される。あるいはチョッパを
別の小型部材に取り付け、前記小型部材によってチョッ
パを赤外線検出部用台座に取り付ける構造としても、上
記と同様の作用があり、かつセンサ部とチョッパの管理
を個別に行うことができ、作業性が向上する。
The member for fixing the chopper is a pedestal for the infrared detecting unit, and the pedestal can be divided into a plurality of parts so that each chopper is fixed, so that each of the chopper and the infrared detecting unit can be assembled, Fixing, repair,
Adjustment of the resonance frequency of the chopper can be performed individually, which facilitates assembly and management of the entire sensor, and breaks parts other than the chopper for the purpose of repair and adjustment, especially for other choppers with low rigidity. Damage can be prevented, and replacement work of each part is simplified. Alternatively, the chopper is attached to another small member, and the structure in which the chopper is attached to the infrared detection unit pedestal by the small member has the same effect as described above, and the sensor unit and the chopper can be managed separately. Workability is improved.

【0017】[0017]

【実施例】【Example】

(実施例1)以下、図にしたがって本発明の第1の実施
例について説明する。図1は本発明の実施例における、
ユニモルフ型の圧電アクチュエータを用いた焦電型赤外
線センサ用チョッパの一例を示す斜視図である。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention.
FIG. 3 is a perspective view showing an example of a chopper for a pyroelectric infrared sensor using a unimorph type piezoelectric actuator.

【0018】図1において、11a,11bはシム、1
2a,12bは圧電体、13a,13bは重り、14
a,14bはセンサ台座、15a,15bはユニモルフ
型素子固定具、16a,16bはシム用配線、17a,
17bは圧電体取り付け用配線、18a,18bは圧電
体用配線、19は赤外線検出部、20は赤外線、21
a,21b(斜視図では裏側となるので図示せず)はシ
ム孔加工部、22a,22bは中継基板、23a,23
b,23c,23dはユニモルフ型素子固定ネジ(23
c,23dは図示せず)、24a,24bはセンサ台座
固定ネジ(24bは図示せず)である。
In FIG. 1, 11a and 11b are shims, 1
2a and 12b are piezoelectric bodies, 13a and 13b are weights, 14
a and 14b are sensor pedestals, 15a and 15b are unimorph-type element fixtures, 16a and 16b are shim wirings, 17a and 17b.
17b is a wiring for attaching a piezoelectric body, 18a and 18b are wirings for a piezoelectric body, 19 is an infrared detector, 20 is an infrared ray, 21
a, 21b (not shown because they are on the back side in the perspective view), shim-hole processing parts, 22a, 22b are relay boards, 23a, 23
b, 23c and 23d are unimorph element fixing screws (23
c and 23d are not shown), and 24a and 24b are sensor base fixing screws (24b is not shown).

【0019】シム11a,11bはそれぞれ一端に面に
直角な折り曲げ部と、シム孔加工部21a,21bとが
設けられ、さらにシム孔加工部21a,21bの先に幅
の広い部分が再び設けられ、この部分においてシム用配
線16a,16bがシム11a,11bに対して半田付
けされている。シム11a,11bの折り曲げられた部
分には重り13a,13bがおのおの取り付けられてお
り、前記のシム孔加工部21a,21bと合わせチョッ
パの共振周波数の低減に寄与している。重り13a,1
3bはシム11a,11bの幅方向の中心に対しほぼ対
称となるようにおかれている。シム11a,11bはシ
ム孔加工部21a,21b近傍においてセンサ台座14
a,14bとユニモルフ型素子固定具15a,15bに
より挟み込まれ、ユニモルフ型素子固定ネジ23a,2
3b,23c,23dによるネジ止めで片端固定され、
センサ台座14aには孔加工が(図示せず)、14bに
はネジ孔が加工されており(図示せず)、センサ台座固
定ネジ24a,24bによって1つに固定されている。
センサ台座14a,14bのチョッパを固定する2箇所
の部分は互いに段差を持っており、チョッパを固定した
場合チョッパはそれぞれの可動端が段差を有するように
配置される。シム11a,11bはそれぞれ折り曲げら
れた側の面同士が平行に向かい合うように配置され、お
のおの向かい合った面には圧電体12a,12bがシム
11a,11bの折り曲げ部およびシム孔加工部21
a,21bに接触しないように接着されてチョッパであ
るユニモルフ型素子が構成されている。圧電体12a,
12bの表面において圧電体取り付け用配線17a,1
7bが、シム11a,11bのシム孔加工部21a,2
1bに近い部分にて半田付けされ、さらにセンサ台座1
4a,14bの端面に取り付けられた中継基板22a,
22bを介して圧電体取り付け用配線17a,17bか
ら圧電体用配線18a,18bに電気的に接続されてい
る。圧電体12a,12bはそれぞれ接着されていない
面が正となるようにあらかじめ分極処理されている。セ
ンサ台座14a,14b上には赤外線検出部19がセン
サ台座14a,14bと電気的には絶縁されて配置され
ている。シム用配線16a,16bと圧電体用配線18
a,18bにより圧電体12a,12bに電界を印加す
ると、圧電体12a,12bに変形が生じ、チョッパの
可動部において屈曲変形が起こり、重り13a,13b
の取り付けられている先端部が変位する。2枚のチョッ
パそれぞれに同じ電界を印加すると、2枚のチョッパは
常に逆方向に先端部が変位し、図1中の矢印の開閉方向
に先端部が開いたり閉じたりして、両先端部は赤外線検
出部19に入射する赤外線20を入射あるいは遮断し、
焦電型赤外線センサのチョッパとしての機能を果たす。
Each of the shims 11a and 11b is provided at one end with a bent portion perpendicular to the surface and with shim holes 21a and 21b, and a wide portion is provided again before the shim holes 21a and 21b. In this portion, the shim wirings 16a and 16b are soldered to the shims 11a and 11b. Weights 13a and 13b are attached to the bent portions of the shims 11a and 11b, respectively, and contribute to the reduction of the resonance frequency of the chopper together with the shim holes 21a and 21b. Weights 13a, 1
Reference numeral 3b is set to be substantially symmetric with respect to the center in the width direction of the shims 11a and 11b. The shims 11a and 11b are located near the shim holes 21a and 21b.
a, 14b and the unimorph-type element fixing tools 15a, 15b, and the unimorph-type element fixing screws 23a, 2b.
3b, 23c, and 23d are fixed at one end by screwing,
The sensor pedestal 14a is formed with a hole (not shown), and the sensor pedestal 14b is formed with a screw hole (not shown), and is fixed to one by sensor pedestal fixing screws 24a and 24b.
The two portions of the sensor pedestals 14a and 14b for fixing the chopper have a step, and when the chopper is fixed, the chopper is arranged such that each movable end has a step. The shims 11a and 11b are arranged such that the surfaces on the bent sides face each other in parallel, and the piezoelectric members 12a and 12b are provided with the bent portions of the shims 11a and 11b and the shim hole processing portions 21 on the facing surfaces.
A unimorph-type element as a chopper is formed by being adhered so as not to come into contact with a and 21b. The piezoelectric body 12a,
On the surface of 12b, the wiring 17a, 1
7b is a shim hole processing part 21a, 2 of the shim 11a, 11b.
1b is soldered at a portion close to the sensor base 1b.
4a, 14b, relay boards 22a,
The piezoelectric wirings 17a and 17b are electrically connected to the piezoelectric wirings 18a and 18b via the wiring 22b. The piezoelectric bodies 12a and 12b are preliminarily polarized so that the surfaces that are not bonded are positive. On the sensor pedestals 14a and 14b, an infrared detecting unit 19 is arranged so as to be electrically insulated from the sensor pedestals 14a and 14b. Shim wiring 16a, 16b and piezoelectric wiring 18
When an electric field is applied to the piezoelectric bodies 12a and 12b by the a and 18b, the piezoelectric bodies 12a and 12b are deformed and the movable parts of the chopper are bent and deformed.
Is displaced. When the same electric field is applied to each of the two choppers, the tips of the two choppers are always displaced in opposite directions, and the tips open and close in the opening and closing directions indicated by arrows in FIG. Inject or block the infrared ray 20 incident on the infrared ray detection unit 19,
It functions as a chopper for a pyroelectric infrared sensor.

【0020】図2は前記チョッパに用いられるシムの形
状を詳細に説明するための斜視図である。図2におい
て、31は折り曲げ部、32は圧電体接着部、33はシ
ム孔加工部、34は固定部、35a,35bは固定用
孔、36a,36bは溝加工部である。
FIG. 2 is a perspective view for explaining in detail the shape of the shim used in the chopper. In FIG. 2, 31 is a bent portion, 32 is a piezoelectric bonding portion, 33 is a shim hole processed portion, 34 is a fixed portion, 35a and 35b are fixing holes, and 36a and 36b are groove processed portions.

【0021】圧電体接着部32の両端には、それぞれ折
り曲げ部31及びシム孔加工部33が一体的に構成され
ており、圧電体接着部32の折り曲げ部31の折り曲げ
られている方向の面に圧電体を接着し、必要な場合には
折り曲げ部31の上面に重りを取り付け、シム孔加工部
33部分あるいはその近傍において片端固定する事で、
先端の折り曲げ部31の部分を可動部とするチョッパが
構成される。シム孔加工部33より下において固定を行
うと、チョッパの駆動部分を直接固定する部材はシム孔
加工部33の幅方向の両側にある、幅の小さい2つの部
材のみとなる。固定部34に設けられた固定用孔35
a,35bにおいてチョッパのセンサ台座14a,14
bへの固定を行い、溝加工部36a,36bにおいてセ
ンサ台座14aと14bの一体化を行う。
At both ends of the piezoelectric bonding portion 32, a bent portion 31 and a shim hole processing portion 33 are integrally formed, respectively, and a surface of the piezoelectric bonding portion 32 in a direction in which the bending portion 31 is bent is formed. By bonding a piezoelectric body, attaching a weight to the upper surface of the bent portion 31 if necessary, and fixing one end at or near the shim hole processing portion 33,
A chopper having the bent portion 31 at the tip as a movable portion is configured. When the fixing is performed below the shim hole forming portion 33, the members directly fixing the driving portion of the chopper are only two members having small widths on both sides in the width direction of the shim hole forming portion 33. Fixing hole 35 provided in fixing portion 34
a, 35b, chopper sensor pedestals 14a, 14b
Then, the sensor bases 14a and 14b are integrated in the grooved portions 36a and 36b.

【0022】前記構成のチョッパをはじめとする共振周
波数近傍で駆動する方式のチョッパは、共振の影響によ
り極めて大きい変位が得られる反面、共振点での変位量
は不安定で、一定した駆動特性が得られにくい。そこ
で、共振周波数より5〜15%だけ低い周波数において
チョッパの駆動を行う。具体的には、リン青銅製のシム
に圧電体を接着した長さ約12mm、共振周波数が約2
2Hzのユニモルフ型チョッパに対して、10%共振周
波数を低下させた駆動周波数の20Hzを選ぶ。この場
合、80Vの電圧を圧電体の分極方向にのみ交流で加
え、分極と逆方向に分極破壊を起こさない程度の電界を
加える事で、1.2mm以上のチョッパの変位を得るこ
とが可能である。この駆動周波数を使用する事で、共振
のもつ不安定さを回避し、かつ共振による変位拡大の効
果も合わせ持つので大きい変位量が得られる。また、逆
に共振周波数より高い側に周波数をずらして駆動した場
合においても同様の効果が得られるが、センサの赤外線
検出部の感度を大きく持たせたい場合、駆動周波数は低
い方がよい。
The chopper of the type driven near the resonance frequency, such as the chopper having the above configuration, can obtain an extremely large displacement due to the influence of resonance, but the amount of displacement at the resonance point is unstable, and constant driving characteristics are obtained. It is difficult to obtain. Therefore, the chopper is driven at a frequency lower by 5 to 15% than the resonance frequency. Specifically, a piezoelectric body is bonded to a phosphor bronze shim with a length of about 12 mm and a resonance frequency of about 2 mm.
For the unimorph type chopper of 2 Hz, a drive frequency of 20 Hz, which is 10% lower than the resonance frequency, is selected. In this case, it is possible to obtain a displacement of the chopper of 1.2 mm or more by applying a voltage of 80 V as an alternating current only in the polarization direction of the piezoelectric body and applying an electric field that does not cause polarization breakdown in the direction opposite to the polarization. is there. The use of this drive frequency avoids the instability of resonance and also has the effect of increasing the displacement due to resonance, so that a large displacement can be obtained. Conversely, the same effect can be obtained when the frequency is shifted to a higher side than the resonance frequency, but if it is desired to increase the sensitivity of the infrared detector of the sensor, the lower the driving frequency, the better.

【0023】前記の構成とすることで、センサ台座より
赤外線検出部の修理等を行う際、チョッパを固定部より
取り外す事なく赤外線検出部より離すことができるの
で、余分な部品により作業を妨げることがなくなり、ま
た作業中にチョッパを破損する恐れが低下する。加え
て、チョッパを台座より取り外した場合にはチョッパの
共振周波数が変化し易く特性が安定しにくいが、台座ご
と取り外すのであれば共振周波数の変動を防止できる。
またチョッパの共振周波数を固体ごとで調整する場合チ
ョッパと台座のみで行うことができ、作業や管理が容易
になる。
With the above configuration, when repairing the infrared detecting section from the sensor base, the chopper can be separated from the infrared detecting section without removing the chopper from the fixing section. And the risk of damaging the chopper during operation is reduced. In addition, when the chopper is detached from the pedestal, the resonance frequency of the chopper tends to change and the characteristics are hardly stable. However, if the chopper is detached from the pedestal, the fluctuation of the resonance frequency can be prevented.
In addition, when the resonance frequency of the chopper is adjusted for each individual object, the adjustment can be performed only with the chopper and the pedestal, and the work and management are facilitated.

【0024】なお、本実施例ではチョッパとしてユニモ
ルフ型の素子を用いたが、バイモルフ型の素子を用いて
も同様の効果が得られる。また、重りやシムの孔が無い
状態でチョッパの共振周波数が駆動周波数の近傍にある
場合には、これらを用いる事無く駆動を行う事も可能で
あることは言うまでもない。
Although a unimorph type element is used as the chopper in this embodiment, the same effect can be obtained by using a bimorph type element. In addition, when the resonance frequency of the chopper is near the driving frequency in a state where there is no hole of the weight or the shim, it is needless to say that the driving can be performed without using these.

【0025】(実施例2)以下、図にしたがって本発明
の他の一実施例について説明する。図3は本発明の第2
の実施例における、ユニモルフ型の圧電アクチュエータ
を用いた焦電型赤外線センサ用チョッパの一例を示す斜
視図である。
(Embodiment 2) Another embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a second embodiment of the present invention.
FIG. 5 is a perspective view showing an example of a chopper for a pyroelectric infrared sensor using a unimorph type piezoelectric actuator in the example of FIG.

【0026】図3において、41a,41bはシム、4
2a,42bは圧電体、43a,43bは重り、44は
センサ台座、45a,45bはユニモルフ型素子固定具
A、46a,46bはシム用配線、47a,47bは圧
電体取り付け用配線(47bは図示せず)、48a,4
8bは圧電体用配線、49は赤外線検出部、50は赤外
線、51a,51bは切り欠き部(51bは図示せ
ず)、52a,52bは中継基板(52bは図示せ
ず)、53a,53b,53c,53dは固定用ネジA
(53c,53dは図示せず)、54a,54b,54
c,54dは固定用ネジB(54c,54bは図示せ
ず)、55a,55bはユニモルフ型素子固定具Bであ
る。
In FIG. 3, reference numerals 41a and 41b denote shims,
2a and 42b are piezoelectric bodies, 43a and 43b are weights, 44 is a sensor pedestal, 45a and 45b are unimorph-type element fixtures A, 46a and 46b are shim wirings, and 47a and 47b are piezoelectric mounting wirings (47b is a figure). Not shown), 48a, 4
8b is a wiring for a piezoelectric body, 49 is an infrared detector, 50 is an infrared ray, 51a and 51b are notches (51b is not shown), 52a and 52b are relay boards (52b is not shown), 53a, 53b, 53c and 53d are fixing screws A
(53c, 53d are not shown), 54a, 54b, 54
c and 54d are fixing screws B (54c and 54b are not shown), and 55a and 55b are unimorph-type element fixing tools B.

【0027】シム41a,41bはそれぞれ一端に面に
直角な折り曲げ部と、切り欠き部51a,51bとが設
けられ、さらに切り欠き部51a,51bの先に幅の広
い部分が再び設けられ、この部分においてシム用配線4
6a,46bがシム41a,41bに対して半田付けさ
れている。シム41a,41bの折り曲げられた部分に
は重り43a,43bがおのおの取り付けられており、
前記の切り欠き部51a,51bと合わせチョッパの共
振周波数の低減に寄与している。重り43a,43bは
シム41a,41bの幅方向の中心に対しほぼ対称とな
るようにおかれている。ユニモルフ型素子固定具A45
a,45bには貫通孔(図示せず)、ユニモルフ型素子
固定具B55a,55bにはメネジ孔(図示せず)及び
貫通孔が設けられ、シム41a,41bは切り欠き部5
1a,51b近傍においてユニモルフ型素子固定具A4
5a,45bとユニモルフ型素子固定具B55a,55
bにより挟み込まれ、固定用ネジA53a,53b、お
よび53c,53dによって固定される。さらにセンサ
台座44にはメネジ孔(図示せず)が設けられており、
ユニモルフ型素子固定具B55a,55bはセンサ台座
44に対して固定用ネジB54a,54b、および54
c,54dにより固定され、これによってチョッパはセ
ンサ台座44に固定される。センサ台座44のチョッパ
を固定する2箇所の部分は互いに段差を持っており、チ
ョッパを固定した場合チョッパはそれぞれの可動端が段
差を有するように配置される。シム41a,41bはそ
れぞれ折り曲げられた側の面同士が平行に向かい合うよ
うに配置され、おのおの向かい合った面には圧電体42
a,42bがシム41a,41bの折り曲げ部および切
り欠き部51a,51bに接触しないように接着されて
チョッパであるユニモルフ型素子が構成されている。圧
電体42a,42bの表面において圧電体取り付け用配
線47a,47bが、シム41a,41bの切り欠き部
51a,51bに近い部分にて半田付けされ、さらにセ
ンサ台座44上に取り付けられた中継基板52a,52
bを介して圧電体取り付け用配線47a,47bから圧
電体用配線48a,48bに電気的に接続されている。
圧電体42a,42bはそれぞれ接着されていない面が
正となるようにあらかじめ分極処理されている。センサ
台座44上には赤外線検出部49がセンサ台座44と電
気的には絶縁されて配置されている。シム用配線46
a,46bと圧電体用配線48a,48bにより圧電体
42a,42bに電界を印加すると、圧電体42a,4
2bに変形が生じ、チョッパの可動部において屈曲変形
が起こり、重り43a,43bの取り付けられている先
端部が変位する。2枚のチョッパそれぞれに同じ電界を
印加すると、2枚のチョッパは常に逆方向に先端部が変
位し、したがって両先端部は赤外線検出部49に入射す
る赤外線50を入射あるいは遮断し、焦電型赤外線セン
サのチョッパとしての機能を果たす。
Each of the shims 41a and 41b is provided at one end with a bent portion perpendicular to the surface and with notches 51a and 51b, and further with a wide portion provided at the end of the notches 51a and 51b. Part 4 for shim
6a and 46b are soldered to the shims 41a and 41b. Weights 43a and 43b are attached to the bent portions of the shims 41a and 41b, respectively.
The notches 51a and 51b and the matching chopper contribute to the reduction of the resonance frequency. The weights 43a and 43b are arranged so as to be substantially symmetric with respect to the center in the width direction of the shims 41a and 41b. Unimorph type element fixing device A45
a and 45b are provided with through holes (not shown), and the unimorph-type element fixing members B55a and 55b are provided with female screw holes (not shown) and through holes, and the shims 41a and 41b are provided with notches 5a and 4b.
In the vicinity of 1a and 51b, a unimorph-type element fixing device A4
5a, 45b and Unimorph-type element fixture B55a, 55
b, and are fixed by fixing screws A53a, 53b and 53c, 53d. Further, a female screw hole (not shown) is provided in the sensor pedestal 44,
The unimorph-type element fixing members B55a and 55b are fixed to the sensor base 44 with fixing screws B54a, 54b, and 54, respectively.
c, 54d, whereby the chopper is fixed to the sensor base 44. The two portions of the sensor pedestal 44 for fixing the chopper have a step, and when the chopper is fixed, the chopper is arranged such that each movable end has a step. The shims 41a and 41b are arranged so that the surfaces on the bent sides face each other in parallel, and the opposing surfaces are each provided with a piezoelectric body 42.
a, 42b are adhered so as not to contact the bent portions and the notched portions 51a, 51b of the shims 41a, 41b, thereby forming a unimorph type element as a chopper. On the surfaces of the piezoelectric bodies 42a and 42b, the wirings 47a and 47b for attaching the piezoelectric bodies are soldered at portions near the notches 51a and 51b of the shims 41a and 41b, and further, the relay board 52a mounted on the sensor base 44. , 52
The wirings 47a and 47b are electrically connected to the wirings 48a and 48b for the piezoelectric body through the wiring b.
The piezoelectric bodies 42a and 42b are preliminarily polarized so that the surfaces that are not bonded are positive. On the sensor pedestal 44, an infrared detecting unit 49 is arranged so as to be electrically insulated from the sensor pedestal 44. Shim wiring 46
When an electric field is applied to the piezoelectric bodies 42a and 42b by the piezoelectric bodies a and 46b and the piezoelectric wirings 48a and 48b, the piezoelectric bodies 42a and
Deformation occurs in the movable portion 2b, bending deformation occurs in the movable portion of the chopper, and the distal ends where the weights 43a and 43b are attached are displaced. When the same electric field is applied to each of the two choppers, the tips of the two choppers are always displaced in the opposite directions. Therefore, both the tips receive or block the infrared rays 50 incident on the infrared detector 49, and the pyroelectric type Acts as a chopper for infrared sensors.

【0028】前記の構成とする事で、赤外線検出部と2
つのチョッパとを独立して管理する事ができる。チョッ
パは固定位置により共振周波数が変化して駆動特性に影
響を与え、共振周波数が固体間でばらついた場合の調整
が必要となる場合があるが、前記構成によればチョッパ
単体を固定部とともに移動できるので作業が容易であ
る。またおのおののチョッパを固定した状態で管理する
事ができ、共振周波数がそろったチョッパを常に保管し
ておくことができるので管理が容易で、かつチョッパの
交換等も円滑に行える。
With the above configuration, the infrared detector and the
Two choppers can be managed independently. The chopper changes its resonance frequency depending on the fixed position, which affects the drive characteristics, and it may be necessary to adjust the resonance frequency if it varies between solids. Work is easy because it is possible. In addition, the choppers can be managed in a fixed state, and the choppers having the same resonance frequency can always be stored, so that the management is easy and the replacement of the choppers can be smoothly performed.

【0029】また、左右のチョッパを全く同じ長さの同
形状のものを、位置をずらせて取り付けるだけで構成出
来るので、チョッパの量産性が良い。
Further, since the left and right choppers having exactly the same length and the same shape can be configured simply by shifting the positions, mass productivity of the chopper is good.

【0030】なお、本実施例においてはチョッパを複数
用いたが、赤外線開閉の面積がチョッパ単品で行える場
合はこの必要はなく、この場合でもチョッパの管理や共
振周波数の安定について前記と同様の効果がある事は言
うまでもない。
Although a plurality of choppers are used in this embodiment, this is not necessary when the area for opening and closing the infrared ray can be performed by a single chopper. In this case, the same effects as described above can be obtained for the management of the chopper and the stabilization of the resonance frequency. Needless to say, there is.

【0031】[0031]

【発明の効果】以上のように本発明は、ユニモルフ型素
子あるいはバイモルフ型素子のシム部分でのみを固定し
更にシムの一部に機械加工を施して共振周波数を駆動周
波数近傍まで低下させたチョッパにおいて、チョッパを
直接固定する台座をおのおの分割可能とする事で、複数
のチョッパの共振周波数の調整や交換、修理等が容易に
行え、さらに共振周波数が固体間で安定したチョッパを
常に用いる事ができ、センサ取り付け時の駆動特性が安
定する。また量産時の組立が容易になり、生産性が向上
する。
As described above, the present invention relates to a chopper in which only the shim of a unimorph-type element or a bimorph-type element is fixed and a part of the shim is machined to reduce the resonance frequency to near the drive frequency. By making the pedestal for directly fixing the choppers individually divisible, it is easy to adjust, replace, and repair the resonance frequency of multiple choppers, and always use a chopper whose resonance frequency is stable between solids. As a result, the driving characteristics when the sensor is mounted are stabilized. In addition, assembly during mass production is facilitated, and productivity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における焦電型赤外線センサの
構成の一例を示す斜視図
FIG. 1 is a perspective view showing an example of a configuration of a pyroelectric infrared sensor according to an embodiment of the present invention.

【図2】本発明の実施例におけるシム形状の一例を示す
斜視図
FIG. 2 is a perspective view showing an example of a shim shape in the embodiment of the present invention.

【図3】本発明の実施例における焦電型赤外線センサの
構成の一例を示す斜視図
FIG. 3 is a perspective view showing an example of a configuration of a pyroelectric infrared sensor according to the embodiment of the present invention.

【図4】従来例における焦電型赤外線センサの一例を示
す斜視図
FIG. 4 is a perspective view showing an example of a pyroelectric infrared sensor in a conventional example.

【図5】従来例における改善された焦電型赤外線センサ
の一例を示す斜視図
FIG. 5 is a perspective view showing an example of an improved pyroelectric infrared sensor in a conventional example.

【図6】従来例におけるチョッパのシム形状の一例を示
す斜視図
FIG. 6 is a perspective view showing an example of a conventional chopper shim shape.

【符号の説明】[Explanation of symbols]

11a,11b シム 12a,12b 圧電体 13a,13b 重り 14a,14b センサ台座 19 赤外線検出部 11a, 11b Shim 12a, 12b Piezoelectric 13a, 13b Weight 14a, 14b Sensor base 19 Infrared detector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 1/02 - 1/04 G01J 5/02 G01J 5/62 G02B 26/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01J 1/02-1/04 G01J 5/02 G01J 5/62 G02B 26/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 物体から放出される赤外線を焦電センサ
部に入射させて物体を検出する焦電型赤外線センサの赤
外線を入射/遮断する手段(以下チョッパと呼ぶ)とし
て、平板状の弾性部材に対し、平面の片側あるいは両側
において前記弾性部材面に対し直角方向に分極処理がな
された平板状の圧電体を接着して貼り合わせ素子を構成
し、前記貼り合わせ素子の一端を固定部材により固定
し、前記貼り合わせ素子に電界を印加することで前記貼
り合わせ素子を屈曲運動させることで、前記貼り合わせ
素子の他端を可動部としたものを用い、前記貼り合わせ
素子の固定部分は前記弾性部材の一部のみが固定されて
おり、かつ前記弾性部材の固定部分と貼り合わせ部分の
間において弾性部材に穴あるいは切り欠きを設けたチョ
ッパとし、前記チョッパを複数有し、赤外線検出部を配
する台座部分が複数に分離可能な構造を有し、前記台座
の分離した各部材一つに対して一つのチョッパの固定が
行われていることを特徴とする焦電型赤外線センサ。
1. A flat elastic member as a means (hereinafter referred to as a chopper) for injecting / blocking infrared rays of a pyroelectric infrared sensor for detecting an object by causing infrared rays emitted from an object to enter a pyroelectric sensor unit. On the other hand, on one or both sides of the plane, a flat plate-shaped piezoelectric body polarized in a direction perpendicular to the elastic member surface is bonded to form a bonding element, and one end of the bonding element is fixed by a fixing member. The bonding element is bent by applying an electric field to the bonding element, so that the other end of the bonding element is used as a movable portion. A chopper in which only a part of the member is fixed, and a hole or a cutout is provided in the elastic member between a fixed portion of the elastic member and a bonded portion; A plurality of pedestals, wherein the pedestal portion on which the infrared detection unit is disposed has a structure capable of being separated into a plurality of pedestals.
One chopper can be fixed to each separated member
A pyroelectric infrared sensor characterized by being performed .
JP20842894A 1994-09-01 1994-09-01 Pyroelectric infrared sensor Expired - Fee Related JP3239628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20842894A JP3239628B2 (en) 1994-09-01 1994-09-01 Pyroelectric infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20842894A JP3239628B2 (en) 1994-09-01 1994-09-01 Pyroelectric infrared sensor

Publications (2)

Publication Number Publication Date
JPH0875546A JPH0875546A (en) 1996-03-22
JP3239628B2 true JP3239628B2 (en) 2001-12-17

Family

ID=16556059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20842894A Expired - Fee Related JP3239628B2 (en) 1994-09-01 1994-09-01 Pyroelectric infrared sensor

Country Status (1)

Country Link
JP (1) JP3239628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725494B1 (en) * 2006-01-18 2007-06-08 삼성전자주식회사 Refrigerator having supplement storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725494B1 (en) * 2006-01-18 2007-06-08 삼성전자주식회사 Refrigerator having supplement storage

Also Published As

Publication number Publication date
JPH0875546A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
US5828157A (en) Piezoelectric actuator and pyroelectric type infrared ray sensor using the same
EP0905801B1 (en) Piezoelectric actuator, infrared sensor and piezoelectric light deflector
US7697185B2 (en) Actuator, optical scanner and image forming device
US4940318A (en) Gradient membrane deformable mirror having replaceable actuators
KR101088501B1 (en) Mems scanning system with improved performance
US6728024B2 (en) Voltage and light induced strains in porous crystalline materials and uses thereof
US6493374B1 (en) Smart laser with fast deformable grating
US8450905B2 (en) Methods for controlling velocity of at least partially resonant actuators systems and systems thereof
US20190033973A1 (en) Operating unit for a vehicle
US8325407B2 (en) Oscillating device, optical scanning device using the same, image display apparatus, and control method of the oscillating device
KR102409300B1 (en) Integral preload mechanism for piezoelectric actuator
US9360664B2 (en) Micromechanical component and method for producing a micromechanical component
CN109586609B (en) Vibration wave actuator, imaging apparatus, and stage apparatus using the vibration wave actuator
JP3239628B2 (en) Pyroelectric infrared sensor
US10185116B2 (en) Lens driving apparatus and lens driving method
US5739532A (en) Pyroelectric IR sensor
US20230359046A1 (en) Image display apparatus
JP3334450B2 (en) Piezoelectric actuator and pyroelectric infrared sensor using the same
JP5875537B2 (en) Deformable mirror device
JP3346028B2 (en) Pyroelectric infrared sensor
JP3324352B2 (en) Piezo actuator
EP4354199A1 (en) Mems optical deflector and optical scanning device
US20230159323A1 (en) Mems mirror and mems mirror array system
KR101332681B1 (en) Image stabilizer
JPH10321926A (en) Piezoelectric actuator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees