JP3238045B2 - Linear motor - Google Patents
Linear motorInfo
- Publication number
- JP3238045B2 JP3238045B2 JP11946395A JP11946395A JP3238045B2 JP 3238045 B2 JP3238045 B2 JP 3238045B2 JP 11946395 A JP11946395 A JP 11946395A JP 11946395 A JP11946395 A JP 11946395A JP 3238045 B2 JP3238045 B2 JP 3238045B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- coil
- magnetic
- cooling pipe
- linear motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 61
- 238000001816 cooling Methods 0.000 claims description 47
- 238000002844 melting Methods 0.000 claims description 17
- 230000008018 melting Effects 0.000 claims description 15
- 239000000945 filler Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000003507 refrigerant Substances 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 7
- 230000005347 demagnetization Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- -1 Co if necessary Inorganic materials 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000006023 eutectic alloy Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910000634 wood's metal Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910017495 Nd—F Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910020220 Pb—Sn Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960000510 ammonia Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000012762 magnetic filler Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910001261 rose's metal Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Motor Or Generator Cooling System (AREA)
- Linear Motors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、対向する永久磁石間に
形成された磁気空隙内を可動コイルが直線運動する形式
のリニアモータに関し、可動コイルの最大電流値の維持
および永久磁石の熱減磁抑制により、最大推力を向上さ
せ得るリニアモータに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor in which a movable coil linearly moves in a magnetic gap formed between opposed permanent magnets, and maintains a maximum current value of the movable coil and reduces heat of the permanent magnet. The present invention relates to a linear motor capable of improving a maximum thrust by suppressing magnetic force.
【0002】[0002]
【従来の技術】従来10cm乃至100cmといった長いス
トロークの範囲内で物体の位置決めを行なうための駆動
装置としては、例えば、特公昭58−49100号およ
び実開昭63−93783号公報に開示されているよう
な可動コイル形リニアモータが多用されている。このリ
ニアモータは、厚さ方向に着磁した複数の永久磁石を着
磁方向が異なるように対向させて配置し、対向する永久
磁石間に形成された磁気空隙内に、磁束と直角方向に運
動する可動コイル組立体を配設した構造を有する。2. Description of the Related Art Conventionally, as a drive device for positioning an object within a long stroke range of 10 cm to 100 cm, for example, Japanese Patent Publication No. 58-49100 and Japanese Utility Model Application Laid-Open No. 63-93783 are disclosed. Such moving coil type linear motors are frequently used. In this linear motor, a plurality of permanent magnets magnetized in the thickness direction are arranged so as to face each other so that the magnetizing directions are different, and the linear motor moves in a direction perpendicular to the magnetic flux in the magnetic gap formed between the facing permanent magnets. Having a structure in which a movable coil assembly is provided.
【0003】このようなリニアモータでは、磁気回路部
にセンターヨークがなく、しかも磁気空隙内で磁束が複
数個の閉ループを構成し、磁路の一部に磁束が集中しな
いようになっているので、長いストロークの全域に亘っ
て一様な磁束密度を発生させることができる。In such a linear motor, there is no center yoke in the magnetic circuit portion, and the magnetic flux forms a plurality of closed loops in the magnetic gap, so that the magnetic flux does not concentrate on a part of the magnetic path. , A uniform magnetic flux density can be generated over the entire area of a long stroke.
【0004】図8は従来のリニアモータを示す要部説明
図である。図8において1はヨークであり、鉄板のよう
な強磁性材料により例えば平板状に形成する。2は永久
磁石であり、厚さ方向に着磁し、表面にNS磁極が交互
に出現するようにヨーク1の長手方向に配設して固着す
る。上記のように形成したヨーク1を永久磁石2の異極
が対向するように磁気空隙3を介して配設する。4は支
持板であり、前記磁気空隙3を確保するためにヨーク1
の長手方向両端部に固着する。なお支持板4は前記ヨー
ク1と同様の強磁性材料によって形成することが好まし
い。FIG. 8 is an explanatory view of a main part of a conventional linear motor. In FIG. 8 , reference numeral 1 denotes a yoke formed of a ferromagnetic material such as an iron plate into, for example, a flat plate shape. Reference numeral 2 denotes a permanent magnet, which is magnetized in the thickness direction, and arranged and fixed in the longitudinal direction of the yoke 1 so that NS magnetic poles appear alternately on the surface. The yoke 1 formed as described above is disposed via the magnetic gap 3 so that the different poles of the permanent magnet 2 face each other. Reference numeral 4 denotes a support plate, and a yoke 1 for securing the magnetic air gap 3.
At both ends in the longitudinal direction. Note that the support plate 4 is preferably formed of the same ferromagnetic material as the yoke 1.
【0005】次に5はコイルであり、前記磁気空隙3に
おける磁束と巻線方向が直交するような偏平の多相コイ
ルによって形成する。すなわち複数個のコイルを永久磁
石2の配設方向に若干量宛ずらせて配設し、磁極の方向
を磁界検出素子等の手段を介して検出し、電流を流すべ
きコイルおよびその方向を切換え得るように形成する。
なお上記コイル5はホルダ(図示せず)に一体に支持さ
れて可動子を形成する。[0005] Next, reference numeral 5 denotes a coil, which is formed by a flat multi-phase coil whose winding direction is orthogonal to the magnetic flux in the magnetic gap 3. That is, a plurality of coils can be arranged by being slightly shifted in the direction in which the permanent magnets 2 are arranged, the direction of the magnetic pole can be detected via means such as a magnetic field detecting element, and the coil to which current flows and the direction can be switched. It is formed as follows.
The coil 5 is integrally supported by a holder (not shown) to form a mover.
【0006】以上の構成により、コイル5に電流を流す
と、コイル5の巻線方向が永久磁石2による磁束と直交
しているので、コイル5はフレミングの左手の法則によ
り、ヨーク1の長手方向の駆動力を受けるから、コイル
5を一体に支持してなる可動子(図示せず)はヨーク1
の長手方向に移動する。次にコイル5に前記と逆方向の
電流を流すと、コイル5には前記と逆方向の駆動力が作
用するから、可動子は前記と逆方向に移動する。従って
コイル5への通電およびその電流の方向を選択すること
により、可動子を所定位置に移動させることができる。[0006] With the above configuration, when a current is applied to the coil 5, the winding direction of the coil 5 is orthogonal to the magnetic flux generated by the permanent magnet 2. The movable element (not shown) integrally supporting the coil 5 is provided with the yoke 1.
Move in the longitudinal direction. Next, when a current in the opposite direction is applied to the coil 5, a driving force in the opposite direction acts on the coil 5, so that the mover moves in the opposite direction. Therefore, the movable element can be moved to a predetermined position by selecting the energization of the coil 5 and the direction of the current.
【0007】[0007]
【発明が解決しようとする課題】上記構成の可動コイル
形のリニアモータは、可動子の質量が小さい上、コギン
グトルクもまた小さいため、速応性の良好なリニアモー
タとして広く使用されている。しかしながら発熱源であ
るコイル5が可動子側に存在するため強制冷却手段が採
りにくく、また狭い磁気空隙3内にコイル5が配置され
ているため、自然対流による熱交換若しくは熱放散が困
難であるという問題点がある。The moving coil type linear motor having the above-described structure is widely used as a linear motor having good responsiveness because the mass of the mover is small and the cogging torque is also small. However, since the coil 5 which is a heat source is located on the mover side, it is difficult to employ a forced cooling means, and since the coil 5 is arranged in the narrow magnetic gap 3, heat exchange or heat dissipation by natural convection is difficult. There is a problem.
【0008】一方前記可動子と狭い磁気空隙3を介して
配置されている永久磁石2にもコイル5からの熱が伝達
されて永久磁石2の温度が上昇し、熱減磁により発生磁
束が減少するため、推力が減少することとなる。またコ
イル5の発熱によりコイル5自体の電気抵抗値が上昇
し、ジュール熱損失を増大させる結果、実効電力が減少
することとなる。このためコイル5に対する供給電力
が、コイル発熱が実用上問題とならない程度の一定値以
下に制限され、したがって可動コイル形リニアモータは
従来から上記の点で発生推力が制限され、さらなる大推
力化が困難であるという問題点がある。On the other hand, the heat from the coil 5 is also transmitted to the permanent magnet 2 disposed through the movable element and the narrow magnetic gap 3 so that the temperature of the permanent magnet 2 increases, and the generated magnetic flux decreases due to thermal demagnetization. Therefore, the thrust is reduced. In addition, the electric resistance of the coil 5 itself increases due to the heat generated by the coil 5, and the Joule heat loss increases. As a result, the effective power decreases. For this reason, the power supplied to the coil 5 is limited to a certain value or less such that the heat generation of the coil does not cause a problem in practice. There is a problem that it is difficult.
【0009】本発明は上記従来技術に存在する問題点を
解決し、永久磁石の熱減磁を防止し得ると共に、コイル
の発熱を抑制し得る結果、大出力を発生維持できるリニ
アモータを提供することを目的とする。The present invention solves the above-mentioned problems in the prior art, and provides a linear motor capable of preventing heat demagnetization of a permanent magnet and suppressing heat generation of a coil, thereby generating and maintaining a large output. The purpose is to:
【0010】[0010]
【課題を解決するための手段】上記目的を達成するため
に、本発明においては、長手方向に相隣る磁極の極性が
異なるように複数個の永久磁石を、磁気空隙を介して異
極が対向するように配設し、この磁気空隙内に多相コイ
ルからなる可動子を前記永久磁石の配設方向に移動可能
に設けたリニアモータにおいて、永久磁石に近接させて
冷媒流通用の冷却管を設け、かつ永久磁石と冷却管との
間に、永久磁石のキュリー点より低融点の非磁性金属ま
たは非磁性合金からなる充填材層を形成する、という技
術的手段を採用した。In order to achieve the above object, according to the present invention, a plurality of permanent magnets are separated through magnetic gaps so that magnetic poles adjacent in the longitudinal direction have different polarities. In a linear motor, which is disposed so as to face each other, and a movable element formed of a polyphase coil is provided in the magnetic gap so as to be movable in a direction in which the permanent magnet is provided, a cooling pipe for flowing a refrigerant near the permanent magnet. Between the permanent magnet and the cooling pipe
In the meantime, a nonmagnetic metal with a melting point lower than the Curie point of the permanent magnet
Others that form a filler layer made of a nonmagnetic alloy, employing the technical means of.
【0011】本発明において、相隣る永久磁石間に冷却
管を設け、または永久磁石の直上および/または直下に
冷却管を設けることができる。 [0011] In the present invention, Ru can Aitonaru between the permanent magnet provided with a cooling tube, or a cooling tube directly above and / or directly below the permanent magnets.
【0012】[0012]
【0013】本発明において、冷媒としては水、不凍
液、不活性液体その他の液体は勿論のこと、例えばアン
モニア、二酸化硫黄、塩化エチル、塩化メチル、および
フレオン、ユーコン、ゲネトロンなどのフッ化炭素、4
フッ化エチレン、エチレングリコール、ジエチレングリ
コール等の1種または2種以上など、および液体−気体
間の相変化によって、その容積に応じた大きな潜熱を放
出若しくは吸収して冷却を行なう物質も使用することが
できる。In the present invention, the refrigerant is not limited to water, antifreeze, inert liquid and other liquids, such as ammonia, sulfur dioxide, ethyl chloride, methyl chloride, and fluorocarbons such as freon, yukon and genetron.
It is also possible to use one or more of ethylene fluoride, ethylene glycol, diethylene glycol, etc., and a substance that releases or absorbs a large latent heat according to its volume to cool due to a phase change between liquid and gas. it can.
【0014】本発明において使用される永久磁石は公知
の製造方法(例えば粉末冶金法、塑性加工法(据え込
み、押し出し、圧延等)、ボンド磁石法、鋳造法、超急
冷法等)により製造可能なものである。そして、前記永
久磁石としてその基本組成を表す一般式がR−Fe−B
系、R−Co5 系、R2 −Co17系、R−Fe−N系
(RはYを含む希土類元素のうちの1種または2種以上
であり、さらに必要に応じてCo,Al,Nb,Ga,
Fe,Cu,Zr,Ti,Hf,Ni,V,Si,S
n,Cr,Mo,Zn,Pt,Bi,Ta,W,Sb,
Ge,Mn等から選ばれる1種または2種以上の磁気特
性に有効な元素を含有できる。また、さらにO,C,
N,H,P,S等から選ばれる1種または2種以上の不
可避不純物元素を含有できる。)で示される希土類磁
石、およびフェライト磁石、アルニコ磁石、Fe−Cr
−Co系磁石、Mn−Al−C系磁石等の公知の永久磁
石材料の1種または2種以上を使用することができる。The permanent magnet used in the present invention can be manufactured by a known manufacturing method (for example, powder metallurgy, plastic working (upsetting, extrusion, rolling, etc.), bond magnet method, casting, ultra-quenching, etc.). It is something. A general formula representing the basic composition of the permanent magnet is R-Fe-B.
System, R-Co 5 system, R 2 -Co 17 system, R-Fe-N system (R is one or more types of rare earth elements including Y, Co if necessary, Al, Nb, Ga,
Fe, Cu, Zr, Ti, Hf, Ni, V, Si, S
n, Cr, Mo, Zn, Pt, Bi, Ta, W, Sb,
One or two or more elements selected from Ge, Mn, and the like that are effective for magnetic properties can be contained. In addition, O, C,
One or more inevitable impurity elements selected from N, H, P, S and the like can be contained. ), A ferrite magnet, an alnico magnet, Fe-Cr
One or more known permanent magnet materials such as a -Co magnet and a Mn-Al-C magnet can be used.
【0015】さらに、上記永久磁石材料の1種または2
種以上からなる粉末状粒子と、公知の熱可塑性樹脂また
は熱硬化性樹脂またはゴム材料またはこれらのうちの1
種または2種以上とを主体として構成される公知のボン
ド磁石材料(好ましくは異方性磁石)によって本発明の
永久磁石を構成してもよい。なお、上記のうちR−Fe
−B系の永久磁石は酸化防止のために表面に耐酸化性の
被覆層を形成することが好ましい。Further, one or two of the above-mentioned permanent magnet materials may be used.
And a known thermoplastic resin or thermosetting resin or rubber material or one of them.
The permanent magnet of the present invention may be constituted by a known bonded magnet material (preferably an anisotropic magnet) mainly composed of a kind or two or more kinds. Note that among the above, R-Fe
It is preferable to form an oxidation-resistant coating layer on the surface of the -B permanent magnet to prevent oxidation.
【0016】このような被覆層としては、例えばNi,
Cu,Al,Zn,Cr,Ni−P,Ti,Sn,P
b,Pt,Ag,Au等の1種または2種以上からな
り、公知の無電解または電気メッキ手段により形成され
るメッキ層を採用できる。これ以外に、例えば真空蒸着
(例えば耐酸化性能の高い公知の金属や樹脂を前面に均
一コートする方法がある。)、イオンスパッタリング、
イオンプレーティング、IVD、BVD等の公知の被覆
層形成手段のうちの1または2以上の手段を採用でき
る。また、エポキシ樹脂等を電着塗装させてもよい。As such a coating layer, for example, Ni,
Cu, Al, Zn, Cr, Ni-P, Ti, Sn, P
A plating layer made of one or more of b, Pt, Ag, Au and the like and formed by a known electroless or electroplating means can be employed. Other than this, for example, vacuum deposition (for example, there is a method of uniformly coating the front surface with a known metal or resin having high oxidation resistance), ion sputtering,
One or more of known coating layer forming means such as ion plating, IVD, and BVD can be employed. Also, an epoxy resin or the like may be electrodeposited.
【0017】そして、より優れた耐酸化性を付与する場
合は、上述の被覆層形成手段を組み合わせて、例えばC
uメッキ(数μm〜数十μmの層厚)の上にNiメッキ
(数μm〜数十μmの層厚)を被覆し、さらにその上に
エポキシ樹脂を電着コート(数μm〜数十μmの層厚)
する構成等を採用することが好ましい。なお、上記のう
ちNd−Fe−B系の異方性焼結磁石および/またはボ
ンド磁石(好ましくは異方性磁石)がリニアモータ用永
久磁石の高磁束量化の点から特に好ましい。When more excellent oxidation resistance is imparted, the above-mentioned coating layer forming means may be combined with, for example, C
Ni plating (layer thickness of several μm to several tens of μm) is coated on u plating (layer thickness of several μm to several tens of μm), and further, an epoxy resin is electrodeposited thereon (several μm to several tens of μm) Layer thickness)
It is preferable to adopt such a configuration. Of the above, Nd-Fe-B-based anisotropic sintered magnets and / or bonded magnets (preferably anisotropic magnets) are particularly preferred from the viewpoint of increasing the magnetic flux of permanent magnets for linear motors.
【0018】また、本発明において使用できる低融点の
非磁性金属または非磁性合金としては、例えば、Sn,
Bi,Pb,CdおよびInのような永久磁石のキュリ
ー点よりも低融点を有する非磁性金属または、これら金
属の二元系(例えば、Pb−Sn系のいわゆるハンダ合
金等。)または三元系(例えば、Bi−Pb−Sb系
等。)以上の多元系非磁性合金が好ましく、冷却管の周
囲の間隙に熱伝導性の良好な充填材層を形成するための
前記金属または合金の溶湯の注入時の加熱による永久磁
石の磁力消失を防止できる。The low-melting non-magnetic metal or non-magnetic alloy usable in the present invention includes, for example, Sn,
Nonmagnetic metals having a melting point lower than the Curie point of permanent magnets such as Bi, Pb, Cd and In, or binary systems of these metals (for example, so-called solder alloys of Pb-Sn system) or ternary systems. (For example, Bi-Pb-Sb type or the like.) The above multi-component non-magnetic alloy is preferable, and the molten metal or alloy for forming a filler layer having good thermal conductivity in a gap around a cooling pipe is preferred. Loss of magnetic force of the permanent magnet due to heating during injection can be prevented.
【0019】そして、前記低融点の非磁性金属または非
磁性合金のうち、120℃以下の融点を有するもの(例
えば、Bi50%−Cd12.5%−Pb25%−Sn1
2.5%の組成からなるWood's Metal(融点68℃);B
i49.5%−Cd10.1%−Pb27.3%−Sn13.1
%の組成からなる四元系共晶合金(融点70℃);Bi
50%−Pb28%−Sn22%の組成からなるRose's
Alloy(融点100℃)等。なお、%は重量%であ
る。)が特に好ましい。すなわち、上記間隙への前記金
属または合金の溶湯注入時の永久磁石の加熱温度が12
0℃以下であれば、永久磁石の熱減磁が実用に耐え得る
範囲内に抑えられるのである。Among the low melting point nonmagnetic metals or nonmagnetic alloys, those having a melting point of 120 ° C. or less (for example, Bi50% -Cd12.5% -Pb25% -Sn1
Wood's Metal of 2.5% composition (melting point 68 ° C); B
i49.5% -Cd10.1% -Pb27.3% -Sn13.1
% Quaternary eutectic alloy (melting point 70 ° C.);
Rose's composed of 50% -Pb28% -Sn22%
Alloy (melting point 100 ° C) and the like. In addition,% is weight%. Is particularly preferred. That is, when the molten metal or alloy is injected into the gap, the heating temperature of the permanent magnet is 12
If the temperature is 0 ° C. or lower, the thermal demagnetization of the permanent magnet can be suppressed within a range that can be practically used.
【0020】リニアモータにおいては、近年高磁束量化
(すなわち高推力化)に適合した上記R−Fe−B系の
永久磁石(高Br型が特に好ましく用いられる。)が多
用されているが、120℃を越えると急激な熱減磁によ
りリニアモータの推力低下が顕著となるのである。さら
に、上記R−Fe−B系の永久磁石表面に形成された上
記耐酸化被膜が120℃を越えると急激に劣化損傷して
永久磁石特性が大幅に低下してしまうという問題点があ
る。したがって、上記融点は120℃以下であることが
特に好ましいのである。In the linear motor, in recent years, the above-mentioned R-Fe-B permanent magnet (high Br type is particularly preferably used) suitable for increasing the amount of magnetic flux (that is, increasing the thrust) is frequently used. When the temperature exceeds 100 ° C., the thrust of the linear motor is significantly reduced due to rapid thermal demagnetization. Further, when the oxidation-resistant coating formed on the surface of the R-Fe-B-based permanent magnet exceeds 120 ° C, there is a problem that the permanent magnet characteristics are significantly deteriorated due to rapid deterioration and damage. Therefore, the above melting point is particularly preferably 120 ° C. or lower.
【0021】[0021]
【作用】上記の構成により、永久磁石の温度上昇を防止
し、熱減磁による発生磁束の減少を防止し、推力を向上
させることができる。一方多相コイルが配設される磁気
空隙部も冷却されるから、多相コイルの熱放散を促進す
ることになり、多相コイルの温度上昇もまた抑制されて
実効電力の減少を抑制でき、推力の向上に寄与するので
ある。According to the above construction, it is possible to prevent the temperature of the permanent magnet from rising, prevent the magnetic flux generated by thermal demagnetization from decreasing, and improve the thrust. On the other hand, since the magnetic gap in which the multi-phase coil is disposed is also cooled, heat dissipation of the multi-phase coil is promoted, and the temperature rise of the multi-phase coil is also suppressed, so that a decrease in effective power can be suppressed, It contributes to the improvement of thrust.
【0022】[0022]
【実施例】図1は本発明の第1実施例を示す要部断面図
である。図1において11はベースであり、軟鋼のよう
な強磁性材料により平板状に形成する。12はセンター
ヨーク、13はサイドヨークであり、各々前記ベース1
1と同様の材料によって平板状に形成すると共に、ベー
ス11上に間隔を介して固着する。次に14は永久磁石
であり、例えば希土類系永久磁石(日立金属製Nd−F
e−B系異方性焼結磁石(HS−32BV)であり、表
面に耐酸化被膜としてCuメッキおよびNiメッキの多
層膜が形成されている)により後述するような形状寸法
に形成し、センターヨーク12およびサイドヨーク13
の夫々の対向面に、相隣る磁極の極性が異なるように複
数個を、磁気空隙15を介して異極が対向するように配
設する。図1において永久磁石14の配設方向は紙面と
直交する方向である。FIG. 1 is a sectional view showing a main part of a first embodiment of the present invention. In FIG. 1, reference numeral 11 denotes a base, which is formed in a flat plate shape from a ferromagnetic material such as mild steel. Reference numeral 12 denotes a center yoke, and 13 denotes a side yoke.
It is formed in the shape of a flat plate using the same material as that of No. 1 and is fixed on the base 11 with an interval. Next, reference numeral 14 denotes a permanent magnet, for example, a rare earth permanent magnet (Nd-F manufactured by Hitachi Metals, Ltd.).
An e-B based anisotropic sintered magnet (HS-32BV) having a multilayer film of Cu plating and Ni plating formed on its surface as an oxidation-resistant coating) to form a shape and dimensions as described below, Yoke 12 and side yoke 13
A plurality of magnetic poles are arranged on the respective opposing surfaces such that adjacent magnetic poles have different polarities via magnetic gaps 15 so as to have different polarities. In FIG. 1, the direction in which the permanent magnets 14 are arranged is a direction orthogonal to the paper surface.
【0023】次に16は可動子であり、キャリッジ17
の下方にコイルフレーム18を固着し、コイルフレーム
18が前記磁気空隙15内において紙面と直交する方向
に移動可能に設ける。このコイルフレーム18は、推力
リップルの発生を防止するため、非磁性材料によって形
成する。すなわち、例えばアルミニウム合金製の枠(絶
縁性を付与するため表面はアルマイト処理をしておく)
の表面に樹脂(例えばガラス入エポキシ樹脂)製の基板
を装着し、この基板上に後述するコイル19を固着して
形成する。Next, reference numeral 16 denotes a mover, and a carriage 17
The coil frame 18 is fixed to the bottom of the magnetic space 15 so as to be movable within the magnetic gap 15 in a direction perpendicular to the plane of the drawing. The coil frame 18 is formed of a non-magnetic material in order to prevent thrust ripple from occurring. That is, for example, a frame made of an aluminum alloy (the surface is anodized to impart insulation).
A substrate made of a resin (for example, epoxy resin containing glass) is mounted on the surface of the substrate, and a coil 19 described later is fixed on the substrate.
【0024】なおコイルフレーム18を磁性材料によっ
て形成したり、あるいは可動子16の側にバックヨーク
が存在すると、永久磁石14の吸着力によるアンバラン
スが発生し、推力リップルの発生原因の一つとなる。1
9はコイルであり、偏平状に形成すると共にコイルフレ
ーム18の両面に設ける。If the coil frame 18 is formed of a magnetic material, or if the back yoke exists on the side of the mover 16, imbalance due to the attractive force of the permanent magnet 14 occurs, which is one of the causes of thrust ripple. . 1
Reference numeral 9 denotes a coil, which is formed in a flat shape and provided on both surfaces of the coil frame 18.
【0025】次に21は冷却管であり、後述するように
隣接する永久磁石間に空隙を設け、この空隙内に連続S
字状に配設し、冷媒を流通させる。冷却管21は熱伝導
の良好な公知の非磁性金属材料、例えばアルミニウム、
銅、若しくはそれらの合金によって形成することが、冷
却効果の点から好ましい。また上記のように冷却管21
を配設することにより、リニアモータにおいて、磁気空
隙における多相コイルの移動方向における磁束密度分布
を正弦波状とすることができ、トルクリップルを大幅に
低減させ、かつ優れたリニアリティを確保する上で好ま
しい。Next, a cooling pipe 21 is provided with a space between adjacent permanent magnets as described later, and a continuous S is provided in the space.
It is arranged in a letter shape and the refrigerant is circulated. The cooling pipe 21 is made of a known non-magnetic metal material having good heat conduction, for example, aluminum,
It is preferable to form from copper or an alloy thereof from the viewpoint of the cooling effect. Also, as described above, the cooling pipe 21
In the linear motor, the magnetic flux density distribution in the moving direction of the polyphase coil in the magnetic gap can be made sinusoidal in the linear motor, greatly reducing the torque ripple and securing excellent linearity. preferable.
【0026】そして本実施例では、冷却管21をアルミ
ニウム合金によって形成し、接着剤またはその他の充填
材により、永久磁石14に近接させて固定する。特に本
発明者の検討によって、後述するように、冷却管21の
周囲の間隙に、前述の低融点の非磁性金属または非磁性
合金からなる充填材層を形成すると、冷却管21と永久
磁石14との間の熱伝導性が増大し、冷却能力が著しく
高まることが判明している。In the present embodiment, the cooling pipe 21 is formed of an aluminum alloy, and is fixed close to the permanent magnet 14 with an adhesive or other filler. In particular, according to the study of the present inventor, when a filler layer made of the above-mentioned low-melting non-magnetic metal or non-magnetic alloy is formed in the gap around the cooling pipe 21 as described later, the cooling pipe 21 and the permanent magnet 14 It has been found that the thermal conductivity between the two increases and the cooling capacity increases significantly.
【0027】すなわち前記充填材層が存在しない場合
は、上記間隙は接着剤(例えばエポキシ樹脂やアラルダ
イト等)および空気層で覆われており、特にこの空気層
が冷却管21の周囲に多く存在すると、冷却管21と永
久磁石14との間の熱伝導が著しく阻害され、永久磁石
14およびコイル19に対する冷却作用を低下させてし
まうのである。That is, when the filler layer does not exist, the gap is covered with an adhesive (for example, an epoxy resin or an araldite) and an air layer. In addition, heat conduction between the cooling pipe 21 and the permanent magnet 14 is significantly impaired, and the cooling effect on the permanent magnet 14 and the coil 19 is reduced.
【0028】なお上記低融点の非磁性金属または非磁性
合金からなる充填材層に代えて、例えばエポキシ樹脂等
に代表される公知の接着剤中に、非磁性でかつ熱伝導性
を有するフィラー(例えば炭素繊維、SiC粉末、グラ
ファイト粉末、Al粉末、Cu粉末等)を含有させたも
のを使用して、冷却管21の接着固定とともに充填材層
を形成しても良好な冷却作用が得られる。Instead of the filler layer made of a non-magnetic metal or a non-magnetic alloy having a low melting point, a non-magnetic and thermally conductive filler (for example, epoxy resin) may be used. For example, even if a filler containing carbon fibers, SiC powder, graphite powder, Al powder, Cu powder, etc.) is used, and the cooling tube 21 is adhered and fixed, a good cooling effect can be obtained.
【0029】また冷却管21内に流通させる冷媒として
は、水を使用するのが最も簡便であるが、例えば不凍
液、不活性液のような自動車のラジエータ用の冷却媒体
を使用してもよい。As the refrigerant to be circulated in the cooling pipe 21, it is most convenient to use water. However, a cooling medium for an automobile radiator such as an antifreeze or an inert liquid may be used.
【0030】図2は図1におけるコイルフレーム18を
示す要部斜視図であり、同一部分は図1と同一の参照符
号で示す。コイル19は例えば3相コイル(特開昭62
−193543号公報参照)とし、各相はすべて直列接
続すると共に、各相間はY形接続とする。FIG. 2 is a perspective view of a main part showing the coil frame 18 in FIG. 1, and the same parts are denoted by the same reference numerals as in FIG. The coil 19 is, for example, a three-phase coil (JP-A-62
193543), and all the phases are connected in series, and the respective phases are connected in a Y-shape.
【0031】本発明のリニアモータは、上記のように多
相コイルを使用して、この多相コイルに正弦波状の駆動
電流を供給するのであるが、相数が多くなる程力率が低
下するため、入力電流を増加する必要があるので、2相
または3相の通電方式を採用するのが望ましい。すなわ
ち本発明のリニアモータは、後述するような特定形状の
永久磁石を有する磁気回路と、2相または3相の正弦波
電流出力型の駆動回路とを組合せた構成とすることが望
ましい。The linear motor of the present invention uses a polyphase coil as described above to supply a sine-wave driving current to the polyphase coil. The power factor decreases as the number of phases increases. Therefore, it is necessary to increase the input current. Therefore, it is desirable to adopt a two-phase or three-phase conduction method. That is, it is desirable that the linear motor of the present invention has a configuration in which a magnetic circuit having a permanent magnet of a specific shape as described later is combined with a two-phase or three-phase sine wave current output type drive circuit.
【0032】図3は図1および図2におけるコイル19
と位置検出素子との位置関係を示す要部側面図であり、
同一部分は前記図1および図2と同一の参照符号で示
す。図3において、可動子16は、永久磁石14の磁極
ピッチlm の1/6の幅で紙面に平行な面内で巻かれて
いる3個の偏平コイルLu1,Lw1,Lv1をコイル幅だけ
ずらせて配置した(磁気空隙15内に位置する相互の偏
平コイルの中央部は重ならず同一平面を形成する)コイ
ル19a、およびこのコイル19aと同様に構成された
コイル19b、19cを有している。また可動子16に
は、3個の位置検出素子20が、コイルピッチlc (前
記磁極ピッチlm と等しい)の1/6の間隔lh を置い
て設けられている。これらの位置検出素子20は、偏平
コイルLu1,Lw1,Lv1に対して夫々間隔l′宛オフセ
ットされているが、このオフセット状態は電気的に処理
できるので、実用上は全く問題とならない。FIG. 3 shows the coil 19 shown in FIGS.
It is a main part side view showing a positional relationship between the position detection element,
The same parts are denoted by the same reference numerals as in FIGS. 1 and 2. In FIG. 3, the mover 16 has three flat coils Lu 1 , Lw 1 , Lv 1 wound in a plane parallel to the paper with a width of 1 / of the magnetic pole pitch lm of the permanent magnet 14. A coil 19a which is displaced only (the central portions of the mutually flat coils located in the magnetic gap 15 do not overlap and form the same plane), and coils 19b and 19c which are configured similarly to the coil 19a. ing. The mover 16 is provided with three position detecting elements 20 at an interval lh which is 1/6 of the coil pitch Ic (equal to the magnetic pole pitch Im). These position detecting elements 20 are offset from the flat coils Lu 1 , Lw 1 , Lv 1 to the interval l ′, respectively, but since this offset state can be processed electrically, there is no practical problem at all. .
【0033】そして駆動回路(図示せず)によって12
0°位置のずれた3相電流波形を作り、これを前記偏平
コイルLu1,Lw1,Lv1に供給する(図3における矢印
は電流の向きを示す)ことにより、可動子16が連続し
て移動する。なお3相の場合、理論的には位置検出素子
20の間隔lh は、コイルピッチlc (磁極ピッチlm
と等しい)の1/3に設定されるが、図3に示す例にお
いては、実装上の理由により上記のように設定してい
る。すなわち、前記偏平コイルLu1,Lw1,Lv1等は、
通電方向を逆転させることにより、180°のn(nは
正の整数)倍毎の任意の位置に配置できるためである。Then, the driving circuit (not shown) generates 12
By generating a three-phase current waveform shifted by 0 ° and supplying the three-phase current waveform to the flat coils Lu 1 , Lw 1 , and Lv 1 (arrows in FIG. 3 indicate the direction of the current), the mover 16 is continuously connected. Move. In the case of three phases, the interval lh between the position detecting elements 20 is theoretically the coil pitch lc (the magnetic pole pitch lm).
3), but in the example shown in FIG. 3, it is set as described above for mounting reasons. That is, the flat coils Lu 1 , Lw 1 , Lv 1, etc.
This is because, by reversing the energization direction, it can be arranged at any position every n times (n is a positive integer) times 180 °.
【0034】また本実施例においては、位置検出素子2
0と制御回路(図示せず)とによって通電すべき偏平コ
イルおよび電流の方向を切換若しくは選択しているが、
位置検出素子20としては、ホール素子のような公知の
ものを使用することができる。なお制御回路も通常の永
久磁石を界磁として使用する。例えば同期式ACサーボ
モータにおけるものと同様の構成でよい。In this embodiment, the position detecting element 2
The direction of the flat coil to be energized and the current is switched or selected by 0 and a control circuit (not shown).
As the position detection element 20, a known element such as a Hall element can be used. The control circuit also uses a normal permanent magnet as a field. For example, the configuration may be the same as that of the synchronous AC servomotor.
【0035】更に本発明においては、3相コイル(19
a〜19b)を6連式とした場合でも、3個の位置検出
素子20を使用して位置検出をすることができる。従っ
て供給される電流は、単相または3相の正弦波電流が使
用され、その同期化手段としてホール素子の正(負)か
ら負(正)に反転する(ゼロクロス)タイミングのみを
使用している。なお2相の通電方式を採用した場合は、
磁極ピッチlm の1/4の間隔で位置検出素子20を可
動子16に設け、駆動回路で90°位置のずれた2相電
流波形を作り、これをコイルに供給すればよい。Further, in the present invention, a three-phase coil (19
Even when a to 19b) are of a six-row type, position detection can be performed using three position detection elements 20. Accordingly, a single-phase or three-phase sine wave current is used as the supplied current, and only the timing of inverting the Hall element from positive (negative) to negative (positive) (zero cross) is used as a synchronization means. . When the two-phase energization method is adopted,
The position detecting elements 20 may be provided on the mover 16 at intervals of 1/4 of the magnetic pole pitch lm, and a two-phase current waveform shifted by 90 degrees may be generated by a driving circuit and supplied to the coil.
【0036】図4は図1における永久磁石14および冷
却管21を示す要部側面拡大図であり、同一部分は図1
と同一の参照符号で示す。図4において、永久磁石14
は、例えば特開平3−222670号公報(特願平2−
300464号)に記載されるように、上下端縁部の輪
郭を正弦波状に形成し、厚さ方向に着磁する。永久磁石
14の輪郭をこのように形成することにり、永久磁石1
4の配設方向における磁束密度分布が正弦波状となり、
トルクリップルが大幅に低減し、優れたリニアリティを
示すことが確認されている。FIG. 4 is an enlarged side view of a main part showing the permanent magnet 14 and the cooling pipe 21 in FIG.
Are indicated by the same reference numerals. In FIG. 4, the permanent magnet 14
Is described in, for example, Japanese Patent Application Laid-Open No.
As described in No. 300484), the contours of the upper and lower edges are formed in a sine wave shape, and are magnetized in the thickness direction. By forming the contour of the permanent magnet 14 in this manner, the permanent magnet 1
4, the magnetic flux density distribution in the arrangement direction becomes sinusoidal,
It has been confirmed that the torque ripple is greatly reduced and excellent linearity is exhibited.
【0037】冷却管21は、相隣る永久磁石14,14
間に空隙を設け、この空隙内に連続S字状に配設すると
共に、冷却管21内に冷媒を流通させるために冷媒供給
源(図示せず)と接続する。なお冷却管21は永久磁石
14、センターヨーク12、サイドヨーク13と接触す
るように、予め接着剤(例えばエポキシ系接着剤等)で
固定して設けると共に、これらの部材との間の間隙22
には、熱伝導性の良好なWood's Metal(融点68℃)を
電気ごてで加熱溶融させて流し込み、冷却凝固させて冷
却管21の周囲に低融点かつ非磁性の充填材層22aを
形成する。The cooling pipe 21 is provided between the adjacent permanent magnets 14, 14.
A gap is provided between the cooling pipes 21. The gap is connected to a coolant supply source (not shown) in order to allow the coolant to flow through the cooling pipe 21. The cooling pipe 21 is provided in advance by being fixed with an adhesive (for example, an epoxy-based adhesive) so as to be in contact with the permanent magnet 14, the center yoke 12, and the side yoke 13, and a gap 22 between these members is provided.
In this case, Wood's Metal (melting point 68 ° C.) having good thermal conductivity is heated and melted with an electric iron and poured, and cooled and solidified to form a low melting point and nonmagnetic filler layer 22 a around the cooling pipe 21. .
【0038】上記の構成により、永久磁石14は冷却管
21内を流通する水等の冷媒により極めて熱伝導よく冷
却されるから、前記図1における磁気空隙15内を移動
するコイル19からの放熱に起因する永久磁石14の温
度上昇もまた抑制される。従って永久磁石14からの発
生磁束量の熱減磁による減少が防止され、同時にコイル
19の温度上昇によるコイル通電抵抗の増加が抑制さ
れ、可動子16に対する推力を向上させることができ
る。With the above configuration, the permanent magnet 14 is cooled with a very good heat conduction by the coolant such as water flowing through the cooling pipe 21, so that the heat from the coil 19 moving in the magnetic gap 15 in FIG. The resulting temperature increase of the permanent magnet 14 is also suppressed. Therefore, a decrease in the amount of magnetic flux generated from the permanent magnet 14 due to thermal demagnetization is prevented, and at the same time, an increase in coil conduction resistance due to a rise in temperature of the coil 19 is suppressed, so that a thrust on the mover 16 can be improved.
【0039】また冷却管21は図1に示されるように磁
気空隙15に臨むように配設されているから、磁気空隙
15内の雰囲気の冷却にも寄与し、間接的に可動子16
の多相コイル19の熱放散を促進することになる。従っ
て多相コイル19の発熱による電気抵抗値の上昇を抑制
し、実効電力の減少が抑制される結果、冷却管21を配
置しない場合と比較して可動子16に対する推力が40
%と大幅な向上が図られるのである。Since the cooling pipe 21 is disposed so as to face the magnetic gap 15 as shown in FIG. 1, it also contributes to cooling of the atmosphere in the magnetic gap 15 and indirectly moves the movable element 16.
Of the multi-phase coil 19 is promoted. Therefore, an increase in electric resistance due to heat generation of the polyphase coil 19 is suppressed, and a decrease in effective power is suppressed. As a result, the thrust on the mover 16 is reduced by 40 as compared with a case where the cooling pipe 21 is not arranged.
%, Which is a significant improvement.
【0040】図5は本発明の第2実施例における永久磁
石14および冷却管21を示す要部側面拡大図、図6は
図5における一部断面A方向矢視図であり、同一部分は
図3と同一の参照符号で示す。図5および図6におい
て、永久磁石14の横断面形状を略台形状に形成し、斜
面部23が磁気空隙15に臨むように隣接させて配設す
る。そして冷却管21は隣接する永久磁石14,14間
の斜面部23,23によって形成される凹部内に、連続
S字状に配設すると共に、冷媒供給源(図示せず)と接
続する。冷却管21と斜面部23,23との間隙22に
は、熱伝導の良好なRose's Alloy(融点100℃)を充
填させて、冷却管21の周囲に低融点かつ非磁性の充填
材層22aを形成する。以上の構成による作用は前記図
4に示す実施例のものと同様である。FIG. 5 is an enlarged side view of a main part showing a permanent magnet 14 and a cooling pipe 21 according to a second embodiment of the present invention. FIG. 6 is a partial cross-sectional view of FIG. 3 are denoted by the same reference numerals. 5 and 6, the permanent magnet 14 has a substantially trapezoidal cross-sectional shape, and is disposed adjacent to the slope 23 so as to face the magnetic gap 15. The cooling pipe 21 is arranged in a continuous S-shape in a recess formed by the slopes 23 between the adjacent permanent magnets 14 and connected to a coolant supply source (not shown). The gap 22 between the cooling pipe 21 and the slopes 23, 23 is filled with Rose's Alloy (melting point 100 ° C.) having good heat conduction, and a low melting point and non-magnetic filler layer 22a is provided around the cooling pipe 21. Form. The operation of the above configuration is the same as that of the embodiment shown in FIG.
【0041】図7は本発明の第3実施例における磁気回
路を示す要部断面図であり、同一部分は前記図1と同一
の参照符号で示す。図7において、永久磁石14は例え
ば矩形状に形成し、少なくとも上下端縁部が平行になる
ように形成する。そして冷却管21は、例えば角アルミ
ニウム合金によりパイプ状とすると共に、永久磁石14
の直上および直下に近接させて配設する。なお冷却管2
1と永久磁石14との間ならびにセンターヨーク12お
よびサイドヨーク13との間に存在する間隙22に、重
量でBi49.5%−Cd10.1%−Pb27.3%−Sn
13.1%の四元系共晶合金(融点70℃)を充填して充
填材層22aを形成する。上記の構成による作用は、前
記図3および図4に示す実施例のものと同様である。FIG. 7 is a sectional view of a main part showing a magnetic circuit according to a third embodiment of the present invention, and the same parts are denoted by the same reference numerals as in FIG. In FIG. 7, the permanent magnet 14 is formed in, for example, a rectangular shape and at least upper and lower edges are parallel. The cooling pipe 21 is made of, for example, a pipe made of a square aluminum alloy, and
It is arranged immediately above and immediately below. Cooling pipe 2
1 and the permanent magnet 14 and the gaps 22 existing between the center yoke 12 and the side yokes 13, Bi49.5% -Cd10.1% -Pb27.3% -Sn by weight.
Filler layer 22a is formed by filling 13.1% quaternary eutectic alloy (melting point: 70 ° C.). The operation of the above configuration is the same as that of the embodiment shown in FIGS.
【0042】[0042]
【0043】[0043]
【0044】[0044]
【0045】表1は前記の夫々の実施例における推力の
向上率を示す表である。この場合において、推力の測定
は可動子を構成する多相コイルの発熱による温度上昇が
飽和する時点、すなわちリニアモータ稼動開始から12
0分経過後において行なった。Table 1 is a table showing the improvement rate of thrust in each of the above embodiments. In this case, the thrust is measured at the time when the temperature rise due to the heat generation of the multi-phase coil constituting the mover is saturated, that is, when the linear motor starts to operate.
Performed after 0 minutes.
【0046】[0046]
【表1】 [Table 1]
【0047】表1から明らかなように、第1〜第3実施
例の何れにおいても、冷却管若しくは流路を配置しない
場合と比較して40%の推力向上が達成されている。ま
た上記第1〜第3実施例の夫々において、表1に示す充
填材層を使用せずに冷却管のみを配置した場合の推力の
向上率は、冷却管を配置しない場合と比較して何れも2
0%を達成している。As apparent from Table 1, in each of the first to third embodiments, a thrust improvement of 40% is achieved as compared with the case where no cooling pipe or flow path is provided. Further, in each of the first to third embodiments, the improvement rate of the thrust when only the cooling pipe was arranged without using the filler layer shown in Table 1 was higher than the case where the cooling pipe was not arranged. Also 2
0% has been achieved.
【0048】[0048]
【発明の効果】本発明は以上記述のような構成および作
用であるから、下記の効果を奏し得る。 (1) 冷却管若しくは流路内を流通する冷媒により、永久
磁石が冷却されるから、可動子を構成する多相コイルか
らの放熱に起因する永久磁石の温度上昇が防止され、永
久磁石の熱減磁による発生磁束の減少が防止される結
果、可動子に対する推力が向上する。 (2) また冷却管若しくは流路内を流通する冷媒によっ
て、多相コイルが配設されかつ移動する磁気空隙の雰囲
気も冷却されるから、多相コイルの熱放散を促進し、多
相コイルの温度上昇を抑制し、実効電力の減少を抑制
し、可動子に対する推力の向上に寄与する。 (3) 上記(1)(2)に関連して、更に大推力のものにも適用
可能となり、可動コイル形のリニアモータの適用範囲の
拡大が可能である。Since the present invention has the configuration and operation as described above, the following effects can be obtained. (1) Since the permanent magnet is cooled by the refrigerant flowing through the cooling pipe or the flow path, the temperature of the permanent magnet is prevented from rising due to heat radiation from the polyphase coil constituting the mover, and the heat of the permanent magnet is prevented. As a result of preventing the generated magnetic flux from being reduced by the demagnetization, the thrust on the mover is improved. (2) Since the atmosphere in the magnetic gap in which the multi-phase coil is disposed and moves is also cooled by the refrigerant flowing through the cooling pipe or the flow path, the heat dissipation of the multi-phase coil is promoted, and the multi-phase coil is cooled. It suppresses a temperature rise, suppresses a decrease in effective power, and contributes to an improvement in thrust for the mover. (3) In connection with the above (1) and (2), the present invention can be applied to a motor with a larger thrust, and the applicable range of the moving coil type linear motor can be expanded.
【図1】本発明の第1実施例を示す要部断面図である。FIG. 1 is a sectional view showing a main part of a first embodiment of the present invention.
【図2】図1におけるコイルフレーム18を示す要部斜
視図である。FIG. 2 is a perspective view of a main part showing a coil frame 18 in FIG.
【図3】図1および図2におけるコイル19と位置検出
素子との位置関係を示す要部側面図である。FIG. 3 is a side view of a main part showing a positional relationship between a coil 19 and a position detecting element in FIGS. 1 and 2;
【図4】図1における永久磁石14および冷却管21を
示す要部側面拡大図である。FIG. 4 is an enlarged side view of a main part showing a permanent magnet 14 and a cooling pipe 21 in FIG. 1;
【図5】本発明の第2実施例における永久磁石14およ
び冷却管21を示す要部側面拡大図である。FIG. 5 is an enlarged side view of a main part showing a permanent magnet 14 and a cooling pipe 21 according to a second embodiment of the present invention.
【図6】図5における一部断面A方向矢視図である。6 is a partial cross-sectional view in the direction of arrow A in FIG. 5;
【図7】本発明の第3実施例における磁気回路を示す要
部断面図である。FIG. 7 is a sectional view showing a main part of a magnetic circuit according to a third embodiment of the present invention.
【図8】従来のリニアモータを示す要部説明図である。 FIG. 8 is an explanatory view of a main part showing a conventional linear motor.
14 永久磁石 16 可動子 21 冷却管 22a 充填材層 14 permanent magnet 16 mover 21 cooling pipe 22a filler layer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−110932(JP,A) 特開 平1−270763(JP,A) 特開 昭49−70102(JP,A) 特開 平4−185250(JP,A) 実開 平3−104087(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02K 41/02 - 41/035 H02K 9/00 - 9/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-110932 (JP, A) JP-A-1-27063 (JP, A) JP-A-49-70102 (JP, A) JP-A-4- 185250 (JP, A) Japanese Utility Model 3-104087 (JP, U) (58) Fields studied (Int. Cl. 7 , DB name) H02K 41/02-41/035 H02K 9/00-9/28
Claims (3)
うに複数個の永久磁石を、磁気空隙を介して異極が対向
するように配設し、この磁気空隙内に多相コイルからな
る可動子を前記永久磁石の配設方向に移動可能に設けた
リニアモータにおいて、永久磁石に近接させて冷媒流通
用の冷却管を設け、かつ永久磁石と冷却管との間に、永
久磁石のキュリー点より低融点の非磁性金属または非磁
性合金からなる充填材層を形成したことを特徴とするリ
ニアモータ。1. A plurality of permanent magnets are arranged so that magnetic poles adjacent to each other in the longitudinal direction have different polarities so that different poles face each other via a magnetic gap. In the linear motor, the movable element is provided so as to be movable in the direction in which the permanent magnet is provided . A cooling pipe for circulating the refrigerant is provided in proximity to the permanent magnet, and a permanent magnet is provided between the permanent magnet and the cooling pipe.
Non-magnetic metal or non-magnetic with a lower melting point than the Curie point
A linear motor comprising a filler layer made of a conductive alloy .
を特徴とする請求項1記載のリニアモータ。2. The linear motor according to claim 1, wherein a cooling pipe is provided between adjacent permanent magnets.
却管を設けたことを特徴とする請求項1記載のリニアモ
ータ。3. The linear motor according to claim 1, wherein a cooling pipe is provided immediately above and / or immediately below the permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11946395A JP3238045B2 (en) | 1995-05-18 | 1995-05-18 | Linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11946395A JP3238045B2 (en) | 1995-05-18 | 1995-05-18 | Linear motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08317627A JPH08317627A (en) | 1996-11-29 |
JP3238045B2 true JP3238045B2 (en) | 2001-12-10 |
Family
ID=14761975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11946395A Expired - Lifetime JP3238045B2 (en) | 1995-05-18 | 1995-05-18 | Linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3238045B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5783877A (en) * | 1996-04-12 | 1998-07-21 | Anorad Corporation | Linear motor with improved cooling |
WO2006012408A2 (en) * | 2004-07-21 | 2006-02-02 | Newport Corporation | Improved cooling system for linear motors |
US7696652B2 (en) * | 2005-11-01 | 2010-04-13 | Asml Netherlands B.V. | Electromagnetic actuator, method of manufacturing a part of an electromagnetic actuator, and lithographic apparatus comprising and electromagnetic actuator |
JP5770417B2 (en) * | 2009-03-06 | 2015-08-26 | オークマ株式会社 | Linear motor |
JP5616717B2 (en) * | 2010-08-20 | 2014-10-29 | オークマ株式会社 | Linear motor |
JP7290268B2 (en) * | 2019-03-28 | 2023-06-13 | 株式会社プロテリアル | Moving coil type voice coil motor |
CN113315337B (en) * | 2021-04-29 | 2022-08-12 | 天津中德应用技术大学 | Selective double-rotor permanent magnet linear motor system |
-
1995
- 1995-05-18 JP JP11946395A patent/JP3238045B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08317627A (en) | 1996-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11374465B2 (en) | Rotating electrical machine | |
US11984795B2 (en) | Rotating electrical machine | |
US4369383A (en) | Linear DC permanent magnet motor | |
JP6848050B2 (en) | Electromechanical equipment | |
US11863023B2 (en) | Rotating electrical machine | |
US7948123B2 (en) | Linear motor with force ripple compensation | |
JP3870413B2 (en) | Coreless linear motor | |
JPH09285050A (en) | Dynamo-electric machine | |
US6960858B2 (en) | Motor using permanent magnet | |
JPH01264558A (en) | Linear motor | |
JP2007527688A (en) | Stator coil arrangement for an axial air gap type electrical device containing low loss material | |
JP3216865B2 (en) | Linear motor | |
JP3238045B2 (en) | Linear motor | |
JP2001218444A (en) | High thrust linear motor and method of manufacturing the same | |
JPH10323012A (en) | Linear motor | |
US4644199A (en) | Linear DC permanent magnet motor | |
JP2524103Y2 (en) | Synchronous linear motor | |
JP4697581B2 (en) | Permanent magnet body and manufacturing method thereof | |
JP3661978B2 (en) | Moving coil linear motor | |
JP3476109B2 (en) | Linear motor | |
JP2642240B2 (en) | Linear motor | |
US20120248898A1 (en) | Moving Magnet Actuator Magnet Carrier | |
Zijlstra | Application of permanent magnets in electromechanical power converters; the impact of Nd-Fe-B magnets | |
JP3786150B2 (en) | Linear motor | |
JPH1051986A (en) | Electromagnetic energy converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081005 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091005 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |