JP3230260B2 - Surface coated metal material for vacuum equipment - Google Patents

Surface coated metal material for vacuum equipment

Info

Publication number
JP3230260B2
JP3230260B2 JP34781991A JP34781991A JP3230260B2 JP 3230260 B2 JP3230260 B2 JP 3230260B2 JP 34781991 A JP34781991 A JP 34781991A JP 34781991 A JP34781991 A JP 34781991A JP 3230260 B2 JP3230260 B2 JP 3230260B2
Authority
JP
Japan
Prior art keywords
metal material
gas
coated metal
coating
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34781991A
Other languages
Japanese (ja)
Other versions
JPH05156449A (en
Inventor
廣士 佐藤
武典 中山
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34781991A priority Critical patent/JP3230260B2/en
Publication of JPH05156449A publication Critical patent/JPH05156449A/en
Application granted granted Critical
Publication of JP3230260B2 publication Critical patent/JP3230260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置用の真
空チャンバーやその周辺真空部材あるいはCVD装置の
如く、高真空条件及び腐食性ガス環境下で使用される耐
食性及び脱ガス性に優れた表面被覆金属材に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in corrosion resistance and degassing properties in high vacuum conditions and corrosive gas environments, such as a vacuum chamber for semiconductor manufacturing equipment and its surrounding vacuum members or CVD equipment. The present invention relates to a surface-coated metal material.

【0002】[0002]

【従来の技術】たとえば半導体の製造に当たっては、S
iウエハーの表面処理にBF3 ,BCl3 ,SiF4
SiH2 ,FOCl3 ,WF6 ,MoF6 等の腐食性ガ
スや、F2 ,Cl2 ,HClの如く極めて反応性の高い
ガスが使用される。またこれらのガスで処理する際に
は、Siウエハーの汚染を防止するためチャンバー内を
10-10 〜10-12 torr程度の超高真空状態にして
残留ガスを完全に除去しておく必要がある。そのため半
導体製造装置用真空チャンバー及びその関連機器材料と
しては、様々の腐食性ガスに対する耐食性が良好である
と共に、ガスの吸着が少なく且つ仮に吸着したとしても
容易に脱ガスできる様なものでなければならず、こうし
た要件は、半導体製造技術が高度化するにつれてますま
す厳しくなっている。
2. Description of the Related Art For example, in the production of semiconductors, S
BF 3 , BCl 3 , SiF 4 ,
Corrosive gases such as SiH 2 , FOCl 3 , WF 6 , and MoF 6, and extremely reactive gases such as F 2 , Cl 2 , and HCl are used. Further, when processing with these gases, it is necessary to completely remove the residual gas by setting the inside of the chamber to an ultra-high vacuum of about 10 -10 to 10 -12 torr in order to prevent contamination of the Si wafer. . Therefore, a vacuum chamber for semiconductor manufacturing equipment and its related equipment materials must have good corrosion resistance to various corrosive gases, have low gas adsorption, and be easily degassed even if adsorbed. Rather, these requirements are becoming more stringent as semiconductor manufacturing technology becomes more sophisticated.

【0003】ところで現在実用化されている真空チャン
バー用内壁材としては、ガス吸着を抑えると共に脱ガス
性を高めるため、電解研磨等により鏡面仕上げしたステ
ンレス鋼材の表面を耐食性の酸化皮膜で被覆したものが
知られており、この表面被覆ステンレス鋼材の表面粗度
はRmax が約 0.3μm程度であって、ガス吸着性や脱ガ
ス性については一応の満足を得ている。ところがこの被
覆ステンレス鋼材は耐食性が不十分であり、前述の様な
腐食性ガスによって腐食劣化を受けるという問題がしば
しば経験される。しかも腐食性・反応性のガスにより表
面が腐食されると、基材内部へそれらのガスが侵入し、
その後の脱ガスが極めて困難になるという問題も生じて
くる。
[0003] By the way, the inner wall material for a vacuum chamber which is currently in practical use is a stainless steel material which is mirror-finished by electrolytic polishing or the like and is coated with a corrosion-resistant oxide film in order to suppress gas adsorption and enhance degassing. are known, the surface roughness of the surface-coated stainless steel is of the order of R max of about 0.3 [mu] m, to obtain a tentative satisfaction for gas adsorbing and degassing properties. However, the coated stainless steel material has insufficient corrosion resistance, and often suffers from the problem of being corroded and deteriorated by the corrosive gas as described above. Moreover, when the surface is corroded by corrosive or reactive gases, those gases enter the inside of the substrate,
There is also a problem that subsequent degassing becomes extremely difficult.

【0004】またステンレス鋼材に代わる基材として、
該ステンレス鋼材よりも軽量で比強度の高いAl,Al
合金、Ti,Ti合金等を使用することも試みられてい
るが、これらは上記被覆ステンレス鋼材以上に腐食を受
け易く、前述の様な腐食性ガス雰囲気に曝される真空装
置用材料としての適性を欠く。
[0004] Further, as a base material to replace stainless steel,
Al, Al which is lighter and higher in specific strength than the stainless steel material
Attempts have been made to use alloys, Ti, Ti alloys, etc., but these are more susceptible to corrosion than the above-mentioned coated stainless steel materials, and are suitable as materials for vacuum equipment exposed to the corrosive gas atmosphere as described above. Lacks.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、前述
の様な腐食性ガスや反応性ガスに対して優れた耐食性を
有し、且つガス吸着が少なく(以下、この特性を耐ガス
吸着性という)しかも脱ガス性に優れた真空装置用表面
被覆金属材を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and its object is to provide excellent corrosion resistance to corrosive gases and reactive gases as described above. An object of the present invention is to provide a surface-coated metal material for a vacuum apparatus which has a low gas adsorption (hereinafter, this property is referred to as gas adsorption resistance) and has excellent degassing properties.

【0006】上記課題を解決することのできた本発明に
係る表面被覆金属材の構成は、真空装置用金属基材の表
面が、酸化物(Fe及びCrの酸化物を除く;以下、同
じ)、窒化物、炭化物、ほう化物及びふっ化物よりなる
群から選択される少なくとも1種よりなる表面層で被覆
されると共に、該被覆の最表層部における表面粗度がR
max≦1.0μmであるところに要旨を有するもので
ある。
[0006] The structure of the surface-coated metal material according to the present invention that can solve the above-mentioned problems is that the surface of the metal substrate for a vacuum device has an oxide (excluding Fe and Cr oxides; the same applies hereinafter), The coating is at least one surface layer selected from the group consisting of nitrides, carbides, borides and fluorides, and the surface roughness of the outermost layer of the coating is R
It has a gist where max ≦ 1.0 μm.

【0007】[0007]

【作用】上記の様に本発明では、真空装置用金属基材の
表面に、酸化物,窒化物,炭化物,ほう化物,ふっ化物
よりなる群から選ばれる少なくとも1種の化合物からな
り、且つ最表層部の表面粗度がRmax ≦1.0 μmである
被覆層を形成してなるものであり、最表層部の表面粗度
の特定された該表面層によって優れた耐食性を確保しつ
つ、該表面の耐ガス吸着性及び脱ガス性を著しく高める
ことに成功したものである。
As described above, according to the present invention, at least one compound selected from the group consisting of oxides, nitrides, carbides, borides, and fluorides is formed on the surface of a metal substrate for a vacuum device. A coating layer in which the surface roughness of the surface layer portion is Rmax ≦ 1.0 μm is formed. The surface layer having the specified surface roughness of the outermost layer portion ensures excellent corrosion resistance while maintaining the surface roughness. Has significantly improved the gas adsorption resistance and degassing property.

【0008】即ち本発明においては、真空装置用金属材
としての前述のような耐食性を確保するための手段とし
て、該金属材を酸化物,窒化物,炭化物,ほう化物,ふ
っ化物よりなる群から選択される少なくとも1種の化合
物からなる耐食性の保護皮膜によって被覆する。上記保
護皮膜によって耐食性は改善されるが、この保護皮膜に
よって同時に耐ガス吸着性や脱ガス性までも改善される
わけではない。
That is, in the present invention, as a means for securing the above-mentioned corrosion resistance as a metal material for a vacuum device, the metal material is selected from the group consisting of oxides, nitrides, carbides, borides, and fluorides. It is covered with a corrosion-resistant protective film made of at least one selected compound. Although the corrosion resistance is improved by the protective film, the gas absorption resistance and the degassing property are not simultaneously improved by the protective film.

【0009】そこで、耐食性と共に耐ガス吸着性や脱ガ
ス性についても要求を十分に満足し得る様な保護皮膜の
特性を明確にすべく更に研究を進めた結果、上記保護膜
の表面粗度をRmax :1.0 μm以下、より好ましくは0.
3 μm以下、更に好ましくは0.1 μm以下に設定してや
れば、ガス吸着量が著しく抑えられると共に脱ガス性も
著しく高められ、本発明の目的が見事に達成されること
を知った。
Therefore, as a result of further study to clarify the characteristics of the protective film that can sufficiently satisfy the requirements for the gas adsorption resistance and the degassing property as well as the corrosion resistance, as a result, the surface roughness of the protective film was reduced. R max : 1.0 μm or less, more preferably 0.1 μm or less.
It has been found that, when the thickness is set to 3 μm or less, more preferably 0.1 μm or less, the amount of adsorbed gas is remarkably suppressed and the degassing property is also remarkably increased, so that the object of the present invention can be splendidly achieved.

【0010】この理由は次の様に考えることができる。
即ち被覆の表面粗度を小さくすると、表面が緻密となっ
て腐食性ガスの吸着有効面積が少なくなり、ガス吸着の
絶対量が減少すると共に、当該吸着ガスは脱ガス処理に
よって容易に除去することができる。しかも被覆表面が
緻密になると腐食性ガスとの接触有効面積も減縮される
ことになり、ガス吸着量の減少とも相まって当該被覆に
対する腐食性ガスの悪影響も抑えられ、その結果、もと
もと耐食性に優れた当該被覆の耐食劣化が更に抑えら
れ、卓越した耐食性が発揮されるものと考えられる。
The reason can be considered as follows.
That is, when the surface roughness of the coating is reduced, the surface becomes dense, the effective area for adsorbing corrosive gas is reduced, the absolute amount of gas adsorption is reduced, and the adsorbed gas is easily removed by degassing. Can be. In addition, when the coating surface becomes denser, the effective area in contact with the corrosive gas is also reduced, and the adverse effect of the corrosive gas on the coating is also suppressed in conjunction with the decrease in the amount of adsorbed gas, and as a result, the corrosion resistance was originally excellent. It is considered that the corrosion resistance deterioration of the coating is further suppressed, and excellent corrosion resistance is exhibited.

【0011】そしてこうした効果は、表面粗度を1.0 μ
m以下とすることによって有効に発揮されるが、表面粗
度を0.3 μm以下、更に好ましくは0.1 μm以下にする
とその効果は一段と顕著に現われる。
[0011] Such an effect is achieved by reducing the surface roughness to 1.0 μm.
When the surface roughness is made 0.3 μm or less, more preferably 0.1 μm or less, the effect becomes more remarkable.

【0012】本発明において表面被覆を構成する化合物
としては、化学的に安定で優れた耐食性を示す様々の酸
化物、窒化物、炭化物、ほう化物、ふっ化物が挙げら
れ、これらの中でも特に好ましいのは、Ti,Zr,
Ta,Si,Al,Y,Cr及びBよりなる群から選ば
れる1種以上の元素の酸化物、Ti,Zr,Ta,
B,Si及びAlよりなる群から選ばれる1種以上の元
素の窒化物、Ti,V,Ta,B及びSiよりなる群
から選ばれる1種以上の元素の炭化物、Ti,Zr及
びTaよりなる群から選ばれる1種以上の元素のほう化
物、Ti,Zr,Ni,Fe,Ta,Re,Cu,A
l,Mn及びAlよりなる群から選ばれる1種以上の元
素のふっ化物である。
In the present invention, examples of the compound constituting the surface coating include various oxides, nitrides, carbides, borides, and fluorides which are chemically stable and exhibit excellent corrosion resistance. Are Ti, Zr,
Oxides of one or more elements selected from the group consisting of Ta, Si, Al, Y, Cr and B, Ti, Zr, Ta,
A nitride of one or more elements selected from the group consisting of B, Si and Al; a carbide of one or more elements selected from the group consisting of Ti, V, Ta, B and Si; and Ti, Zr and Ta Boride of one or more elements selected from the group, Ti, Zr, Ni, Fe, Ta, Re, Cu, A
It is a fluoride of one or more elements selected from the group consisting of 1, Mn and Al.

【0013】これら〜に示した様な化合物はいずれ
も優れた耐食性を有しており、単体として使用し得るほ
か、腐食性ガスの種類によっては2種以上を複合して耐
食性を一段と高めることも勿論可能である。また該表面
層は単層構造であっても勿論かまわないが、必要により
2層以上の複層構造として複数の腐食性ガスに対する耐
食性を更に高めることも有効である。
All of the compounds shown in (1) to (4) have excellent corrosion resistance, and can be used as a single substance. In addition, depending on the type of corrosive gas, two or more compounds can be combined to further increase the corrosion resistance. Of course it is possible. The surface layer may of course have a single-layer structure, but if necessary, it is also effective to further increase the corrosion resistance to a plurality of corrosive gases by forming a multilayer structure of two or more layers.

【0014】上記表面被覆の表面粗度をRmax ≦1μm
とするための具体的手段としては、たとえば成膜材料に
応じて成膜条件等をコントロールすることにより成膜の
ままの状態で表面粗度Rmax ≦1μmを確保する方法、
あるいは成膜後ダイヤモンドペースト等の超微粒子研磨
材などにより研磨して表面粗度をRmax ≦1μmにする
方法、等を採用することができる。また被覆構成素材が
導電性である場合は、複合電解研磨法が非常に効果的で
あり、これによりRmax ≦0.3 μm以下、更にはRmax
≦0.1 μm以下といった非常に小さな表面粗度を容易に
達成することができる。上記表面被覆はどの様な方法で
形成してもよいが、最も一般的なのは溶射法、PVD
法、CVD法等の気相めっき法である。
The surface roughness of the above surface coating is R max ≦ 1 μm
As a specific means for achieving the above, for example, a method of controlling the film forming conditions and the like according to the film forming material to ensure the surface roughness R max ≦ 1 μm in a state where the film is formed,
Alternatively, a method of polishing the film with an ultrafine abrasive such as a diamond paste after forming the film so that the surface roughness is Rmax ≦ 1 μm, or the like can be adopted. Also if the coating constituent material is electrically conductive, a very effective composite electrolytic polishing method, thereby R max ≦ 0.3 μm or less, further R max
Very small surface roughnesses of ≦ 0.1 μm or less can be easily achieved. The surface coating may be formed by any method, but the most common are thermal spraying, PVD
And a vapor phase plating method such as a CVD method.

【0015】本発明において真空装置用金属基材の種類
は特に限定されないが、最も一般的なのはステンレス
鋼、Al,Al合金、Ti,Ti合金である。尚これら
の金属基材は、表面を極力平滑にしてガスの吸着を抑え
ると共に脱ガス性を高める意味から、電解研磨等により
鏡面仕上げしておくことが望まれる。
In the present invention, the type of the metal substrate for the vacuum apparatus is not particularly limited, but the most common ones are stainless steel, Al, Al alloy, Ti and Ti alloy. It is desired that these metal base materials are mirror-finished by electrolytic polishing or the like in order to smooth the surface as much as possible to suppress gas adsorption and enhance degassing properties.

【0016】また上記金属基材の表面に前述の表面被覆
を形成する場合、その種類によっては金属基材と被覆構
成材の親和性不足や熱膨張係数の違いによって被覆が密
着性不足になることも考えられる。従ってこの様な場合
は、金属基材の表面に密着性改善のための下地層を形成
してから前述の表面被覆を形成するのがよい。
In the case where the above-mentioned surface coating is formed on the surface of the metal substrate, depending on the type, the coating may have insufficient adhesion due to a lack of affinity between the metal substrate and the constituent material or a difference in thermal expansion coefficient. Is also conceivable. Therefore, in such a case, it is preferable to form the base layer for improving the adhesion on the surface of the metal base material before forming the surface coating.

【0017】この様な下地層の種類は、金属基材や表面
被覆構成材の種類に応じて選定すべきもので一律に決め
ることはできないが、その選択基準としては、前述の如
く金属基材と被覆構成材の双方に対して親和性を有し、
且つ両者の中間的な熱膨張係数を示すものであり、しか
も下地層としての耐食性も加味して少なくとも金属基材
よりも高耐食性のものが好ましく、その具体例としては
Zr,Ta,Nb,W,Mo等の高耐食性金属もしくは
それらの合金が好ましいものとして例示される。
The kind of such an underlayer should be selected according to the kind of the metal base material or the surface coating constituent material, and cannot be uniformly determined. Has affinity for both coating components,
In addition, it shows a coefficient of thermal expansion intermediate between the two, and preferably has a higher corrosion resistance than at least the metal base material in consideration of the corrosion resistance of the underlayer. Specific examples thereof include Zr, Ta, Nb, and W. , Mo, and the like, or their alloys are exemplified as preferred.

【0018】次に実施例によって本発明を具体的に説明
するが、本発明はもとより下記実施例によって制限を受
けるものではなく、前・後記の趣旨に沿って適当に変更
して実施することはいずれも本発明の技術的範囲に含ま
れる。
Next, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and it is possible to carry out the present invention appropriately modified in accordance with the above and subsequent points. Both are included in the technical scope of the present invention.

【0019】[0019]

【実施例】真空装置用金属基材としてAl合金板(JIS
A 5052)、Ti板[JIS 3種]及びステンレス鋼板(SU
S 304)を使用し、これを電解研磨によって鏡面仕上げし
た後、DC/RFマグネトロンスパッタリング法によっ
て表面被覆を形成し、次いでダイヤモンドペーストを用
いて研磨することにより表1に示す構成の表面被覆を形
成し、表面被覆金属板(供試板)を得た。得られた各供
試板について、下記の方法でガス腐食性試験及び脱ガス
性試験を行ない、表1に併記する結果を得た。
EXAMPLE An aluminum alloy plate (JIS) was used as a metal substrate for vacuum equipment.
A 5052), Ti plate [JIS class 3] and stainless steel plate (SU
S 304), which is mirror-finished by electrolytic polishing, then a surface coating is formed by a DC / RF magnetron sputtering method, and then polished using a diamond paste to form a surface coating having the structure shown in Table 1. Then, a surface-coated metal plate (test plate) was obtained. A gas corrosion test and a degassing test were performed on the obtained test plates by the following methods, and the results shown in Table 1 were obtained.

【0020】<ガス腐食性試験>各供試板を100 %Cl2
(2kg/cm2)のガス雰囲気下に室温(25℃)で168 時間
放置し、腐食試験前後の重量変化から腐食率を求める。
そしてSUS 304 非処理板のガス腐食率を1としたと
きの相対的腐食量から、次の基準で耐食性を評価した。 ◎:0.2 未満 ○:0.2 〜0.5 △:0.5 〜0.8 ×:0.8 超
<Gas Corrosion Test> Each test plate was 100% Cl 2
(168 kg / cm 2 ) in a gas atmosphere at room temperature (25 ° C.) for 168 hours, and the corrosion rate is determined from the weight change before and after the corrosion test.
Then, from the relative corrosion amount when the gas corrosion rate of the SUS 304 untreated plate was set to 1, the corrosion resistance was evaluated according to the following criteria. ◎: less than 0.2 ○: 0.2 to 0.5 △: 0.5 to 0.8 ×: more than 0.8

【0021】<脱ガス性試験>初期条件を揃えるため、
各供試板を真空中450 ℃で1時間ベーキング処理した
後、相対湿度70%の大気中に10分間暴露する。次いで真
空チャンバー中で800 ℃まで加熱し、放出されたガスの
種類及び量を四重極質量分析計によって測定する。そし
てSUS 304 非処理板のガス放出量を1としたときの
相対的ガス放出量から、次の基準で脱ガス性を評価し
た。 ◎:0.01 未満 ○:0.01〜0.02 △:0.02〜0.1 ×:0.1 超
<Degassing test> In order to make initial conditions uniform,
After baking each test plate at 450 ° C. for 1 hour in a vacuum, the plate is exposed to an atmosphere having a relative humidity of 70% for 10 minutes. It is then heated to 800 ° C. in a vacuum chamber and the type and amount of gas released is measured by a quadrupole mass spectrometer. Then, based on the relative gas release amount when the gas release amount of the SUS 304 untreated plate was set to 1, the degassing property was evaluated according to the following criteria. ◎: less than 0.01 ○: 0.01 to 0.02 △: 0.02 to 0.1 ×: more than 0.1

【0022】[0022]

【表1】 [Table 1]

【0023】表1からも明らかである様に、非処理材
( No.23〜28)は脱ガス性及び耐食性のいずれも劣
悪であり、また被覆成分が規定要件を満たすものであっ
ても表面粗度(Rmax) が1μmを超えるもの(No. 1
9〜22)では、脱ガス性及び耐食性のいずれも不十分
であるのに対し、本発明の規定要件を満たす表面被覆を
形成したもの( No.1〜13)は、脱ガス性及び耐食性
のいずれにおいても良好な結果が得られている。また N
o.14〜18は、基材と被覆の間に中間層として耐食性
金属層を設けた実施例であり、特にガス腐食性は一段と
高められている。
As is clear from Table 1, the non-treated materials (Nos. 23 to 28) are inferior in both degassing property and corrosion resistance. Those having a roughness (R max ) exceeding 1 μm (No. 1)
9 to 22), both the degassing property and the corrosion resistance are insufficient. On the other hand, those having a surface coating satisfying the requirements of the present invention (Nos. 1 to 13) have the degassing property and the corrosion resistance. Good results were obtained in each case. Also N
o. 14 to 18 are examples in which a corrosion-resistant metal layer was provided as an intermediate layer between the base material and the coating, and in particular, gas corrosion was further enhanced.

【0024】また表2は、金属基材としてTi板[JI
S H 4600(1988)]、表面被覆構成材とし
てBN,ZrO2 またはTiNを使用し、表面被覆の表
面粗度を種々変えた場合の脱ガス性に与える影響を調べ
た結果を示したものである。但し脱ガス性に評価基準は
下記の通りとした。 ×:未処理のSUS(表面粗度Rmax =1μm)と同程
度 △:未処理のSUS(表面粗度Rmax =1μm)の10
分の1以下 ○:未処理のSUS(表面粗度Rmax =1μm)の50
分の1以下 ◎:未処理のSUS(表面粗度Rmax =1μm)の10
0分の1以下
Table 2 shows that a Ti substrate [JI
SH 4600 (1988)], using BN, ZrO 2, or TiN as a surface coating component, and examining the effect on degassing properties when the surface roughness of the surface coating is variously changed. is there. However, the evaluation criteria for degassing were as follows. ×: comparable to untreated SUS (surface roughness R max = 1μm) △: 10 untreated SUS (surface roughness R max = 1 [mu] m)
1: 50 or less of untreated SUS (surface roughness R max = 1 μm)
1/10 or less: 10 of untreated SUS (surface roughness R max = 1 μm)
Less than 1/0

【0025】[0025]

【表2】 [Table 2]

【0026】表2からも明らかである様に、脱ガス性は
表面被覆の表面粗度によって著しく変わり、Rmax を1.
0 μm以下とすることによって、未処理ステンレス鋼板
に対し1/50以下という格段に優れた脱ガス性を得る
ことができる。
As is evident from Table 2, the degassing properties vary significantly depending on the surface roughness of the surface coating, and R max is set to 1.
By setting the thickness to 0 μm or less, a remarkably excellent degassing property of 1/50 or less of the untreated stainless steel sheet can be obtained.

【0027】[0027]

【発明の効果】本発明は以上の様に構成されており、真
空装置用金属基材に対して、該金属基材を酸化物、窒化
物、炭化物、ほう化物、ふっ化物から選択され且つ表面
粗度Rmax が1μm以下である表面被覆層で保護するこ
とによって、たとえば半導体製造装置の如く、腐食性ガ
ス環境と高真空環境に繰り返し曝らされる装置・機器に
使用した場合でも、優れた耐久性を示すと共に、吸着ガ
スの影響を可及的に抑えることができる。
The present invention is constituted as described above. The metal substrate for vacuum equipment is selected from oxides, nitrides, carbides, borides and fluorides and has a surface By being protected by a surface coating layer having a roughness R max of 1 μm or less, even when used in a device / equipment which is repeatedly exposed to a corrosive gas environment and a high vacuum environment, such as a semiconductor manufacturing device, it is excellent. In addition to exhibiting durability, the influence of the adsorbed gas can be suppressed as much as possible.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−247778(JP,A) 特開 昭63−199861(JP,A) 特開 平2−57667(JP,A) 特開 平2−233133(JP,A) 特開 昭58−151469(JP,A) 特開 昭59−197566(JP,A) 特開 平2−268824(JP,A) 特開 昭62−57640(JP,A) 特開 平10−204526(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 3/00 C23C 16/00 - 16/56 C23C 14/00 - 14/58 H01L 21/205 H01L 21/306 H01L 21/31 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-247778 (JP, A) JP-A-63-199861 (JP, A) JP-A-2-57667 (JP, A) JP-A-2- 233133 (JP, A) JP-A-58-151469 (JP, A) JP-A-59-197566 (JP, A) JP-A-2-268824 (JP, A) JP-A-62-57640 (JP, A) JP-A-10-204526 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 3/00 C23C 16/00-16/56 C23C 14/00-14/58 H01L 21 / 205 H01L 21/306 H01L 21/31

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空装置用金属基材の表面が、酸化物
(Fe及びCrの酸化物を除く)、窒化物、炭化物、ほ
う化物及びふっ化物よりなる群から選択される少なくと
も1種によって被覆されると共に、該被覆の最表層部に
おける表面粗度がRmax≦1.0μmであることを特
徴とする真空装置用表面被覆金属材。
The surface of a metal substrate for a vacuum device is made of an oxide.
(Excluding oxides of Fe and Cr) , nitride, carbide, boride and fluoride, and the surface roughness of the outermost layer of the coating is Rmax ≦ A surface-coated metal material for a vacuum device, which is 1.0 μm.
【請求項2】 前記酸化物は、Ti,Zr,Ta,S
i,Al,Y,Cr及びBよりなる群から選ばれる少な
くとも1種の元素の酸化物である請求項1記載の表面被
覆金属材。
2. The method according to claim 1, wherein the oxide is Ti, Zr, Ta, S.
The surface-coated metal material according to claim 1, which is an oxide of at least one element selected from the group consisting of i, Al, Y, Cr, and B.
【請求項3】 前記窒化物は、Ti,Zr,Ta,B,
Si及びAlよりなる群から選ばれる少なくとも1種の
元素の窒化物である請求項1記載の表面被覆金属材。
3. The method according to claim 1, wherein the nitride is Ti, Zr, Ta, B,
The surface-coated metal material according to claim 1, which is a nitride of at least one element selected from the group consisting of Si and Al.
【請求項4】 前記炭化物は、Ti,V,Ta,Si及
びBよりなる群から選ばれる少なくとも1種の元素の炭
化物である請求項1記載の表面被覆金属材。
4. The surface-coated metal material according to claim 1, wherein said carbide is a carbide of at least one element selected from the group consisting of Ti, V, Ta, Si and B.
【請求項5】 前記ほう化物は、Ti,Zr及びTaよ
りなる群から選ばれる少なくとも1種の元素のほう化物
である請求項1記載の表面被覆金属材。
5. The surface-coated metal material according to claim 1, wherein said boride is a boride of at least one element selected from the group consisting of Ti, Zr and Ta.
【請求項6】 前記ふっ化物は、Ti,Zr,Ni,F
e,Ta,Re,Cu,Al及びMnよりなる群から選
ばれる少なくとも1種の元素のふっ化物である請求項1
記載の表面被覆金属材。
6. The method according to claim 1, wherein said fluoride is Ti, Zr, Ni, F.
2. A fluoride of at least one element selected from the group consisting of e, Ta, Re, Cu, Al and Mn.
The surface-coated metal material as described in the above.
JP34781991A 1991-12-02 1991-12-02 Surface coated metal material for vacuum equipment Expired - Lifetime JP3230260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34781991A JP3230260B2 (en) 1991-12-02 1991-12-02 Surface coated metal material for vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34781991A JP3230260B2 (en) 1991-12-02 1991-12-02 Surface coated metal material for vacuum equipment

Publications (2)

Publication Number Publication Date
JPH05156449A JPH05156449A (en) 1993-06-22
JP3230260B2 true JP3230260B2 (en) 2001-11-19

Family

ID=18392811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34781991A Expired - Lifetime JP3230260B2 (en) 1991-12-02 1991-12-02 Surface coated metal material for vacuum equipment

Country Status (1)

Country Link
JP (1) JP3230260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717546B2 (en) * 1995-04-07 2005-11-16 株式会社アルバック Vacuum material
WO2006023894A2 (en) * 2004-08-24 2006-03-02 Saint-Gobain Ceramics & Plastics, Inc. Semiconductor processing components and semiconductor processing utilizing same

Also Published As

Publication number Publication date
JPH05156449A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
JP3510993B2 (en) Plasma processing container inner member and method for manufacturing the same
US20060008676A1 (en) Protective coating on a substrate and method of making thereof
JP2009514769A5 (en)
JP2004169137A (en) Sliding member
JP2022548981A (en) Ultra-thin conformal coatings for static dissipation in semiconductor process tools
JPH09509221A (en) Oxidation resistant coating for titanium alloys
JP2004003022A (en) Plasma treatment container inside member
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
JP3230260B2 (en) Surface coated metal material for vacuum equipment
JP3074873B2 (en) Surface coated metal material for vacuum equipment
JPH08288376A (en) Electrostatic chuck for semiconductor manufacturing equipment
KR102055320B1 (en) Target for physical deposition, nitride hard coating using thereof and methods of fabricating the same
JPH08132130A (en) Surface covered cermet drawing die having hard covering layer excellent in adhesivity
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JPS60258462A (en) Soft metallic base material having hardened surface
CN109023283B (en) Quaternary hard ceramic coating with corrosion resistance, and preparation method and device thereof
JP3634461B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH07180029A (en) Corrosion resistant material and its production
JP3949763B2 (en) Electrostatic chuck member
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH08325707A (en) Ceramic coated flat blade for steel plate shearing, improved in peeling resistance
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
KR20070105614A (en) Coating materials with excellent oxidation resistance for surface covering for using at high temperature
EP1144722B1 (en) Improved corrosion resistant coating
KR20230025490A (en) Fluoride coating to improve chamber performance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11