JP3230158U - Rotary magnetic refrigeration refrigeration system - Google Patents
Rotary magnetic refrigeration refrigeration system Download PDFInfo
- Publication number
- JP3230158U JP3230158U JP2020004602U JP2020004602U JP3230158U JP 3230158 U JP3230158 U JP 3230158U JP 2020004602 U JP2020004602 U JP 2020004602U JP 2020004602 U JP2020004602 U JP 2020004602U JP 3230158 U JP3230158 U JP 3230158U
- Authority
- JP
- Japan
- Prior art keywords
- holding plate
- working fluid
- refrigerating apparatus
- flow path
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 39
- 239000012530 fluid Substances 0.000 claims abstract description 75
- 230000008878 coupling Effects 0.000 claims abstract description 4
- 238000010168 coupling process Methods 0.000 claims abstract description 4
- 238000005859 coupling reaction Methods 0.000 claims abstract description 4
- 238000009413 insulation Methods 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract 1
- 238000007710 freezing Methods 0.000 description 11
- 230000008014 freezing Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0022—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
【課題】流路が簡単であり、流体抵抗と熱損失が小さい磁気冷凍式冷凍装置を提供する。【解決手段】回転型磁気冷凍式冷凍装置は、互いに組み立てられる冷凍装置上部ケース3aと冷凍装置下部ケース3bとを備え、上部ケースと下部ケースとの結合接触面の間には、第1挟持板6aと第2挟持板6bとが対称的に固定され、第1挟持板と第2挟持板との間には、円形磁気作動流体ユニット2が軸を介して回転可能に支持して取り付けられ、冷凍装置上部ケースの最上部の外部に永久磁石スロット10が嵌着される。【選択図】図1PROBLEM TO BE SOLVED: To provide a magnetic refrigeration type refrigerating apparatus having a simple flow path and low fluid resistance and heat loss. SOLUTION: A rotary magnetic refrigeration type refrigerating apparatus includes a refrigerating apparatus upper case 3a and a refrigerating apparatus lower case 3b assembled to each other, and a first holding plate is provided between a coupling contact surface between the upper case and the lower case. The 6a and the second holding plate 6b are symmetrically fixed, and a circular magnetic working fluid unit 2 is rotatably supported and attached between the first holding plate and the second holding plate via a shaft. The permanent magnet slot 10 is fitted to the outside of the uppermost portion of the refrigerating apparatus upper case. [Selection diagram] Fig. 1
Description
本実用新案は、磁気冷凍式の技術分野に属し、特に、エネルギーを貯蔵することなく、連続的に冷却できる回転型磁気冷凍式冷凍装置に関する。 This utility model belongs to the technical field of magnetic refrigeration, and particularly relates to a rotary magnetic refrigeration refrigerating apparatus capable of continuously cooling without storing energy.
磁気冷凍技術は、新しい冷凍技術であり、従来の蒸気圧縮式の冷凍技術と異なり、磁気冷凍技術は、プロセスがより簡単であり、そして有機作動流体の使用を必要としない。現在の高効冷凍ユニットに使用される有機作動流体には、程度が異なるが、オゾン破壊係数(ODP)及び地球温暖化係数(GWP)が存在する。「モントリオール議定書」に従って、従来の有機作動流体の多くが制限されるようになり、これは、磁気冷凍技術が発展する1つの要因である。 Magnetic refrigeration technology is a new refrigeration technology, and unlike conventional vapor compression refrigeration technology, magnetic refrigeration technology is simpler in process and does not require the use of organic working fluids. The organic working fluids used in current high-efficiency refrigeration units have, to varying degrees, the ozone depletion potential (ODP) and the global warming potential (GWP). According to the "Montreal Protocol", many of the conventional organic working fluids have been restricted, which is one factor in the development of magnetic refrigeration technology.
磁気冷凍技術は、ある材料の磁気熱量効果を利用して冷凍又は加熱を行うプロセスである。通常使用されている磁気熱量材料は、磁場に入ると、材料の内部の原子の磁気モーメントが非規則的なものから規則的に変わり、材料の磁気エントロピーが低くなり、エネルギー保存の法則に従って磁気熱量材料自体から放熱し、磁気熱量材料は、磁場から離れると吸熱し、材料の内部の原子の磁気モーメントが規則的なものから非規則的になる。近来、Gd及びこの合金Gd5Si2Ge2の巨大磁気熱量効果が発見されており、それは、磁気冷凍技術の発展の基礎となる。 Magnetic freezing technology is the process of freezing or heating using the magnetic heat effect of a material. When a commonly used magnetic calorific material enters a magnetic field, the magnetic moments of the atoms inside the material change regularly from irregular ones, the magnetic entropy of the material decreases, and the magnetic calorific value follows the law of energy conservation. It dissipates heat from the material itself, and the magnetic calorie material absorbs heat away from the magnetic field, and the magnetic moments of the atoms inside the material change from regular to irregular. Recently, the giant magnetoresistive effect of Gd and its alloy Gd5Si2Ge2 has been discovered, which is the basis for the development of magnetic refrigeration technology.
連続した安定的な磁気冷凍プロセスを実現するために、磁気作動流体に印加される磁場を周期的に変化させる必要がある。電磁場は、周期的に変化する磁場を提供できるものの、大きな磁場を発生させるために、電力システムの電流が大きくなり、高損失が生じる。それに比べて、現在の永久磁石磁場がもっと人気がある。磁体と磁気作動流体との相対運動方式によって、磁気冷凍式冷凍装置は、回転式と往復式の2種の主な形態に分けられる。そのうち、回転式冷凍装置冷凍は、プロセスの連続性が良好であることから、注目を集めている。 In order to realize a continuous and stable magnetic refrigeration process, it is necessary to periodically change the magnetic field applied to the magnetic working fluid. Although the electromagnetic field can provide a magnetic field that changes periodically, it generates a large magnetic field, which increases the current in the power system and causes high loss. In comparison, current permanent magnet magnetic fields are more popular. The magnetic refrigeration type refrigerating apparatus can be divided into two main types, a rotary type and a reciprocating type, depending on the relative motion method between the magnetic body and the magnetic working fluid. Among them, the rotary freezing device freezing is attracting attention because of its good process continuity.
しかしながら、システムの冷熱を連続的に切り替えるために、冷凍装置の内部の流路が複雑になり、且つ配管が多く、その結果、熱が損失され、エネルギーの利用率が低下し、そして、複雑な流路構造により冷凍装置の信頼性が低下し、抵抗が高まる。複雑なシステムの構造は、磁気冷凍システムのスケールアップを制限する重要な要素でもあり、したがって、磁気冷凍式冷凍装置の連続性及び信頼性は、磁気冷凍式冷凍装置の商用及び普及の可能性に直接繋がる。 However, due to the continuous switching of cold heat of the system, the flow path inside the freezer is complicated and there are many pipes, resulting in heat loss, reduced energy utilization and complexity. The flow path structure reduces the reliability of the refrigeration system and increases the resistance. The structure of the complex system is also an important factor limiting the scale-up of the magnetic refrigeration system, and therefore the continuity and reliability of the magnetic refrigeration system is the potential for commercialization and widespread use of the magnetic refrigeration system. Connect directly.
本実用新案は、現在、磁気冷凍式冷凍装置の流路が複雑であり、流体抵抗が大きく、熱損失が大きいという欠点を解決するために、新型回転型磁気冷凍式冷凍装置を提案する。 This utility model currently proposes a new type rotary magnetic freezing device in order to solve the drawbacks that the flow path of the magnetic freezing device is complicated, the fluid resistance is large, and the heat loss is large.
上記技術的特徴を実現するために、本実用新案の目的は、以下のように実現される。前記磁気冷凍式冷凍装置は、互いに組み立てられる冷凍装置上部ケースと冷凍装置下部ケースとを備え、前記冷凍装置上部ケースと冷凍装置下部ケースとの結合接触面の間には、第1挟持板と第2挟持板とが対称的に固定され、第1挟持板と第2挟持板との間には、円形磁気作動流体ユニットが軸を介して支持して取り付けられるとともに、回転するように連動され、前記冷凍装置上部ケースの最上部の外部には永久磁石スロットが嵌着され、前記永久磁石スロットは、円形磁気作動流体ユニットの平面に垂直な励磁磁場を円形磁気作動流体ユニットに提供する。 In order to realize the above technical features, the purpose of this utility model is realized as follows. The magnetic refrigeration type refrigerating apparatus includes a refrigerating apparatus upper case and a refrigerating apparatus lower case that are assembled with each other, and a first holding plate and a first holding plate and a first holding plate are provided between a coupling contact surface between the refrigerating apparatus upper case and the refrigerating apparatus lower case. The two holding plates are symmetrically fixed, and a circular magnetic working fluid unit is supported and attached between the first holding plate and the second holding plate via a shaft, and is interlocked so as to rotate. A permanent magnet slot is fitted to the outside of the uppermost portion of the refrigerating apparatus upper case, and the permanent magnet slot provides the circular magnetic working fluid unit with an exciting magnetic field perpendicular to the plane of the circular magnetic working fluid unit.
前記第1挟持板と第2挟持板との両方の中間部位には、第1軸受取付穴と第2軸受取付穴とがそれぞれ加工され、第1挟持板の第1軸受取付穴内には第1軸受が取り付けられ、第2挟持板の第2軸受取付穴内には第2軸受が取り付けられ、前記軸の両端のそれぞれが第1軸受と第2軸受との間に支持して取り付けられる。 A first bearing mounting hole and a second bearing mounting hole are machined in an intermediate portion between both the first holding plate and the second holding plate, and a first bearing mounting hole is formed in the first bearing mounting hole of the first holding plate. A bearing is attached, a second bearing is attached in the second bearing mounting hole of the second holding plate, and both ends of the shaft are supported and attached between the first bearing and the second bearing.
前記円形磁気作動流体ユニットは、フレームを備え、前記フレームの間隙内には、複数の磁気作動流体が均一に固定して取り付けられ、前記磁気作動流体の外縁がフープを介して固定される。 The circular magnetic working fluid unit includes a frame, and a plurality of magnetic working fluids are uniformly fixed and attached in the gap of the frame, and the outer edge of the magnetic working fluid is fixed via a hoop.
前記フレームは、硬質断熱性プラスチックを用いて星型構造として鋳造され、前記磁気作動流体は、キャスト成形され所望の扇形に切断される。 The frame is cast as a star structure using hard insulating plastic, and the magnetic working fluid is cast and cut into a desired fan shape.
前記第1挟持板と第2挟持板とは、同じ構造を用い、それらの断面がいずれもT字形断面とされており、T字形断面の長尺状リブが冷凍装置上部ケースと冷凍装置下部ケースとの間に締め付けられて設けられ、これらのケースを固定し、T字形断面の他方の光滑面には、円形磁気作動流体ユニットに対して回転可能に締まり嵌めするためのシリコン層が設けられている。 The first holding plate and the second holding plate use the same structure, and both of them have a T-shaped cross section, and long ribs having a T-shaped cross section form a refrigerating device upper case and a refrigerating device lower case. A silicon layer is provided on the other optical sliding surface of the T-shaped cross section for rotatably tightening and fitting the circular magnetic working fluid unit. There is.
前記冷凍装置上部ケース、冷凍装置下部ケース、円形磁気作動流体ユニット、第1挟持板、及び第2挟持板が組み立てられると、キャビティ全体は、保冷キャビティと保温キャビティという2つの、比較的密閉されているキャビティに分けられる。 When the refrigerating device upper case, refrigerating device lower case, circular magnetic working fluid unit, first holding plate, and second holding plate are assembled, the entire cavity is relatively sealed, that is, a cold insulation cavity and a heat insulation cavity. Divided into cavities.
前記保温キャビティは、保温ガスが流通するものであり、下部から供給、上部から排出するように構成され、その一方側の下部には保温流路入口が設けられ、他方側の上部には保温流路出口が設けられ、保温流路入口が設けられた側のトップコーナーの位置には、熱流体がコーナーに蓄積しないように、傾斜して配置された第1セパレータが取り付けられる。 The heat-retaining cavity is for flowing heat-retaining gas, and is configured to supply from the lower part and discharge from the upper part. At the position of the top corner on the side where the road outlet is provided and the heat insulating flow path inlet is provided, a first separator arranged at an angle is attached so that the thermal fluid does not accumulate in the corner.
前記保冷キャビティは、保冷液体が流通するものであり、上部から供給、下部から排出するように構成され、その一方側の上部には保冷流路入口が設けられ、他方側の下部には保冷流路出口が設けられ、保冷流路入口が設けられた側のボトムコーナー位置には、冷流体がコーナーに蓄積しないように、傾斜して配置された第2セパレータが取り付けられる。 The cold insulation cavity is configured to supply a cold insulation liquid from the upper part and discharge from the lower part, and a cold insulation flow path inlet is provided in the upper part on one side thereof and a cold insulation flow in the lower part on the other side. At the bottom corner position on the side where the road outlet is provided and the cold insulation flow path inlet is provided, a second separator arranged in an inclined manner is attached so that the cold fluid does not accumulate in the corner.
作動するときに、前記円形磁気作動流体ユニットは、反時計回りで回転して、保温キャビティの内部の保温ガスと保冷キャビティの内部の保冷液体とをそれぞれ逆方向に移動させる。 When operating, the circular magnetic working fluid unit rotates counterclockwise to move the heat-retaining gas inside the heat-retaining cavity and the cold-retaining liquid inside the cold-retaining cavity in opposite directions.
本実用新案は、下記有益な効果を有する。
1、本実用新案の前記冷凍装置の設計によれば、エネルギーを効果的に利用して、連続的な冷凍を可能にするだけでなく、各工程のモジュール化及び簡素化が可能になり、回転型磁気冷凍式冷凍装置に存在する、システム、手順や製造が複雑であるなどのさまざまな問題を解決する。
This utility model has the following beneficial effects.
1. According to the design of the freezing device of this utility model, not only energy can be effectively used to enable continuous freezing, but also each process can be modularized and simplified, and rotation can be achieved. It solves various problems that exist in the type magnetic freezing device, such as complicated systems, procedures, and manufacturing.
2、本実用新案の磁気冷凍式冷凍装置は、構造が簡単であり、信頼性が高く、設備のスケールアップが可能であり、且つ保冷、保温の流路が簡単であり、システムの抵抗が小さい。 2. The utility model magnetic refrigeration system has a simple structure, high reliability, equipment scale-up is possible, cold and heat insulation channels are simple, and system resistance is low. ..
以下、図面を参照しながら、本実用新案の実施形態についてさらに説明する。 Hereinafter, embodiments of the utility model will be further described with reference to the drawings.
実施例1:
図1〜5に示すように、回転型磁気冷凍式冷凍装置であって、前記磁気冷凍式冷凍装置1は、互いに組み立てられる冷凍装置上部ケース3aと冷凍装置下部ケース3bとを備え、前記冷凍装置上部ケース3aと前記冷凍装置下部ケース3bとの結合接触面の間には、第1挟持板6aと第2挟持板6bとが対称的に固定され、前記第1挟持板6aと前記第2挟持板6bとの間には、円形磁気作動流体ユニット2が軸4を介して支持して取り付けられるとともに、回転するように連動され、前記冷凍装置上部ケース3aの最上部の外部には永久磁石スロット10が嵌着され、永久磁石スロット10は、前記円形磁気作動流体ユニット2の平面に垂直な励磁磁場を前記円形磁気作動流体ユニット2に提供する、ことを特徴とする。上記回転型磁気冷凍式冷凍装置によって、エネルギーを効果的に利用して、連続的な冷凍を可能にする。現在、磁気冷凍式冷凍装置の流路が複雑になり、流体抵抗が大きく、熱損失が大きいという欠点を解決する。
Example 1:
As shown in FIGS. 1 to 5, it is a rotary magnetic refrigerating apparatus, and the magnetic refrigerating apparatus 1 includes a refrigerating apparatus upper case 3a and a refrigerating apparatus lower case 3b assembled to each other, and the refrigerating apparatus. The first holding plate 6a and the second holding plate 6b are symmetrically fixed between the coupling contact surface between the upper case 3a and the lower case 3b of the refrigerating apparatus, and the first holding plate 6a and the second holding plate 6a are held. A circular magnetic working fluid unit 2 is supported and attached to the plate 6b via a shaft 4, and is interlocked so as to rotate, and a permanent magnet slot is provided outside the uppermost portion of the refrigerating device upper case 3a. 10 is fitted, and the permanent magnet slot 10 provides the circular magnetic working fluid unit 2 with an exciting magnetic field perpendicular to the plane of the circular magnetic working fluid unit 2. The rotary magnetic freezing device enables continuous freezing by effectively utilizing energy. At present, the disadvantages that the flow path of the magnetic refrigeration type refrigerating apparatus becomes complicated, the fluid resistance is large, and the heat loss is large are solved.
さらに、前記第1挟持板6aと前記第2挟持板6bとの両方の中間部位には、第1軸受取付穴6cと第2軸受取付穴6dとがそれぞれ加工され、前記第1挟持板6aの前記第1軸受取付穴6c内には第1軸受5aが取り付けられ、前記第2挟持板6bの前記第2軸受取付穴6d内には第2軸受5bが取り付けられ、前記軸4の両端のそれぞれが前記第1軸受5aと前記第2軸受5bとの間に支持して取り付けられる。上記構造によって、軸4は、軸受の支持作用でスムーズに回転できることを確保し、さらに支持する円形磁気作動流体ユニット2を回転連動する。 Further, a first bearing mounting hole 6c and a second bearing mounting hole 6d are machined in an intermediate portion between both the first holding plate 6a and the second holding plate 6b, respectively, and the first holding plate 6a The first bearing 5a is mounted in the first bearing mounting hole 6c, the second bearing 5b is mounted in the second bearing mounting hole 6d of the second holding plate 6b, and both ends of the shaft 4 are respectively mounted. Is supported and attached between the first bearing 5a and the second bearing 5b. With the above structure, the shaft 4 ensures that it can rotate smoothly by the supporting action of the bearing, and further rotates and interlocks the circular magnetic working fluid unit 2 that supports it.
さらに、前記円形磁気作動流体ユニット2は、フレーム7を備え、前記フレーム7の外周には、複数の磁気作動流体8が均一に固定して取り付けられ、前記磁気作動流体8の外縁がフープ9を介して固定される。前記フレーム7は、硬質断熱性プラスチックを用いて星型構造として鋳造され、前記磁気作動流体8は、キャスト成形され所望の扇形に切断される。上記の磁気作動流体8が磁場作用で熱量を発生でき、磁場領域から離れると、吸熱でき、さらに交互して磁場に入るとき、循環冷却を実現する。 Further, the circular magnetic working fluid unit 2 includes a frame 7, and a plurality of magnetic working fluids 8 are uniformly fixed and attached to the outer periphery of the frame 7, and the outer edge of the magnetic working fluid 8 has a hoop 9. It is fixed through. The frame 7 is cast as a star-shaped structure using hard insulating plastic, and the magnetic working fluid 8 is cast-molded and cut into a desired fan shape. The magnetic working fluid 8 can generate heat by the action of a magnetic field, can absorb heat when it is separated from the magnetic field region, and realizes circulation cooling when it enters the magnetic field alternately.
さらに、前記第1挟持板6aと前記第2挟持板6bとは、同じ構造を用い、それらの断面がいずれもT字形断面6eとされており、前記T字形断面6eの長尺状リブ6fが前記冷凍装置上部ケース3aと前記冷凍装置下部ケース3bとの間に締め付けられて設けられ、これらのケースを固定し、前記T字形断面6eの他方の光滑面には、前記円形磁気作動流体ユニット2に対して回転可能に締まり嵌めするためのシリコン層が設けられる。上記構造の挟持板を介して、軸4を効果的に支持することができる。 Further, the first holding plate 6a and the second holding plate 6b use the same structure, and both of them have a T-shaped cross section 6e, and the elongated rib 6f having the T-shaped cross section 6e The circular magnetic working fluid unit 2 is provided so as to be fastened between the refrigerating device upper case 3a and the refrigerating device lower case 3b to fix these cases, and to the other optical sliding surface of the T-shaped cross section 6e. A silicon layer is provided for rotatably tightening and fitting. The shaft 4 can be effectively supported via the holding plate having the above structure.
さらに、前記冷凍装置上部ケース3a、前記冷凍装置下部ケース3b、前記円形磁気作動流体ユニット2、前記第1挟持板6a及び前記第2挟持板6bが組み立てられると、キャビティ全体は、保冷キャビティ11と保温キャビティ12という2つの、比較的密閉されているキャビティに分けられる。前記保温キャビティ12は、保温ガスが流通するものであり、下部から供給、上部から排出するように構成され、その一方側の下部には保温流路入口13が設けられ、他方側の上部には保温流路出口14が設けられ、前記保温流路入口13が設けられた側のトップコーナー位置には、熱流体がコーナーに蓄積しないように、傾斜して配置された第1セパレータ17が取り付けられる。前記保冷キャビティ11は、保冷液体が流通するものであり、上部から供給、下部から排出するように構成され、その一方側の上部には保冷流路入口15が設けられ、他方側の下部には保冷流路出口16が設けられ、前記保冷流路入口15が設けられた側のボトムコーナー位置には、冷流体がコーナーに蓄積しないように、傾斜して配置された第2セパレータ18が取り付けられる。上記の2つの比較的密封されている流路により、それぞれ冷却及び加熱を行うことができる。 Further, when the refrigerating device upper case 3a, the refrigerating device lower case 3b, the circular magnetic working fluid unit 2, the first holding plate 6a and the second holding plate 6b are assembled, the entire cavity becomes a cold insulation cavity 11. It is divided into two relatively closed cavities called a heat insulating cavity 12. The heat-retaining cavity 12 is configured to allow heat-retaining gas to flow, to be supplied from the lower part and discharged from the upper part, and a heat-retaining flow path inlet 13 is provided in the lower part on one side and the upper part on the other side. A first separator 17 arranged at an angle is attached to the top corner position on the side where the heat insulating flow path inlet 14 is provided and the heat insulating flow path inlet 13 is provided so that the thermal fluid does not accumulate in the corner. .. The cold insulation cavity 11 is for flowing a cold insulation liquid, is configured to be supplied from the upper part and discharged from the lower part, and a cold insulation flow path inlet 15 is provided in the upper part on one side thereof and in the lower part on the other side. A second separator 18 is attached at the bottom corner position on the side where the cold insulation flow path outlet 16 is provided and the cold insulation flow path inlet 15 is provided so that the cold fluid does not accumulate in the corner. .. The above two relatively sealed channels allow cooling and heating, respectively.
さらに、作動するときに、前記円形磁気作動流体ユニット2は、反時計回りで回転して、前記保温キャビティ12の内部の保温ガスと前記保冷キャビティ11の内部の保冷液体とをそれぞれ逆方向に移動させる。上記の移動と回転方向により、流体がキャビティの内部を十分に流れることができ、また、熱交換効率を大幅に向上させ、さらに作業効率を向上させる。 Further, when operating, the circular magnetic working fluid unit 2 rotates counterclockwise to move the heat insulating gas inside the heat insulating cavity 12 and the cold insulating liquid inside the cold insulating cavity 11 in opposite directions. Let me. Due to the above-mentioned movement and rotation directions, the fluid can sufficiently flow inside the cavity, the heat exchange efficiency is greatly improved, and the working efficiency is further improved.
さらに、前記上側流路の外部は磁場が印加され、磁気作動流体の励磁領域であり、前記下側流路の外部は、磁場がなく、磁気作動流体の消磁領域であり、中部挟持板の遮蔽部分は、磁場がなく、遷移領域である。 Further, the outside of the upper flow path is an exciting region of the magnetic working fluid to which a magnetic field is applied, and the outside of the lower flow path is a degaussing region of the magnetic working fluid without a magnetic field, and shields the middle holding plate. The part is a transition region without a magnetic field.
実施例2:
本実用新案の前記磁気冷凍式冷凍装置1の取り付けは以下のとおりである。
軸4を円形磁気作動流体ユニット2に挿入し、固定方式は、システムの大きさとトルクに応じて摩擦、リブ追加やねじなどにより固定することができる。次に、第1軸受5aと第2軸受5bとを第1挟持板6aと第2挟持板6bとに固定し、ここで、第1挟持板6aが軸4のトップに取り付けられ、軸4の他端が第2挟持板6bに挿入され、円形磁気作動流体ユニット2が軸4を介して挟持板ユニットのリブ付き面と反対の面に挟持される。その後に、軸4、円形磁気作動流体ユニット2、第1軸受5a及び第2軸受5bが取り付けられた第1挟持板6aと第2挟持板6bとを冷凍装置下部ケース3bに取り付け、第1挟持板6aと第2挟持板6bとのリブが軸4と円形磁気作動流体ユニット2を対応位置に固定でき、冷凍装置上部ケース3aをかけ、2つのケースがねじやクランプなどを通して固定でき、最後に永久磁石スロット10を冷凍装置上部ケース3aの一方側に配置して、磁気冷凍式冷凍装置1の組み立てが完了する。
Example 2:
The installation of the magnetic refrigeration type refrigerating apparatus 1 of the utility model is as follows.
The shaft 4 is inserted into the circular magnetic working fluid unit 2, and the fixing method can be fixed by friction, rib addition, screws, or the like according to the size and torque of the system. Next, the first bearing 5a and the second bearing 5b are fixed to the first holding plate 6a and the second holding plate 6b, where the first holding plate 6a is attached to the top of the shaft 4 and the shaft 4 The other end is inserted into the second holding plate 6b, and the circular magnetic working fluid unit 2 is sandwiched via the shaft 4 on a surface opposite to the ribbed surface of the holding plate unit. After that, the first holding plate 6a and the second holding plate 6b to which the shaft 4, the circular magnetic working fluid unit 2, the first bearing 5a and the second bearing 5b are attached are attached to the refrigerating apparatus lower case 3b, and the first holding plate 6b is attached. The ribs of the plate 6a and the second holding plate 6b can fix the shaft 4 and the circular magnetic working fluid unit 2 at the corresponding positions, hang the refrigerating device upper case 3a, and fix the two cases through screws, clamps, etc., and finally. The permanent magnet slot 10 is arranged on one side of the refrigerating apparatus upper case 3a, and the assembly of the magnetic refrigerating apparatus 1 is completed.
実施例4:
本実施例では、ケースユニットは、冷凍装置上部ケース3a、冷凍装置下部ケース3bを突き合わせて形成され、これらの2つのケースは同じであり、ケースは、アルミニウム合金材料であり、肉厚が2mmであり、内部サイズが長さ×幅×高さ200mm×100×mm×30mmである。冷凍装置上部ケース3a、冷凍装置下部ケース3bには流体が流入流出するためのジョイントが接続され、ジョイントとケースは、同じ材質を用い、溶接により接続され、ジョイントの外側にねじが刻設され、ホースを介して外部サイクルに接続される。ケースユニットの開口の下縁に残された、軸受が通過可能な円穴は、外径が10mmである。
Example 4:
In this embodiment, the case unit is formed by abutting the refrigerating device upper case 3a and the refrigerating device lower case 3b, these two cases are the same, and the case is made of an aluminum alloy material and has a wall thickness of 2 mm. Yes, the internal size is length x width x height 200 mm x 100 x mm x 30 mm. A joint for inflow and outflow of fluid is connected to the refrigerating device upper case 3a and the refrigerating device lower case 3b, and the joint and the case are connected by welding using the same material, and screws are engraved on the outside of the joint. It is connected to the external cycle via a hose. The circular hole left at the lower edge of the opening of the case unit through which the bearing can pass has an outer diameter of 10 mm.
前記実施例では、第1挟持板6a及び第2挟持板6bの断面がT字形であり、第1挟持板6a及び第2挟持板6b本体は、硬質断熱性プラスチック材質であり、本体の長さ×幅×高さが200mm×30mm×2mmであり、一方側には長さ×幅×高さが200mm×2mm×2mmのリブが付かれており、磁気作動流体と接触する他方側には0.5mm厚さのシリコン材料が粘着される。2つの挟持板部材のうち一方の第2挟持板6bの中心には、軸受が通過できるとともに、軸受が取り付けられる12mmの円穴が開設され、他方の第1挟持板6aには、厚さが2mmの軸受を取り付け可能なスロットが開設されるが、このスロットが貫通しない。 In the above embodiment, the cross section of the first holding plate 6a and the second holding plate 6b is T-shaped, and the main body of the first holding plate 6a and the second holding plate 6b is made of a hard heat insulating plastic material and has a length of the main body. × width × height is 200 mm × 30 mm × 2 mm, one side is provided with ribs of length × width × height 200 mm × 2 mm × 2 mm, and 0 on the other side in contact with the magnetic working fluid. A 5.5 mm thick silicone material is adhered. A bearing can pass through the center of one of the two holding plate members, the second holding plate 6b, and a 12 mm circular hole for attaching the bearing is formed, and the other first holding plate 6a has a thickness. A slot for mounting a 2 mm bearing is opened, but this slot does not penetrate.
前記実施例では、円形磁気作動流体ユニット2は、フレーム7、磁気作動流体8及びフープ9で構成され、フレーム7は、硬質断熱性プラスチックを用いて星型構造として鋳造され、その外径×内径×厚さが198mm×10mm×25mmであり、磁気作動流体8は、キャスト成形され所望の扇形に切断され、その直径×厚さが168mm×25mmであり、最後に炭素繊維製のフープ9を介してフレーム7に固定され、フープ9の外径×内径×厚さが200mm×198mm×25mmである。前記円形磁気作動流体ユニット2の厚さが25mmである。 In the above embodiment, the circular magnetic working fluid unit 2 is composed of a frame 7, a magnetic working fluid 8 and a hoop 9, and the frame 7 is cast as a star-shaped structure using hard heat insulating plastic, and its outer diameter × inner diameter thereof. The × thickness is 198 mm × 10 mm × 25 mm, the magnetic working fluid 8 is cast-formed and cut into a desired fan shape, the diameter × thickness is 168 mm × 25 mm, and finally through a carbon fiber hoop 9. The hoop 9 is fixed to the frame 7 and has an outer diameter x inner diameter x thickness of 200 mm x 198 mm x 25 mm. The thickness of the circular magnetic working fluid unit 2 is 25 mm.
前記実施例では、第1軸受5a、第2軸受5b及び軸4は、すべてステンレス材料を用い、軸4の直径が10mmであり、第1軸受5aと第2軸受5bは、外径が12mm、内径が10mm、厚さが2mmである。 In the above embodiment, the first bearing 5a, the second bearing 5b and the shaft 4 are all made of stainless steel, the diameter of the shaft 4 is 10 mm, and the outer diameters of the first bearing 5a and the second bearing 5b are 12 mm. The inner diameter is 10 mm and the thickness is 2 mm.
実施例5:
前記回転型磁気冷凍式冷凍装置の冷却方法であって、
Step1:永久磁石スロット10が磁場を発生させ、また、前記磁場が冷凍装置上部ケース3aと冷凍装置下部ケース3bを透過して、さらにその内部の円形磁気作動流体ユニット2に励磁磁場を提供できるステップと、
Step2:動力装置を介して軸4を駆動し、軸4が同期して円形磁気作動流体ユニット2を回転駆動し、さらに円形磁気作動流体ユニット2を磁場において回転させるステップと、
Step3:磁気作動流体8が前記磁場に入るとき、前記磁気作動流体8が励磁されて放熱することができ、前記磁気作動流体8が前記磁場から離れるとき、前記磁気作動流体8が消磁して吸熱するステップと、
Step4:冷流体内の磁気作動流体8の吸熱時間を計算することにより、円形磁気作動流体ユニット2の回転角速度を制御し、保温キャビティ12と保冷キャビティ11の内部における磁気作動流体8の循環放熱と吸熱を実現し、さらに磁気冷凍式冷凍装置1の連続的な冷却を可能にするステップとを含む。
Example 5:
A cooling method for the rotary magnetic refrigeration system.
Step1: A step in which the permanent magnet slot 10 generates a magnetic field, and the magnetic field can pass through the refrigerating device upper case 3a and the refrigerating device lower case 3b to further provide an exciting magnetic field to the circular magnetic working fluid unit 2 inside the refrigerating device upper case 3a and the refrigerating device lower case 3b. When,
Step2: A step of driving the shaft 4 via a power unit, the shaft 4 synchronously driving the circular magnetic working fluid unit 2 to rotate, and further rotating the circular magnetic working fluid unit 2 in a magnetic field.
Step3: When the magnetic working fluid 8 enters the magnetic field, the magnetic working fluid 8 can be excited to dissipate heat, and when the magnetic working fluid 8 separates from the magnetic field, the magnetic working fluid 8 is demagnetized and absorbs heat. Steps to do and
Step4: By calculating the heat absorption time of the magnetic working fluid 8 in the cold fluid, the rotation angle velocity of the circular magnetic working fluid unit 2 is controlled, and the circulating heat radiation of the magnetic working fluid 8 inside the heat insulating cavity 12 and the cold insulating cavity 11 is obtained. It includes a step of achieving heat absorption and further enabling continuous cooling of the magnetic refrigeration system 1.
図において、磁気冷凍式冷凍装置1、円形磁気作動流体ユニット2、冷凍装置上部ケース3a、冷凍装置下部ケース3b、軸4、第1軸受5a、第2軸受5b、第1挟持板6a、第2挟持板6b、第1軸受取付穴6c、第2軸受取付穴6d、T字形断面6e、長尺状リブ6f、フレーム7、磁気作動流体8、フープ9、永久磁石スロット10、保冷キャビティ11、保温キャビティ12、保温流路入口13、保温流路出口14、保冷流路入口15、保冷流路出口16、第1セパレータ17、第2セパレータ18。 In the figure, a magnetic refrigeration type refrigerating device 1, a circular magnetic working fluid unit 2, a refrigerating device upper case 3a, a refrigerating device lower case 3b, a shaft 4, a first bearing 5a, a second bearing 5b, a first holding plate 6a, a second Holding plate 6b, 1st bearing mounting hole 6c, 2nd bearing mounting hole 6d, T-shaped cross section 6e, long rib 6f, frame 7, magnetic working fluid 8, hoop 9, permanent magnet slot 10, cold insulation cavity 11, heat insulation Cavity 12, heat insulation flow path inlet 13, heat insulation flow path outlet 14, cold insulation flow path inlet 15, cold insulation flow path outlet 16, first separator 17, second separator 18.
Claims (9)
前記磁気冷凍式冷凍装置(1)は、互いに組み立てられる冷凍装置上部ケース(3a)と冷凍装置下部ケース(3b)とを備え、
前記冷凍装置上部ケース(3a)と前記冷凍装置下部ケース(3b)との結合接触面の間には、第1挟持板(6a)と第2挟持板(6b)とが対称的に固定され、
前記第1挟持板(6a)と前記第2挟持板(6b)との間には、円形磁気作動流体ユニット(2)が軸(4)を介して支持して取り付けられるとともに、回転するように連動され、
前記冷凍装置上部ケース(3a)の最上部の外部には永久磁石スロット(10)が嵌着され、
前記永久磁石スロット(10)は、前記円形磁気作動流体ユニット(2)の平面に垂直な励磁磁場を前記円形磁気作動流体ユニット(2)に提供する、
ことを特徴とする回転型磁気冷凍式冷凍装置。 It is a rotary magnetic refrigeration type refrigeration system.
The magnetic refrigeration type refrigerating apparatus (1) includes a refrigerating apparatus upper case (3a) and a refrigerating apparatus lower case (3b) that are assembled with each other.
The first holding plate (6a) and the second holding plate (6b) are symmetrically fixed between the coupling contact surface between the refrigerating device upper case (3a) and the refrigerating device lower case (3b).
A circular magnetic working fluid unit (2) is supported and attached between the first holding plate (6a) and the second holding plate (6b) via a shaft (4) so as to rotate. Linked,
A permanent magnet slot (10) is fitted to the outside of the uppermost portion of the refrigerating apparatus upper case (3a).
The permanent magnet slot (10) provides the circular magnetic working fluid unit (2) with an exciting magnetic field perpendicular to the plane of the circular magnetic working fluid unit (2).
A rotary magnetic refrigeration type refrigeration system characterized by this.
前記第1挟持板(6a)の前記第1軸受取付穴(6c)内には第1軸受(5a)が取り付けられ、
前記第2挟持板(6b)の前記第2軸受取付穴(6d)内には第2軸受(5b)が取り付けられ、
前記軸(4)の両端のそれぞれが前記第1軸受(5a)と前記第2軸受(5b)との間に支持して取り付けられる、
ことを特徴とする請求項1に記載の回転型磁気冷凍式冷凍装置。 A first bearing mounting hole (6c) and a second bearing mounting hole (6d) are machined in the intermediate portion between both the first holding plate (6a) and the second holding plate (6b), respectively.
The first bearing (5a) is mounted in the first bearing mounting hole (6c) of the first holding plate (6a).
The second bearing (5b) is mounted in the second bearing mounting hole (6d) of the second holding plate (6b).
Each of both ends of the shaft (4) is supported and attached between the first bearing (5a) and the second bearing (5b).
The rotary magnetic refrigeration type refrigerating apparatus according to claim 1.
前記フレーム(7)の間隙内には、複数の磁気作動流体(8)が均一に固定して取り付けられ、
前記磁気作動流体(8)の外縁がフープ(9)を介して固定される、
ことを特徴とする請求項1に記載の回転型磁気冷凍式冷凍装置。 The circular magnetic working fluid unit (2) includes a frame (7).
A plurality of magnetic working fluids (8) are uniformly fixed and attached in the gap of the frame (7).
The outer edge of the magnetic working fluid (8) is fixed via the hoop (9).
The rotary magnetic refrigeration type refrigerating apparatus according to claim 1.
前記磁気作動流体(8)は、キャスト成形され所望の扇形に切断される、
ことを特徴とする請求項3に記載の回転型磁気冷凍式冷凍装置。 The frame (7) is cast as a star-shaped structure using hard heat insulating plastic.
The magnetic working fluid (8) is cast and cut into a desired fan shape.
The rotary magnetic refrigeration type refrigerating apparatus according to claim 3.
前記T字形断面(6e)の長尺状リブ(6f)が前記冷凍装置上部ケース(3a)と前記冷凍装置下部ケース(3b)との間に締め付けられて設けられ、これらのケースを固定し、
前記T字形断面(6e)の他方の光滑面には、前記円形磁気作動流体ユニット(2)に対して回転可能に締まり嵌めするためのシリコン層が設けられている、
ことを特徴とする請求項1又は2に記載の回転型磁気冷凍式冷凍装置。 The first holding plate (6a) and the second holding plate (6b) use the same structure, and both of them have a T-shaped cross section (6e).
A long rib (6f) having a T-shaped cross section (6e) is provided by being fastened between the refrigerating device upper case (3a) and the refrigerating device lower case (3b) to fix these cases.
The other optical sliding surface of the T-shaped cross section (6e) is provided with a silicon layer for rotatably tightening and fitting the circular magnetic working fluid unit (2).
The rotary magnetic refrigeration type refrigerating apparatus according to claim 1 or 2.
ことを特徴とする請求項1に記載の回転型磁気冷凍式冷凍装置。 When the refrigerating device upper case (3a), the refrigerating device lower case (3b), the circular magnetic working fluid unit (2), the first holding plate (6a), and the second holding plate (6b) are assembled. The entire cavity is divided into two relatively closed cavities, a cold insulation cavity (11) and a thermal insulation cavity (12).
The rotary magnetic refrigeration type refrigerating apparatus according to claim 1.
ことを特徴とする請求項6に記載の回転型磁気冷凍式冷凍装置。 The heat-retaining cavity (12) is configured to supply heat-retaining gas from the lower part and discharge from the upper part, and a heat-retaining flow path inlet (13) is provided in the lower part on one side thereof and the other side. A heat insulating flow path outlet (14) is provided in the upper part of the above, and the heat fluid is inclined and arranged at the position of the top corner on the side where the heat insulating flow path inlet (13) is provided so that the thermal fluid does not accumulate in the corner. The first separator (17) is attached,
The rotary magnetic refrigeration type refrigerating apparatus according to claim 6.
ことを特徴とする請求項7に記載の回転型磁気冷凍式冷凍装置。 The cold insulation cavity (11) is configured to supply a cold insulation liquid from the upper part and discharge from the lower part, and a cold insulation flow path inlet (15) is provided in the upper portion on one side thereof, and the other side is provided. A cold insulation flow path outlet (16) is provided at the lower part of the cold insulation flow path, and the bottom corner on the side where the cold insulation flow path inlet (15) is provided is arranged at an angle so that cold fluid does not accumulate in the corner. The second separator (18) is attached,
The rotary magnetic refrigeration type refrigerating apparatus according to claim 7.
ことを特徴とする請求項8に記載の回転型磁気冷凍式冷凍装置。 When operating, the circular magnetic working fluid unit (2) rotates counterclockwise to separate the heat insulating gas inside the heat insulating cavity (12) and the cold insulating liquid inside the cold insulation cavity (11), respectively. Move in the opposite direction,
The rotary magnetic refrigeration type refrigerating apparatus according to claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921845870.3 | 2019-10-30 | ||
CN201921845870.3U CN211011986U (en) | 2019-10-30 | 2019-10-30 | Rotary magnetic refrigeration cooler |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3230158U true JP3230158U (en) | 2021-01-14 |
Family
ID=71480748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020004602U Active JP3230158U (en) | 2019-10-30 | 2020-10-26 | Rotary magnetic refrigeration refrigeration system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3230158U (en) |
CN (1) | CN211011986U (en) |
DE (1) | DE202020105983U1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110645734B (en) * | 2019-10-30 | 2024-02-06 | 中国长江三峡集团有限公司 | Rotary magnetic refrigeration chiller and method |
-
2019
- 2019-10-30 CN CN201921845870.3U patent/CN211011986U/en active Active
-
2020
- 2020-10-20 DE DE202020105983.1U patent/DE202020105983U1/en active Active
- 2020-10-26 JP JP2020004602U patent/JP3230158U/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE202020105983U1 (en) | 2020-11-10 |
CN211011986U (en) | 2020-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106949673B (en) | Active magnetic heat regenerator and magnetic refrigeration system | |
US9677792B2 (en) | Magnetic refrigeration system with separated inlet and outlet flow | |
JP6336123B2 (en) | Rotary series magnetic refrigeration system | |
US20090266083A1 (en) | Rotation type regenerator and magnetic refrigerator using the regenerator | |
BRPI0615261A2 (en) | thermal generator using magneto-thermally material | |
US20100146989A1 (en) | Continuously rotary magnetic refrigerator or heat pump | |
US10222100B2 (en) | Magnetocaloric heat apparatus | |
JP3230158U (en) | Rotary magnetic refrigeration refrigeration system | |
KR20150125866A (en) | Magnetic refrigeration system using concentric halbach cylinders | |
CN110345680B (en) | Cold accumulation bed and magnetic refrigeration system | |
CN103062973A (en) | Magnetic refrigerating portable refrigerator and refrigeration method | |
CN105823255A (en) | Pulse tube refrigerator | |
CN108007013A (en) | Magnetic cooling assembly and there is its magnetic refrigerator | |
CN106373701B (en) | A kind of combined type room-temperature magnetic refrigerator two-chamber permanent magnetic field system | |
CN202048637U (en) | Conventional air conditioner working condition heat exchange enhancement phase transition regenerator | |
KR101204325B1 (en) | Compact active magnetic regenerative refrigerator | |
CN207501484U (en) | Magnetic cooling assembly and with its magnetic refrigerator | |
US10386096B2 (en) | Magnet assembly for a magneto-caloric heat pump | |
CN110645734B (en) | Rotary magnetic refrigeration chiller and method | |
TWM408187U (en) | Linear motor rotor having heat-dissipation device | |
CN206600297U (en) | refrigeration radiating fan | |
JP6365173B2 (en) | Magnetic heat pump device | |
CN104409190B (en) | High-efficiency magnetic field structure for room-temperature magnetic refrigerator | |
CN116007226B (en) | Room temperature solid-state refrigeration device and method based on thermoelectric magnetic coupling | |
TWI439650B (en) | Thermal radiation magnetic cooling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3230158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |