JP3226581B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device

Info

Publication number
JP3226581B2
JP3226581B2 JP00682392A JP682392A JP3226581B2 JP 3226581 B2 JP3226581 B2 JP 3226581B2 JP 00682392 A JP00682392 A JP 00682392A JP 682392 A JP682392 A JP 682392A JP 3226581 B2 JP3226581 B2 JP 3226581B2
Authority
JP
Japan
Prior art keywords
cathode
organic
alloy
concentration
alloy region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00682392A
Other languages
Japanese (ja)
Other versions
JPH05198380A (en
Inventor
徹 並木
均 佐藤
健一 永山
輝一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp filed Critical Pioneer Corp
Priority to JP00682392A priority Critical patent/JP3226581B2/en
Priority to US07/961,506 priority patent/US5429884A/en
Publication of JPH05198380A publication Critical patent/JPH05198380A/en
Application granted granted Critical
Publication of JP3226581B2 publication Critical patent/JP3226581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は有機エレクトロルミネッセンス素
子(以下、有機EL素子と称する)に関する。
TECHNICAL FIELD The present invention relates to an organic electroluminescence device (hereinafter, referred to as an organic EL device).

【0002】[0002]

【背景技術】有機EL素子として、図1に示すように、
陰極である金属電極1と陽極である透明電極2との間に
有機化合物からなり互いに積層された発光層としての有
機蛍光体薄膜3と有機正孔輸送層4とが配された2層構
造のものがある。ここで、有機正孔輸送層4は陽極から
正孔を注入され易くする機能と電子をブロックする機能
とを有している。透明電極2の外側にはガラス基板6が
配されており、金属電極1から注入された電子と透明電
極2から注入された正孔との再結合によって励起子が生
じ、この励起子が放射失活する過程で光を放ち、この光
が透明電極2及びガラス基板6を介して外部に放出され
る。
BACKGROUND ART As an organic EL device, as shown in FIG.
It has a two-layer structure in which an organic phosphor thin film 3 as a light emitting layer and an organic hole transport layer 4 which are made of an organic compound and are laminated on each other are disposed between a metal electrode 1 as a cathode and a transparent electrode 2 as an anode. There is something. Here, the organic hole transport layer 4 has a function of facilitating injection of holes from the anode and a function of blocking electrons. A glass substrate 6 is disposed outside the transparent electrode 2, and excitons are generated by recombination of electrons injected from the metal electrode 1 and holes injected from the transparent electrode 2, and the excitons are radiated by radiation. Light is emitted in the process of activation, and this light is emitted to the outside via the transparent electrode 2 and the glass substrate 6.

【0003】ところで、従来の有機EL素子において
は、電子注入に有効な材料なので陰極の金属電極1とし
て3エレクトロンボルト以下の仕事関数の低い金属材料
(低仕事関数金属という)を用いることが望ましい。し
かし、この低仕事関数金属の陰極はその成膜の容易性、
安定性等に問題が有るので、3エレクトロンボルトを越
える高い仕事関数を有する金属材料(高仕事関数金属と
いう)が、現状としてアルミニウム、マグネシウムやマ
グネシウムインジウム合金、マグネシウムアルミニウム
合金、マグネシウム銀合金等の単独材料または共蒸着さ
れた合金材料が、陰極に用いられている(特開昭第63
−295695号公報参照)。
In the conventional organic EL device, it is desirable to use a metal material having a low work function of 3 electron volts or less (referred to as a low work function metal) as the metal electrode 1 of the cathode because it is a material effective for electron injection. However, this low work function metal cathode is easy to form,
Due to problems in stability and the like, metal materials having a high work function exceeding 3 electron volts (referred to as high work function metals) are currently used alone as aluminum, magnesium, magnesium indium alloy, magnesium aluminum alloy, magnesium silver alloy, etc. A material or a co-deposited alloy material is used for the cathode (Japanese Patent Application Laid-Open No. 63-63).
-295695).

【0004】しかしながら、従来の合金陰極を有する有
機EL素子においては、その環境安定性及び成膜性も十
分とはいえず、例えば、アルミニウムマグネシウム合金
からなる陰極を有する有機EL素子においては、特に発
光する発光エリア(1ドット:2×2mm)内に非発光部
(以下、黒点という)が発生し時間と共に成長するという
問題がある。また、従来の合金陰極の材料によっては、
低駆動電圧で輝度を高くすることは難しく、高発光効率
で高輝度な有機EL素子が得られていない。
However, the conventional organic EL device having an alloy cathode has insufficient environmental stability and film-forming properties. For example, in the case of an organic EL device having a cathode made of an aluminum-magnesium alloy, light emission is particularly high. Non-light-emitting area within the light-emitting area (1 dot: 2 x 2 mm)
(Hereinafter, referred to as a black spot) and grows with time. Also, depending on the material of the conventional alloy cathode,
It is difficult to increase the luminance at a low driving voltage, and an organic EL element with high luminous efficiency and high luminance has not been obtained.

【0005】[0005]

【発明の目的】本発明の目的は、発光効率及び輝度が高
くかつ環境安定性の高い有機EL素子を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an organic EL device having high luminous efficiency and luminance and high environmental stability.

【0006】[0006]

【発明の構成】本発明の有機EL素子は、基板上に、陽
極と、有機化合物からなる正孔輸送層と、有機化合物か
らなる発光層と、陰極とが順に形成された有機エレクト
ロルミネッセンス素子であって、前記陰極はインジウム
及びリチウムからなりかつ前記発光層及び前記陰極の界
面に接する合金領域を有し、前記合金領域は前記インジ
ウムの100重量部に対して前記リチウムの濃度を0.
005重量部以上0.11重量部以下の重量比で含むこ
とを特徴とする。
The organic EL device of the present invention is an organic electroluminescent device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, and a cathode are formed in this order on a substrate. The cathode has an alloy region made of indium and lithium and in contact with an interface between the light emitting layer and the cathode, and the alloy region has a lithium concentration of 0.1 part by weight with respect to 100 parts by weight of the indium.
It is characterized in that it is contained in a weight ratio of 005 parts by weight or more and 0.11 parts by weight or less.

【0007】[0007]

【発明の作用】本発明によれば、環境安定性の高い高輝
度で低電圧駆動の有機EL素子が得られる。
According to the present invention, a high-luminance, low-voltage driven organic EL device having high environmental stability can be obtained.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しつつ詳
細に説明する。図2に示すように本実施例による有機E
L素子は、In-Li合金領域Aを有する陰極電極1
と、インジウムスズ酸化物(ITO)からなる陽極透明電
極2と、これらの間に互いに積層された例えばトリス
(8−キノリノール)アルミニウム(Alq3)からなる有
機蛍光体薄膜3及び例えばN,N´−ジフェニル−N,
N´−ビス(3メチルフェニル)−1,1´−ビフェニ
ル−4,4´−ジアミン(TPD)からなる有機正孔輸送
層4と、をガラス基板6上に積層して構成される。特
に、陰極1のIn-Li合金領域Aは発光層3及び陰極
1の界面に接するように形成されている。このように、
本実施例によるEL素子は陰極合金領域材料としてIn
-Li合金を用いている。
Embodiments of the present invention will be described below in detail with reference to the drawings. As shown in FIG.
The L element is a cathode electrode 1 having an In-Li alloy region A.
, An anode transparent electrode 2 made of indium tin oxide (ITO), an organic phosphor thin film 3 made of, for example, tris (8-quinolinol) aluminum (Alq 3 ) laminated between them, and N, N ′, for example. -Diphenyl-N,
An organic hole transport layer 4 made of N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine (TPD) is laminated on a glass substrate 6. In particular, the In-Li alloy region A of the cathode 1 is formed so as to be in contact with the interface between the light emitting layer 3 and the cathode 1. in this way,
The EL device according to the present embodiment has In as the cathode alloy region material.
-Li alloy is used.

【0009】陰極1のIn-Li合金領域A中のLi濃度
に関して、陰極膜と有機層との界面から陰極膜の厚さ0
を越え10000Å以下の合金領域A範囲内に含まれるL
iの濃度を0.005wt%以上0.11wt%以下という非常に微
小な量に制御する。なお、Liの濃度をこの合金領域A
内に収めるためには、共蒸着法ではなく、あらかじめ適
当な組成比でAl-Liの合金母材を作っておき、これ
を一源の抵抗加熱蒸着あるいは電子ビーム法にて形成す
ることが望ましい。
With respect to the Li concentration in the In-Li alloy region A of the cathode 1, the thickness of the cathode film is set to 0 from the interface between the cathode film and the organic layer.
L contained within the following alloys region A range 10000Å beyond Å
The concentration of i is controlled to an extremely small amount of 0.005 wt% or more and 0.11 wt% or less. Note that the concentration of Li is set in the alloy region A.
In order to contain the alloy, it is preferable to form an Al-Li alloy base material in advance with an appropriate composition ratio instead of the co-evaporation method, and to form this by one-source resistance heating evaporation or an electron beam method. .

【0010】この実施例によれば、高輝度高効率な発生
特性が得られ、特に黒点の発生成長を著しく抑制する高
い環境安定性及び良好な成膜性が得られ、素子作成の安
定性が増し(即ち、ばらつきのない安定した素子が得ら
れる)、連続発光試験による輝度の減衰率が小さくな
る、等の利点を生じる。更に、合金陰極膜の作製をIn
とLiを別々の蒸発源から同時に飛ばす共蒸着ではな
く、あらかじめ適当な組成比でIn-Li合金母材を作
っておき、これを蒸着材料とすれば、膜作製時の制御が
容易になり、安定した素子を供給し易い、材料の保管、
蒸着ボートへの供給が容易になるという利点もある。ま
た、In-Li陰極膜中のLi濃度について、膜厚方向
への濃度勾配をつけることが容易にできる。例えば、L
i濃度を陰極膜と有機EL層との界面へ向けて漸次高く
する又は低くすることができる。これによって一つの蒸
着源からIn-Li陰極膜の作成-保護膜の作成を連続し
て行なうことも可能となる。
According to this embodiment, high-luminance and high-efficiency generation characteristics can be obtained, in particular, high environmental stability and excellent film-forming properties, which significantly suppress the generation and growth of black spots, can be obtained, and the stability of element production can be improved. This leads to advantages such as an increase in the number (ie, a stable element without variation) and a decrease in the luminance decay rate in the continuous light emission test. Further, the production of an alloy cathode film was performed using In
Rather than co-evaporation of simultaneously evaporating Li and Li from separate evaporation sources, if an In-Li alloy base material is prepared in advance with an appropriate composition ratio and this is used as a deposition material, control during film production becomes easier, Easy to supply stable elements, material storage,
There is also an advantage that the supply to the evaporation boat is facilitated. Further, it is possible to easily provide a concentration gradient in the film thickness direction with respect to the Li concentration in the In-Li cathode film. For example, L
The i concentration can be gradually increased or decreased toward the interface between the cathode film and the organic EL layer. This makes it possible to continuously form an In-Li cathode film and a protective film from one evaporation source.

【0011】具体的に図1に示す2層構造のEL素子を
製造した。なお、In-Li合金領域電極1を9000Å(即
ち、In-Li合金領域のみからなる陰極電極1)、Alq3
薄膜3を550Å、及びTPD層4を700Åの膜厚にてそれぞ
れ積層した。表1に、この時のIn-Li陰極膜中のL
i濃度を0.025wt%,0.032wt%,0.067wt%,及び0.12w
t%にした時並びに純In陰極にした時の300cd/m2発生
時の効率を示す。
Specifically, an EL device having a two-layer structure shown in FIG. 1 was manufactured. In addition, the In-Li alloy region electrode 1 was set at 9000 ° (that is, the cathode electrode 1 consisting of only the In-Li alloy region), Alq 3
The thin film 3 was laminated at a thickness of 550 ° and the TPD layer 4 was laminated at a thickness of 700 °. Table 1 shows L in the In-Li cathode film at this time.
i concentration of 0.025 wt%, 0.032 wt%, 0.067 wt%, and 0.12 w
The graph shows the efficiency when 300 cd / m 2 is generated when the concentration is set to t% and when a pure In cathode is used.

【0012】図3に、かかるEL素子における合金領域
のLi濃度0wt%(純Al),0.004wt%,0.00
8wt%,0.017wt%,0.025wt%,0.032wt
%,0.067wt%,及び0.12wt%に対応する300
cd/m2発光時の発光効率をプロットしたグラフを示
す。
FIG. 3 shows a Li concentration of 0 wt% (pure Al), 0.004 wt%, 0.00
8wt%, 0.017wt%, 0.025wt%, 0.032wt
300 corresponding to%, 0.067 wt%, and 0.12 wt%
4 shows a graph in which luminous efficiency during cd / m 2 light emission is plotted.

【0013】[0013]

【表1】 表1及び図3から明らかなように、輝度300cd/m 2 時の発
光効率が1.5(lm/W)以上と高い効率が得られるのは、
i濃度が0.005〜0.11wt%好ましくは0.01wt%以上0.1wt
%以下の範囲であって、その中で最大の発光効率が得ら
れると共に、この範囲内で陰極を形成すればEL素子の
特性上非常にばらつきの小さい安定した素子が得られる
ことがわかる。
[Table 1] As is clear from Table 1 and FIG. 3, the emission at a luminance of 300 cd / m 2 was observed.
Light efficiency is as high as 1.5 (lm / W) or higher.
i concentration is 0.005 to 0.11 wt%, preferably 0.01 wt% or more and 0.1 wt%
% , The maximum luminous efficiency can be obtained within the range, and it can be seen that if the cathode is formed within this range, a stable device with very small variation in the characteristics of the EL device can be obtained.

【0014】図4において、かかるEL素子のIn-L
i陰極のLi濃度を0.01wt%以上0.1wt%以下の範囲,
0.008wt%,0.12wt%にした時及び純In陰極の時の輝
度(cd/m2)に対する発光効率(lm/W)をグラフに示す。図
から明らかなように、これら実施例の電極の合金領域内
のLi濃度が0.01wt%以上0.1wt%以下の範囲内である
有機EL素子においては、高い発光効率が得られた。
In FIG. 4, the In-L of such an EL device is shown.
Li concentration of i-cathode in the range of 0.01 wt% or more and 0.1 wt% or less,
The luminous efficiency (lm / W) with respect to the luminance (cd / m 2 ) at 0.008 wt%, 0.12 wt% and the pure In cathode is shown in the graph. As is clear from the figure, high luminous efficiency was obtained in the organic EL devices in which the Li concentration in the alloy region of the electrodes of these examples was in the range of 0.01 wt% or more and 0.1 wt% or less.

【0015】更に図5において、本実施例の連続発光試
験による輝度減衰率を調べた結果を、EL素子のIn-
Li陰極のLi濃度を0.017wt%,0.025wt%,及び0.10
wt%にした時における、それぞれの輝度の経時変化によ
り劣化する割合(輝度割合)をグラフとして示す。図から
明らかなように、これら実施例の電極の合金領域内のL
i濃度が0.01wt%以上0.1wt%以下の範囲内にある有機
EL素子においては、経時変化による輝度劣化が少なく
長寿命化されたことがわかる。
Further, in FIG. 5, the result of examining the luminance decay rate by the continuous light emission test of this embodiment is shown in FIG.
The Li concentration of the Li cathode was 0.017 wt%, 0.025 wt%, and 0.10 wt%.
The graph shows the ratio (luminance ratio) of the deterioration due to the temporal change of the luminance when wt% is used. As is apparent from the figure, L in the alloy region of the electrodes of these examples was
It can be seen that in the organic EL device having the i concentration of 0.01 wt% or more and 0.1 wt% or less, the luminance is less deteriorated due to the aging and the life is extended.

【0016】更に、図6及び7において本実施例の環境
安定性及び成膜性をEL素子の発光エリア観察試験によ
り調べた結果を示す。図6(a)に、本実施例のEL素
子の作製直後の発光部(ドット内)の状態の拡大写真を
示す。図6(b)に、本実施例のEL素子の700時間後
の発光部の状態の拡大写真を示す。また、図7に、比較
用としてMg-Al合金陰極からなるEL素子を作製し
た作製直後(図7(a))及び600時間後(図7
(b))の発光ドット内の状態を撮影した拡大写真を示
す。いずれのEL素子も真空デシケータ保存された状態
で観察、撮影された。
Further, FIGS. 6 and 7 show the results obtained by examining the environmental stability and film formability of this embodiment by a light-emitting area observation test of an EL element. FIG. 6A shows an enlarged photograph of the state of the light-emitting portion (within the dot) immediately after the EL device of this example was manufactured. FIG. 6B shows an enlarged photograph of the state of the light emitting portion 700 hours after the EL element of this example. In addition, FIG. 7 shows the EL element composed of a Mg—Al alloy cathode immediately after the production (FIG. 7A) and after 600 hours (FIG. 7).
(B) shows an enlarged photograph of the state inside the light emitting dot. Each EL element was observed and photographed in a state where it was stored in a vacuum desiccator.

【0017】この図6及び7から明らかなように、陰極
材料にMg-Alを用いた素子は時間の経過と共に、黒
点が拡大成長しているのに対し、陰極材料にIn-Li
を用いた本実施例は全く黒点の発生が見られない。図8
の他の実施例に示すように、陰極1上に保護電極17が
積層することも好ましい。保護電極17はアルミニウム
またはマグネシウムから形成されることが好ましい。保
護電極17の存在によって、陰極1を安定化せしめるの
に加えて、陰極及び保護電極全体のシート抵抗を減少さ
せる効果がある。
As is apparent from FIGS. 6 and 7, in the device using Mg-Al as the cathode material, the black spots grow and grow with the passage of time, whereas In-Li is used as the cathode material.
In the present embodiment using, no black spots are observed. FIG.
As shown in another embodiment, it is preferable that the protective electrode 17 is laminated on the cathode 1. The protection electrode 17 is preferably made of aluminum or magnesium. The presence of the protective electrode 17 has the effect of stabilizing the cathode 1 and reducing the sheet resistance of the cathode and the entire protective electrode.

【0018】また、製造中の有機EL素子を保存するた
めに、素子の周囲を密閉してアルゴン、窒素等の不活性
ガスを封止して行うか、または、大気をともに封止する
場合は素子の近傍に素子から遮断して五酸化二燐を存在
させて封入すると好ましい。なお、上記した本発明の実
施例においては、2層構造の有機EL素子について説明
したが、本発明はこれに限らない。本発明は、有機層と
して有機蛍光体薄膜及び有機正孔輸送層の他に、合金陰
極から電子を注入させ易くするために有機蛍光体薄膜及
び陰極間に有機電子輸送層を備えた3層構造のものにも
適用することができる。
Further, in order to preserve the organic EL element during manufacture, the periphery of the element is sealed and sealed with an inert gas such as argon or nitrogen, or when the atmosphere is sealed together. It is preferable that diphosphorus pentoxide be present in the vicinity of the element and sealed off. In the embodiments of the present invention described above, the organic EL device having the two-layer structure is described, but the present invention is not limited to this. The present invention provides a three-layer structure including an organic phosphor thin film and an organic hole transport layer as an organic layer, and an organic electron transport layer between the organic phosphor thin film and the cathode to facilitate injection of electrons from the alloy cathode. Can also be applied to

【0019】[0019]

【発明の効果】以上の如く、本発明によれば、基板上
に、陽極と、有機化合物正孔輸送層と、有機化合物から
なる発光層と、インジウム及びリチウムからなりかつ発
光層との界面に接する合金領域を有する陰極とが、順に
形成された有機EL素子において、陰極と有機層(発光
層又は電子輸送層)との界面からの所定膜厚(0Åを超
え10000Å以下)の合金領域内に含まれるLiの濃
度を0.005wt%以上0.11wt%以下という微
小な量に制御するので、発光効率を高くすることがで
き、環境安定性の高い高輝度で低電圧駆動の有機EL素
子が選られる。
As described above, according to the present invention, an anode, an organic compound hole transporting layer, a light emitting layer made of an organic compound, and an interface between the light emitting layer made of indium and lithium are formed on a substrate. In an organic EL device in which a cathode having an alloy region in contact with the cathode is formed in order, the cathode has a predetermined thickness (more than 0 ° and not more than 10000 °) from the interface between the cathode and the organic layer (light emitting layer or electron transport layer). Since the concentration of Li contained is controlled to a very small amount of 0.005 wt% or more and 0.11 wt% or less, the luminous efficiency can be increased, and an organic EL element driven by a high luminance and low voltage with high environmental stability can be obtained. Be chosen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機EL素子を示す構造図である。FIG. 1 is a structural diagram showing an organic EL element.

【図2】本発明による実施例の有機EL素子を示す構造
図である。
FIG. 2 is a structural view showing an organic EL device of an example according to the present invention.

【図3】実施例の合金領域のLi濃度に対する発光効率
特性を示すグラフである。
FIG. 3 is a graph showing luminous efficiency characteristics with respect to Li concentration in an alloy region of an example.

【図4】実施例の輝度に対する発光効率特性を示すグラ
フである。
FIG. 4 is a graph showing luminous efficiency characteristics with respect to luminance in an example.

【図5】実施例のEL素子の輝度の経時変化を示すグラ
フである。
FIG. 5 is a graph showing a change over time in luminance of an EL element of an example.

【図6】実施例のEL素子の作製直後(図6(a))及
び700時間後(図6(b))の発光部(ドット内)の拡
大平面写真を示す図である。
FIG. 6 is an enlarged plan photograph of a light emitting portion (in a dot) immediately after (FIG. 6 (a)) and after 700 hours (FIG. 6 (b)) of the EL element of the example.

【図7】比較例のEL素子の作製直後(図7(a))及
び600時間後(図7(b))の発光部(ドット内)の拡
大平面写真を示す図である。
FIG. 7 is an enlarged plan photograph of a light emitting portion (in a dot) immediately after the fabrication of the EL element of the comparative example (FIG. 7A) and after 600 hours (FIG. 7B).

【図8】本発明による他の実施例の有機EL素子を示す
構造図である。
FIG. 8 is a structural view showing an organic EL device according to another embodiment of the present invention.

【主要部分の符号の説明】[Description of Signs of Main Parts]

1 合金陰極 2 透明電極 3 有機蛍光体薄膜 4 有機正孔輸送層 6 ガラス基板 17 保護電極 A 合金領域 Reference Signs List 1 alloy cathode 2 transparent electrode 3 organic phosphor thin film 4 organic hole transport layer 6 glass substrate 17 protective electrode A alloy region

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 輝一 埼玉県鶴ヶ島市富士見6丁目1番1号パ イオニア株式会社 総合研究所内 (56)参考文献 特開 平3−203982(JP,A) 特開 昭60−165771(JP,A) 特開 平4−212284(JP,A) (58)調査した分野(Int.Cl.7,DB名) H05B 33/00 - 33/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Teruichi Watanabe 6-1-1, Fujimi, Tsurugashima-shi, Saitama Pioneer Corporation General Research Institute (56) References JP-A-3-203982 (JP, A) JP-A-60-166571 (JP, A) JP-A-4-212284 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H05B 33/00-33/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、陽極と、有機化合物からなる
正孔輸送層と、有機化合物からなる発光層と、陰極とが
順に形成された有機エレクトロルミネッセンス素子であ
って、前記陰極はインジウム及びリチウムからなりかつ
前記発光層及び前記陰極の界面に接する合金領域を有
し、前記合金領域は前記インジウムの100重量部に対
して前記リチウムの濃度を0.005重量部以上0.1
1重量部以下の重量比で含みかつ、前記発光層及び前記
陰極の界面から10000Å以下の厚さ範囲に存在する
ことを特徴とする有機エレクトロルミネッセンス素子。
1. An organic electroluminescence device in which an anode, a hole transport layer made of an organic compound, a light emitting layer made of an organic compound, and a cathode are formed in this order on a substrate, wherein the cathode is made of indium and An alloy region made of lithium and in contact with the interface between the light emitting layer and the cathode, wherein the alloy region has a lithium concentration of 0.005 parts by weight or more with respect to 100 parts by weight of indium;
1 parts by weight or less of the weight ratio containing Mikatsu, the light-emitting layer and the
An organic electroluminescent device characterized by being present in a thickness range of 10,000 ° or less from an interface of a cathode .
【請求項2】 前記合金領域は、Al-Liの合金母材
を作っておき、これを一源の抵抗加熱蒸着あるいは電子
ビーム法にて前記リチウムの濃度を前記合金領域内に収
めて、形成されたことを特徴とする請求項1記載の有機
エレクトロルミネッセンス素子。
2. The alloy region is made of an Al-Li alloy base material.
And use this as a source of resistance heating evaporation or electron
The concentration of lithium within the alloy region by the beam method
The organic material according to claim 1, wherein the organic material is formed.
Electroluminescence element.
【請求項3】 前記合金領域は、あらかじめ前記リチウ3. The method according to claim 1, wherein the alloy region is preliminarily provided with the lithium alloy.
ムの濃度の組成比でIn-Li合金母材を作っておき、In-Li alloy base material is made in the composition ratio of the concentration of the
これを蒸着材料として蒸着して形成されたことを特徴とIt is characterized by being formed by vapor deposition as a vapor deposition material
する請求項1記載の有機エレクトロルミネッセンス素The organic electroluminescent element according to claim 1,
子。Child.
JP00682392A 1992-01-17 1992-01-17 Organic electroluminescence device Expired - Fee Related JP3226581B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP00682392A JP3226581B2 (en) 1992-01-17 1992-01-17 Organic electroluminescence device
US07/961,506 US5429884A (en) 1992-01-17 1992-10-15 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00682392A JP3226581B2 (en) 1992-01-17 1992-01-17 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH05198380A JPH05198380A (en) 1993-08-06
JP3226581B2 true JP3226581B2 (en) 2001-11-05

Family

ID=11648942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00682392A Expired - Fee Related JP3226581B2 (en) 1992-01-17 1992-01-17 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3226581B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3585524B2 (en) * 1994-04-20 2004-11-04 大日本印刷株式会社 Manufacturing method of organic thin film EL element
US20040142206A1 (en) 2003-01-17 2004-07-22 Bazan Guillermo C. Binaphthol based chromophores for the fabrication of blue organic light emitting diodes

Also Published As

Publication number Publication date
JPH05198380A (en) 1993-08-06

Similar Documents

Publication Publication Date Title
JP3236332B2 (en) Organic electroluminescence device
US5429884A (en) Organic electroluminescent element
JP2815472B2 (en) EL device
US5457565A (en) Organic electroluminescent device
JP3562652B2 (en) Organic electroluminescence device
US20010052751A1 (en) Organic electroluminescence element
JPH06290873A (en) Organic thin film type light emitting element
JPH1131590A (en) Organic el element
JPH1187068A (en) Organic el element and manufacture thereof
JPH10321374A (en) Organic el(electroluminescent)element
JPH0496990A (en) Organic electroluminescence element
US20010043044A1 (en) Organic electroluminescence element
JP2772019B2 (en) EL device
JP2914361B2 (en) Organic thin film EL device
JP3242992B2 (en) Organic electroluminescence device
JP2881212B2 (en) EL device
US6187457B1 (en) Organic EL element and method of producing the same
JP2659597B2 (en) EL device
JP2888740B2 (en) Organic electroluminescence device
JPH1140352A (en) Organic el element and manufacture thereof
JP3226581B2 (en) Organic electroluminescence device
JPH06295788A (en) Organic electroluminescense element
JPH11329746A (en) Organic el element
JPH11339969A (en) Organic el element
JPH08264278A (en) Organic electroluminescence element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees