JP3225980U - Sterilizing water production equipment - Google Patents

Sterilizing water production equipment Download PDF

Info

Publication number
JP3225980U
JP3225980U JP2020000325U JP2020000325U JP3225980U JP 3225980 U JP3225980 U JP 3225980U JP 2020000325 U JP2020000325 U JP 2020000325U JP 2020000325 U JP2020000325 U JP 2020000325U JP 3225980 U JP3225980 U JP 3225980U
Authority
JP
Japan
Prior art keywords
water
electrolytic
electrolytic solution
pump
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020000325U
Other languages
Japanese (ja)
Inventor
俊昭 大木
俊昭 大木
Original Assignee
有限会社ヘルス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ヘルス filed Critical 有限会社ヘルス
Priority to JP2020000325U priority Critical patent/JP3225980U/en
Application granted granted Critical
Publication of JP3225980U publication Critical patent/JP3225980U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】流量センサの不具合の発生頻度が低いものであり、効率よく殺菌水を製造することができる殺菌水の製造装置を提供する。【解決手段】電解液を電気分解して電解次亜水とする電解槽42と、電解槽42に電解液を送るポンプ32、40を有する。電解槽42の温度を検知する温度センサ44と、温度センサ44の検知信号によりポンプ32、40を制御する制御装置46を備える。電解液の流量の異常による電解槽42の温度上昇を、温度センサ44が検知すると、制御装置46は、ポンプ32、40を停止させ、又は異常解消のための制御を行う。【選択図】図2PROBLEM TO BE SOLVED: To provide a sterilizing water production apparatus capable of efficiently producing sterilizing water in which a flow sensor has a low frequency of occurrence of defects. SOLUTION: An electrolytic cell 42 for electrolyzing an electrolytic solution into electrolyzed secondary water and pumps 32, 40 for sending the electrolytic solution to the electrolytic cell 42 are provided. A temperature sensor 44 for detecting the temperature of the electrolytic cell 42 and a control device 46 for controlling the pumps 32, 40 according to the detection signal of the temperature sensor 44 are provided. When the temperature sensor 44 detects a temperature rise in the electrolytic cell 42 due to an abnormality in the flow rate of the electrolytic solution, the control device 46 stops the pumps 32 and 40 or performs control for eliminating the abnormality. [Selection diagram] Figure 2

Description

この考案は、洗浄・消毒用途等で使用される殺菌水の製造装置に関する。   The present invention relates to an apparatus for producing sterilizing water used for cleaning and disinfecting purposes.

食品や食器の洗浄、手洗い、医療器具の洗浄等に用いられる殺菌水には、塩水等の電解液を電気分解することにより得られる電解次亜水を用いたものがあり、この電解次亜水は次亜塩素酸を主成分とする水溶液である。電解次亜水は、水で希釈され所定の濃度にして殺菌水としての製品となる。このような、電解次亜水を用いて殺菌水を製造する製造装置は、いろいろなものが提案されている。   Some of the sterilizing water used for washing food and tableware, washing hands, washing medical equipment, etc. uses electrolytic hypochlorous water obtained by electrolyzing an electrolytic solution such as salt water. Is an aqueous solution containing hypochlorous acid as a main component. The electrolyzed hypochlorite is diluted with water to a predetermined concentration to be a product as sterilizing water. Various types of manufacturing apparatuses have been proposed for manufacturing sterilizing water using electrolytic hypochlorous acid.

例えば、特許文献1の殺菌水製造装置は、水に塩化ナトリウムと塩酸とが添加された電解液を電気分解する無隔膜電解槽と、電気分解により得られる電解次亜水を希釈するために用いる希釈水の流路の流量を検知する流量センサ部と、制御回路部が設けられている。制御回路部は、流量センサ部で検知された流量信号に基づいて、所望の残留塩素濃度及びpHが得られるよう、電解液流量と電解電流とを制御するものである。   For example, the sterilizing water production apparatus of Patent Document 1 is used for diluting electroless hypochlorite obtained by electrolysis and a diaphragmless electrolytic cell for electrolyzing an electrolytic solution in which sodium chloride and hydrochloric acid are added to water. A flow rate sensor section for detecting the flow rate of the diluting water flow path and a control circuit section are provided. The control circuit unit controls the electrolytic solution flow rate and the electrolytic current so as to obtain a desired residual chlorine concentration and pH based on the flow rate signal detected by the flow rate sensor unit.

また、特許文献2の殺菌水製造装置は、水道水の給水口を上流側に有するとともに製造した殺菌水を放水するための放水口を下流側に有する主流路が設けられ、主流路内への水道水の供給又は供給の遮断を制御する電磁弁と、主流路に供給される水道水の水量を検知するための水流検知手段が装備されている。主流路における水流検知手段よりも下流側に、次亜塩素酸ナトリウム混入流路と希塩酸混入流路が設けられている。次亜塩素酸ナトリウム混入流路と希塩酸混入流路には、それぞれ主流路に次亜塩素酸ナトリウム又は希塩酸を送る薬液ポンプと、各薬液の水流を検知する薬液センサが各々設けられている。そして、水流検知手段と各薬液センサからの検知信号に応じて、電磁弁と各薬液ポンプの作動を制御する制御手段が備えられている。   Further, the sterilizing water manufacturing apparatus of Patent Document 2 is provided with a main flow path having a tap water supply port on the upstream side and a water discharge port for discharging the manufactured sterilizing water on the downstream side, and to the main flow path. An electromagnetic valve for controlling the supply or interruption of the supply of tap water and a water flow detection means for detecting the amount of tap water supplied to the main flow path are provided. A sodium hypochlorite mixed flow passage and a dilute hydrochloric acid mixed flow passage are provided downstream of the water flow detection means in the main flow passage. The sodium hypochlorite mixed flow passage and the dilute hydrochloric acid mixed flow passage are respectively provided with a chemical liquid pump for sending sodium hypochlorite or diluted hydrochloric acid to the main flow passage, and a chemical liquid sensor for detecting the water flow of each chemical liquid. Further, there is provided control means for controlling the operation of the electromagnetic valve and each chemical liquid pump according to the detection signals from the water flow detection means and each chemical liquid sensor.

また、特許文献3の次亜塩素酸塩の製造装置及び製造装置は、陽イオン交換膜によって陰極室と陽極室に区画した電解槽と一体に次亜塩素酸塩反応槽を設け、次亜塩素酸塩反応槽と、陽極室あるいは陰極室との間には、陽極室生成物あるいは陰極室生成物を、次亜塩素酸塩反応槽へ導入する導入手段が設けられている。陽極室への塩水の供給路には、食塩水ポンプが設けられ、陰極室への水の供給路には給水ポンプが設けられている。食塩水ポンプと給水ポンプは、陽極室へ供給する食塩水の濃度、流量の測定値に基づいて、制御装置により吐出量が調整され、電解槽には常に次亜塩素酸塩の生成量に応じた食塩水と水を供給することができる。   Further, the hypochlorite production apparatus and the production apparatus of Patent Document 3 are provided with a hypochlorite reaction tank integrated with an electrolytic cell divided into a cathode chamber and an anode chamber by a cation exchange membrane. Introducing means for introducing the anode chamber product or the cathode chamber product into the hypochlorite reaction tank is provided between the acid salt reaction tank and the anode chamber or the cathode chamber. A salt water pump is provided in the salt water supply path to the anode chamber, and a water supply pump is provided in the water supply path to the cathode chamber. The salt water pump and the water supply pump adjust the discharge rate by the control device based on the measured values of the concentration and flow rate of the saline solution supplied to the anode chamber, and the electrolytic cell always responds to the generated amount of hypochlorite. Can be supplied with saline and water.

特開平9−253650号公報JP-A-9-253650 特開2010−46603号公報JP, 2010-46603, A 特開2000−265289号公報JP, 2000-265289, A

上記各背景技術の場合、特許文献1の希釈水の流路や、特許文献2の主流路、特許文献3の電解槽への食塩水や水の供給路等の各流路に、流量を検出する流量センサが設けられ、流量を確認しながら殺菌水が製造されている。しかし、装置の不具合の多くは、これら流量センサの不具合が原因である。不具合は、流量センサに起因する場合よりも導通される液体の含有成分やぬめり等により発生することが多い。流量センサに不具合が発生した場合、部品を交換するために一度配管の液体の流通を止めて作業をする必要があり、時間と工数のかかるものである。   In the case of each of the background arts described above, the flow rate is detected in each of the diluting water flow passages of Patent Document 1, the main flow passage of Patent Document 2 and the saline and water supply passages to the electrolytic cell of Patent Document 3 and the like. A sterilizing water is manufactured while confirming the flow rate. However, many of the malfunctions of the device are caused by malfunctions of these flow rate sensors. Problems often occur due to components contained in the liquid that is conducted, slime, and the like, as compared with the case of being caused by the flow rate sensor. When a problem occurs in the flow rate sensor, it is necessary to stop the flow of the liquid in the pipe once to replace the parts, which requires time and man-hours.

この考案は、上記背景技術の問題点に鑑みてなされたものであり、流量センサ等の不具合の発生頻度が低いものであり、効率よく殺菌水を製造することができる殺菌水の製造装置を提供することを目的とする。   The present invention has been made in view of the problems of the background art described above, has a low occurrence frequency of defects such as a flow rate sensor, and provides a sterilizing water manufacturing apparatus capable of efficiently manufacturing sterilizing water. The purpose is to do.

この考案は、電解液を電気分解して電解次亜水とする電解槽と、前記電解槽に電解液を送るポンプと、前記電解槽の温度を検知する温度センサと、前記温度センサの検知信号により前記ポンプを制御する制御装置とが設けられ、前記電解槽の温度が所定の温度以上に上昇したことを前記温度センサが検知して、前記制御装置により前記ポンプの作動の停止等の制御を行う殺菌水の製造装置である。さらに前記制御装置は、前記電解槽の温度の異常を表示又は音等で警告したり、前記ポンプの流量を調整し、前記電解液の異常を解消する制御を行うものでも良い。   This invention is directed to an electrolytic cell that electrolyzes an electrolytic solution into electrolyzed secondary water, a pump that sends the electrolytic solution to the electrolytic cell, a temperature sensor that detects the temperature of the electrolytic cell, and a detection signal of the temperature sensor. A control device for controlling the pump is provided, and the temperature sensor detects that the temperature of the electrolytic cell has risen to a predetermined temperature or higher, and the control device controls the operation of the pump such as stop. This is a sterilizing water production device. Further, the control device may perform control such that an abnormality of the temperature of the electrolytic cell is displayed or a warning is given by a sound or the flow rate of the pump is adjusted to eliminate the abnormality of the electrolytic solution.

また、前記電解槽の近傍に、電気分解して得られた前記電解次亜水を希釈して前記殺菌水とする水が流通する主流路が設けられ、前記電解槽と前記主流路の間には前記電解次亜水を前記主流路に導入する電解次亜水流入水路が設けられ、前記主流路には、前記電解次亜水流入水路よりも上流側に、非接触流量センサが取り付けられている。   Further, in the vicinity of the electrolytic cell, a main flow path through which water to be the sterilized water is obtained by diluting the electrolyzed hypochlorite obtained by electrolysis is provided, and between the electrolytic cell and the main flow path. Is provided with an electrolytic secondary sub-aqueous inflow channel for introducing the electrolytic secondary sub-aqueous water into the main channel, the main channel, upstream of the electrolytic secondary sub-aqueous inflow channel, a non-contact flow sensor is attached. There is.

この考案の殺菌水の製造装置は、不具合の発生頻度が低いものであり、効率よく殺菌水を製造することができる。特に、電解槽の中の電解液の量や濃度に異常があると電解槽の温度が上昇することを利用し、温度の上昇により電解液の流量等の異常を検知し、電解液を送るポンプの制御を行うものである。これにより、電解液を電解槽に送る流量センサを無くすことができ、電解液に接触する電子部品を省くことで、流量センサに起因する不具合を無くすることができる。しかも、電解槽の温度の上昇を検知した時は、制御装置により電解液を送るポンプを自動的に停止又は調節して、異常を解消することができ、管理が容易である。   The apparatus for producing sterilized water according to the present invention has a low frequency of occurrence of defects and can efficiently produce sterilized water. In particular, a pump that sends an electrolyte by detecting an abnormality such as the flow rate of the electrolyte due to the temperature rise when the amount and concentration of the electrolyte in the electrolyte is abnormal Is to control. As a result, the flow sensor for sending the electrolytic solution to the electrolytic cell can be eliminated, and by omitting the electronic parts that come into contact with the electrolytic solution, it is possible to eliminate the trouble caused by the flow sensor. Moreover, when the rise in the temperature of the electrolytic cell is detected, the control device can automatically stop or adjust the pump for sending the electrolytic solution to eliminate the abnormality, and the management is easy.

この考案の一実施形態の殺菌水の製造装置による製造方法の概略図である。It is the schematic of the manufacturing method by the manufacturing apparatus of the sterilized water of one Embodiment of this invention. この考案の一実施形態の殺菌水の製造装置の概略図である。It is a schematic diagram of a sterilizing water manufacturing device of one embodiment of this invention.

以下、この考案の実施形態について説明する。図1はこの考案の一実施形態による殺菌水10の製造方法を示すもので、先ず水道水12に食塩14を溶解させて塩水17を作る。そして、塩水17と水道水12を、所定の比率で混合して電解液18を作り、無隔膜の電解槽42に入れて電気分解を行う。電気分解により得られた電解次亜水20は微酸性であり、微酸性の電解次亜水20を、水道水12で希釈し、さらに有機酸22を添加することにより殺菌水10となる。   Hereinafter, an embodiment of the present invention will be described. FIG. 1 shows a method of manufacturing sterilized water 10 according to an embodiment of the present invention. First, salt water 14 is dissolved in tap water 12 to make salt water 17. Then, salt water 17 and tap water 12 are mixed at a predetermined ratio to form an electrolytic solution 18, which is then placed in a diaphragmless electrolytic cell 42 for electrolysis. The electrolyzed hypochlorite 20 obtained by electrolysis is slightly acidic, and the slightly acid electrolyzed hypochlorite 20 is diluted with tap water 12 and the organic acid 22 is further added to form the sterilized water 10.

図2はこの実施形態の殺菌水10の製造装置24の概略図である。殺菌水10の製造装置24は、内部で殺菌水10を製造するための管体である主流路26を有している。そして、この主流路26は、一端部26aが水道の蛇口に連結され、反対側の終端部26bは製造された殺菌水10を放水する放水口となる。   FIG. 2 is a schematic diagram of the manufacturing apparatus 24 for the sterilized water 10 of this embodiment. The apparatus 24 for manufacturing the sterilizing water 10 has a main flow path 26 which is a pipe body for manufacturing the sterilizing water 10 therein. Then, in the main flow path 26, one end portion 26a is connected to a faucet of the water supply, and the opposite end portion 26b serves as a water discharge outlet for discharging the manufactured sterilizing water 10.

主流路26の先端部26aの近傍には、飽和塩水タンク用水路28が分岐され、飽和塩水タンク用水路28の先端には飽和塩水タンク30が設けられている。飽和塩水タンク30では、水道水12と食塩14が混合され、飽和した塩水17が作られる。飽和塩水タンク30には塩水ポンプ32が設けられ、塩水ポンプ32の下流には混合槽34が設けられている。   A saturated salt water tank water passage 28 is branched near the tip portion 26a of the main flow passage 26, and a saturated salt water tank 30 is provided at the tip of the saturated salt water tank water passage 28. In the saturated salt water tank 30, tap water 12 and salt 14 are mixed to make saturated salt water 17. A salt water pump 32 is provided in the saturated salt water tank 30, and a mixing tank 34 is provided downstream of the salt water pump 32.

主流路26の、飽和塩水タンク用水路28の少し下流には、水タンク用水路36が分岐され、水タンク用水路36の先端には水道水12を貯める水タンク38が設けられている。水タンク38には水ポンプ40が設けられ、水ポンプ40の下流は混合槽34に接続されている。混合槽34では、水道水12と塩水17が混合され、所定の濃度に調整され、電解液18となる。混合槽34の下流には、電解液18を電気分解して電解次亜水20とする電解槽42が設けられている。   A water tank water passage 36 branches off slightly downstream of the saturated salt water tank water passage 28 in the main flow passage 26, and a water tank 38 for storing tap water 12 is provided at the tip of the water tank water passage 36. A water pump 40 is provided in the water tank 38, and the downstream of the water pump 40 is connected to the mixing tank 34. In the mixing tank 34, the tap water 12 and the salt water 17 are mixed and adjusted to a predetermined concentration to form the electrolytic solution 18. An electrolysis tank 42 that electrolyzes the electrolytic solution 18 into electrolyzed secondary water 20 is provided downstream of the mixing tank 34.

電解槽42には温度センサ44が設けられている。電解槽42の中の電解液18の量や濃度に異常があると、電解槽42の温度が上昇し、温度の上昇により電解液18の流量等の異常として検知する。電解槽42の温度が上昇する原因として、電解槽42に電解液18が送り込まれないことが考えられ、水ポンプ40からの水道水12の供給が止まったか、塩水ポンプ32からの塩水17の供給が止まったこと等である。水道水12の供給が止まった場合、電解槽42に新たに電解液18が供給されないが、電流が流れ続けて電解液18の温度が異常に上がり、電解次亜水20の濃度が担保できなくなると同時に電解槽42の劣化の原因となる。塩水17の供給が止まった場合、電気分解を行う上で定電流を維持するために電源がどんどん電圧を上げてゆき、電源が異常発熱を起こし、電源がダウンする原因になり、また電解次亜水20の濃度が担保できなくなる。   The electrolytic cell 42 is provided with a temperature sensor 44. If there is an abnormality in the amount or concentration of the electrolytic solution 18 in the electrolytic bath 42, the temperature of the electrolytic bath 42 rises, and the rise in temperature detects an abnormality in the flow rate of the electrolytic solution 18 or the like. The reason why the temperature of the electrolytic cell 42 rises is that the electrolytic solution 18 is not sent to the electrolytic cell 42, and the supply of the tap water 12 from the water pump 40 is stopped or the supply of the salt water 17 from the salt water pump 32 is performed. Has stopped. When the supply of the tap water 12 is stopped, the electrolytic solution 18 is not newly supplied to the electrolytic cell 42, but the current continues to flow and the temperature of the electrolytic solution 18 rises abnormally, so that the concentration of the electrolyzed secondary water 20 cannot be ensured. At the same time, it causes deterioration of the electrolytic cell 42. When the supply of the salt water 17 is stopped, the voltage of the power supply keeps increasing in order to maintain a constant current during electrolysis, which causes abnormal heat generation of the power supply, causing the power supply to go down. The concentration of water 20 cannot be guaranteed.

塩水ポンプ32と水ポンプ40には、温度センサ44から検知信号が送られる制御装置46が接続されている。制御装置46は、電解槽42の電解液18の温度が所定の温度以上に上昇したことを検知して、塩水ポンプ32と水ポンプ40を停止させる等の制御を行う。また、電解槽42の温度の異常を表示又は音等で警告したり、さらに、制御装置46が自動的に流量を調整して、異常を解消するものでも良い。   A control device 46 to which a detection signal is sent from a temperature sensor 44 is connected to the salt water pump 32 and the water pump 40. The control device 46 detects that the temperature of the electrolytic solution 18 in the electrolytic bath 42 has risen to a predetermined temperature or higher, and performs control such as stopping the salt water pump 32 and the water pump 40. Further, the abnormality of the temperature of the electrolytic cell 42 may be displayed or warned by sound or the like, and the control device 46 may automatically adjust the flow rate to eliminate the abnormality.

電解槽42の下流には、電解液18を電気分解して得られた電解次亜水20を貯める次亜水タンク48が設けられている。次亜水タンク48には次亜水ポンプ50が設けられ、次亜水ポンプ50には電解次亜水流入水路52が接続されている。電解次亜水流入水路52は、主流路26の水タンク用水路36よりも下流に接続され、電解次亜水20は主流路26に導入され、水道水12と混合される。   A downstream sub-water tank 48 for storing electrolyzed secondary water 20 obtained by electrolyzing the electrolytic solution 18 is provided downstream of the electrolytic cell 42. A secondary sub-water pump 50 is provided in the secondary sub-water tank 48, and an electrolytic secondary sub-water inflow channel 52 is connected to the secondary sub-water pump 50. The electrolytic sub-submerged inflow water channel 52 is connected to the main channel 26 downstream of the water tank channel 36, and the electrolytic sub-submerged water 20 is introduced into the main channel 26 and mixed with the tap water 12.

主流路26の、電解次亜水流入水路52の下流には、酸流入水路54が分岐され、酸流入水路54の先端には、酸ポンプ56を介して酸タンク58が設けられている。酸タンク58には有機酸22が貯められている。有機酸22は、酸流入水路54から主流路26に導入され、水道水12と電解次亜水20に混合され、殺菌水10が製造される。製造された殺菌水10は終端部26bから送水され、図示しない製品タンク等に収容される。   An acid inflow water channel 54 is branched from the main flow path 26 downstream of the electrolyzed secondary water inflow water path 52, and an acid tank 58 is provided at the tip of the acid inflow water path 54 via an acid pump 56. The organic acid 22 is stored in the acid tank 58. The organic acid 22 is introduced into the main flow path 26 from the acid inflow water channel 54 and mixed with the tap water 12 and the electrolyzed secondary sub-water 20 to produce the sterilized water 10. The produced sterilizing water 10 is sent from the terminal end portion 26b and is stored in a product tank (not shown) or the like.

主流路26の、水タンク用水路36と電解次亜水流入水路52の間には、クランプオン式デジタル流量センサ等の非接触流量センサ60が取り付けられている。非接触流量センサ60は、主流路26の管体の外側面に取り付けられ、主流路26の水道水12と直接接触することがなく、水道水12との接触に起因するトラブルを避け、不具合を無くし、メンテナンスフリーである。万が一非接触流量センサ60本体のトラブルがあっても、現場には最小限の時間で対応が可能である。   A non-contact flow rate sensor 60 such as a clamp-on type digital flow rate sensor is attached to the main flow path 26 between the water tank water path 36 and the electrolytic secondary sub-aqueous water inflow water path 52. The non-contact flow rate sensor 60 is attached to the outer surface of the pipe body of the main flow path 26, does not directly contact the tap water 12 of the main flow path 26, avoids troubles caused by contact with the tap water 12, and prevents malfunctions. It is lost and maintenance-free. Even if there is a problem with the main body of the non-contact flow sensor 60, it can be dealt with in the minimum time on site.

この実施形態の殺菌水10の製造方法と製造装置24は、電解槽42の中の電解液18の量や濃度に異常があると電解槽42の温度が上昇することを利用し、温度の上昇を基にして、制御装置46は電解液18の流量の減少や濃度の変化等の異常を判断する。制御装置46により異常と判断された場合、電解液18の材料となる塩水17を送る塩水ポンプ32または塩水17に混合する水道水12を送る水ポンプ40を停止し、電解槽42の温度の異常を表示又は音等で警告する。そして、迅速に人手で異常を解消しても良く、自動的に塩水ポンプ32または水ポンプ40を制御して、電解液18の異常を解消する処理を行うこともできる。   The method for manufacturing the sterilized water 10 and the manufacturing apparatus 24 of this embodiment utilize the fact that the temperature of the electrolytic cell 42 rises when there is an abnormality in the amount or concentration of the electrolytic solution 18 in the electrolytic cell 42. Based on the above, the control device 46 determines an abnormality such as a decrease in the flow rate of the electrolytic solution 18 or a change in the concentration. When the control device 46 determines that there is an abnormality, the salt water pump 32 that sends the salt water 17 that is the material of the electrolytic solution 18 or the water pump 40 that sends the tap water 12 mixed with the salt water 17 is stopped, and the temperature of the electrolytic cell 42 is abnormal. Is warned with a display or sound. Then, the abnormality may be promptly eliminated manually, or the salt water pump 32 or the water pump 40 may be automatically controlled to perform the treatment for eliminating the abnormality of the electrolytic solution 18.

この実施形態の殺菌水10の製造方法と製造装置24によれば、電解液18に流量センサ等の電子部品が直接接触しておらず、不具合の発生頻度が低いものであり、効率よく殺菌水10を製造することができる。温度センサ44で電解槽42の温度の上昇を検知した時は、制御装置46により塩水ポンプ32と水ポンプ40を自動的に停止させたり、流量を調節して異常を解消することができ、生産管理が容易である。特に、電解槽42の電解液18の流量を測定することなく、電解槽42に流れる電解液18を制御することができ、流量センサが不要であり、流量センサを無くすことで流量センサに起因する不具合を無くすることができる。また、電解次亜水20を希釈する水道水12は、主流路26の外側面に取り付けられた非接触流量センサ60で流量を測定するため、水道水12に触れることがなく、不具合の発生頻度を低くすることができる。非接触流量センサ60に不具合が発生した場合でも、主流路26の水道水12を抜く必要がなく、外側から修理や交換を行うことができ、作業工程が容易である。   According to the manufacturing method and the manufacturing apparatus 24 of the sterilized water 10 of this embodiment, the electrolytic solution 18 is not in direct contact with the electronic components such as the flow rate sensor, and the frequency of occurrence of defects is low. 10 can be manufactured. When the temperature sensor 44 detects an increase in the temperature of the electrolytic cell 42, the controller 46 can automatically stop the salt water pump 32 and the water pump 40, or adjust the flow rate to eliminate the abnormality. Easy to manage. In particular, the electrolytic solution 18 flowing in the electrolytic bath 42 can be controlled without measuring the flow rate of the electrolytic solution 18 in the electrolytic bath 42, a flow sensor is not necessary, and the flow sensor is eliminated by eliminating the flow sensor. Problems can be eliminated. Further, since the tap water 12 that dilutes the electrolyzed sub-aqueous water 20 measures the flow rate with the non-contact flow sensor 60 attached to the outer surface of the main flow path 26, the tap water 12 does not touch the tap water 12 and the frequency of occurrence of malfunctions. Can be lowered. Even if a failure occurs in the non-contact flow rate sensor 60, it is not necessary to drain the tap water 12 in the main flow path 26, repair and replacement can be performed from the outside, and the work process is easy.

なお、この考案の殺菌水の製造方法と製造装置は、上記実施の形態に限定されるものではない。各成分の材料は上記実施の形態に限定されず、同じ機能を有するものであれば良い。水は、水道水以外に地下水などでもよく、電解液も塩水以外でもよい。有機酸の種類も自由に変更可能である。   The sterilizing water manufacturing method and manufacturing apparatus of the present invention are not limited to the above embodiment. The material of each component is not limited to the above-mentioned embodiment, and any material having the same function may be used. The water may be groundwater or the like other than tap water, and the electrolytic solution may be other than salt water. The type of organic acid can be freely changed.

10 殺菌水
12 水道水
14 食塩
17 塩水
18 電解液
20 電解次亜水
26 主流路
32 塩水ポンプ
40 水ポンプ
42 電解槽
44 温度センサ
46 制御装置
52 電解次亜水流入水路
60 非接触流量センサ
10 Sterilized Water 12 Tap Water 14 Salt 17 Salt Water 18 Electrolyte 20 Electrolyte Sub-Aqueous Water 26 Main Flow Path 32 Salt Water Pump 40 Water Pump 42 Electrolyzer 44 Temperature Sensor 46 Control Device 52 Electrolytic Sub-Aqueous Water Inflow Channel 60 Non-contact Flow Rate Sensor

Claims (2)

電解液を電気分解して電解次亜水とする電解槽と、前記電解槽に電解液を送るポンプと、前記電解槽の温度を検知する温度センサと、前記温度センサの検知信号により前記ポンプを制御する制御装置が設けられ、
前記制御装置は、前記電解槽の温度が所定の温度以上に上昇したことを前記温度センサが検知すると、前記電解槽の前記電解液の流量を測定することなく、前記ポンプによる前記電解液の流量を制御して前記電解液の流量の異常を解消することを特徴とする殺菌水の製造装置。
An electrolytic bath that electrolyzes an electrolytic solution into electrolyzed hypochlorite, a pump that feeds the electrolytic solution to the electrolytic bath, a temperature sensor that detects the temperature of the electrolytic bath, and a pump that operates the pump according to a detection signal of the temperature sensor. A control device for controlling is provided,
The control device, when the temperature sensor detects that the temperature of the electrolytic cell has risen to a predetermined temperature or higher, without measuring the flow rate of the electrolytic solution of the electrolytic cell, the flow rate of the electrolytic solution by the pump Is controlled to eliminate abnormalities in the flow rate of the electrolytic solution.
前記電解槽の近傍に、電気分解して得られた前記電解次亜水を希釈して前記殺菌水とする水が流通する主流路が設けられ、前記電解槽と前記主流路の間には前記電解次亜水を前記主流路に導入する電解次亜水流入水路が設けられ、前記主流路には、前記電解次亜水流入水路よりも上流側に、非接触流量センサが取り付けられている請求項1記載の殺菌水の製造装置。   In the vicinity of the electrolysis tank, a main flow path is provided in which water that is obtained by diluting the electrolyzed sub-aqueous solution obtained by electrolysis and sterilized water flows, and between the electrolysis tank and the main flow path is the An electrolytic sub-submerged water inflow channel for introducing electrolyzed sub-submerged water into the main flow channel is provided, and a non-contact flow sensor is attached to the main flow channel on the upstream side of the electrolytic sub-sub water inflow channel. Item 1. A sterilizing water production apparatus according to item 1.
JP2020000325U 2020-02-03 2020-02-03 Sterilizing water production equipment Active JP3225980U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000325U JP3225980U (en) 2020-02-03 2020-02-03 Sterilizing water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000325U JP3225980U (en) 2020-02-03 2020-02-03 Sterilizing water production equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016225804A Continuation JP2018083132A (en) 2016-11-21 2016-11-21 Manufacturing method and manufacturing apparatus of disinfected water

Publications (1)

Publication Number Publication Date
JP3225980U true JP3225980U (en) 2020-04-16

Family

ID=70166206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000325U Active JP3225980U (en) 2020-02-03 2020-02-03 Sterilizing water production equipment

Country Status (1)

Country Link
JP (1) JP3225980U (en)

Similar Documents

Publication Publication Date Title
CA2315355C (en) Electrochemical treatment of an aqueous solution
US8419926B2 (en) Electrolyzed water producing method and apparatus
US20110189302A1 (en) Electrochemical device
KR100706215B1 (en) Generation-system for antiseptic solution including clorine
KR100802361B1 (en) Electrolysis sterilization disinfecting possibility supply apparatus
JPH0442077B2 (en)
EP1878704A1 (en) Electrochemical treatment of an aqueous solution
KR20110088665A (en) Sterile water producing apparatus and method
JP6620321B2 (en) Electrolyzed water generator
EP2569254B1 (en) Device for producing an electrochemically activated solution by means of an electrolysis process
JP3225980U (en) Sterilizing water production equipment
KR200435320Y1 (en) Generation-system for antiseptic solution including clorine
JP5244038B2 (en) Electrolyzed water mixing device
KR20190025240A (en) Apparatus for manufacturing sterilizing water
JP2018083132A (en) Manufacturing method and manufacturing apparatus of disinfected water
WO2020179339A1 (en) Hydrogen addition device, and method for assessing degree consumption of hydrogen permeable film
JP3571258B2 (en) Electrolyzed water generator
KR20120028515A (en) Device and method for generating sterilizer
JP2020076117A (en) Electrolytic water production device
KR101436111B1 (en) Method and device for generating sterilizing agent
TWI615362B (en) Sterilizing water generating device and preparation method thereof
KR20170011790A (en) Clorine generator and management system using the same
JP2020058971A (en) Electrolytic water generation device
IE20080638U1 (en) Electrochemical device
IES85650Y1 (en) Electrochemical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 3225980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350