JP3225115B2 - 32-hedron globe material and method of making the same - Google Patents
32-hedron globe material and method of making the sameInfo
- Publication number
- JP3225115B2 JP3225115B2 JP29576792A JP29576792A JP3225115B2 JP 3225115 B2 JP3225115 B2 JP 3225115B2 JP 29576792 A JP29576792 A JP 29576792A JP 29576792 A JP29576792 A JP 29576792A JP 3225115 B2 JP3225115 B2 JP 3225115B2
- Authority
- JP
- Japan
- Prior art keywords
- triangle
- pentagon
- base
- arbitrary
- superimposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Instructional Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、厚紙を切り抜いて多面
体を組み上げ、上記厚紙に予め地図を印刷しておいて地
球儀を製作する技術に関するものである。ただし、本発
明において厚紙とは、合成樹脂製の厚紙用のシートを含
む意であり、切り抜くとは抜ち抜いたり剥がし取ったり
することも含む意である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a globe by cutting out thick paper to form a polyhedron and printing a map on the thick paper in advance. However, in the present invention, the term "cardboard" includes a sheet for cardboard made of a synthetic resin, and the term "cutout" includes the meaning of "pulling out" or "peeling off".
【0002】[0002]
【従来の技術】厚紙を切り抜いて多面体を組み上げて地
球儀を構成することは公用公知である。図6(B)は公
知例の正12面体式地球儀の斜視図である。このような
従来例の正12面体よりなる地球儀は、これを厚紙上に
展開し、糊代もしくは差込片を付して輪郭に断続的な切
目を入れるとともに、折目の線に沿って圧痕を付し、か
つ該厚紙上に展開された12個の正5角形に地図を印刷
した地球儀用材料として供給される。このように構成さ
れた地球儀用材料は薄板状であって輸送,保管に便利で
あり小児用の教材としても、成人向けの趣味にも好適で
あり、また、貯金箱,玩具,机上アクセサリー,宣伝用
など各種の用途が有る。2. Description of the Related Art It is publicly known that a globe is formed by cutting out thick paper and assembling a polyhedron. FIG. 6B is a perspective view of a known dodecahedral globe. Such a conventional icosahedral globe is developed on cardboard, is provided with glue margins or insertion pieces to make intermittent cuts in the contours, and indents along the fold lines. And printed as a globe material with a map printed on 12 regular pentagons spread on the cardboard. The globe material thus constructed is in the form of a thin plate, which is convenient for transportation and storage, suitable as a teaching material for children and a hobby for adults, and also includes a piggy bank, a toy, a desk accessory, and an advertisement. There are various uses such as use.
【0003】[0003]
【発明が解決しようとする課題】図6(B)に示した正
12面体式の厚紙製地球儀は完全な球体との類似性が充
分でなく、例えば鎖線で示した赤道1が円形にならず、
稜とも一致しないので不自然である。正多面体は5種類
有って、その外観形状は図7に示すごとくである。図7
に示したAは正4面体,Bは正6面体,Cは正8面体,
Dは正12面体,Eは正20面体である。これらの展開
図の例はそれぞれ図8に示すごとくであって、aは正4
面体の展開図,bは正6面体の展開図,cは正8面体の
展開図,dは正12面体の展開図,eは正20面体の展
開図である。球に近い感覚を得るには、前記の正12面
体よりも面の数が少なくては不適当であり、面の数の多
いことが望ましいが、前記正12面体よりも面の数が多
い正多面体は正20面体だけである。しかし乍ら、正2
0面体では未だ球に近い感じが不充分であり、12個の
頂点の尖りの印象が強烈である。The dodecahedral cardboard globe shown in FIG. 6 (B) is not sufficiently similar to a perfect sphere. For example, the equator 1 shown by a chain line is not circular. ,
It is unnatural because it does not match the ridge. There are five types of regular polyhedrons, and their external shapes are as shown in FIG. FIG.
A is a regular tetrahedron, B is a regular hexahedron, C is a regular octahedron,
D is a regular dodecahedron, and E is a regular icosahedron. A Examples of these development view than as shown in FIGS 8, a positive 4
B is a development view of a regular hexahedron, c is a development view of a regular octahedron, d is a development view of a regular dodecahedron, and e is a development view of a regular icosahedron. In order to obtain a feeling similar to a sphere, it is inappropriate if the number of faces is smaller than the above-mentioned regular dodecahedron, and it is desirable that the number of faces is greater. The polyhedron is only a regular icosahedron. However, positive 2
In the case of the octahedron, the feeling close to a sphere is still insufficient, and the sharp impression of the twelve vertices is intense.
【0004】そこで考えられることは、2種類の正多角
形よりなる複合多面体の利用である。例えばサッカーボ
ールにおいては、図9の展開図に示されるように12個
の相等しい正5角形と、上記正5角形に比して辺長の等
しい20個の正6角形とよりなる32面体が利用されて
いる。このような形状にレザーを切り取り(ただし縫代
を含めて)縫い合わせることにより、図10(A)に示
すごとく、ほぼ球に近い感触が得られる。ところが、図
9に示した展開図に従って厚紙を切り抜いて32面体の
地球儀を構成しようとすると、次に述べるような不具合
が有る。すなわち、図9に鎖線で囲んで示したJ部の拡
大図を図10(B)に示す。正6角形の頂角は120
度、正5角形の頂角は108度であるから、図示の谷状
の切込部Kの角度θは12度である。この角θが非常に
小さい(12度)ため、この部分に糊代を設けたり差込
片を設けたりすることが極めて困難である。無理に糊代
もしくは差込片を設けても、これを組み立てることは殆
ど不可能である。本発明は上述の事情に鑑みて為された
ものであって、格別な熟練を要せずに組み立てることが
でき、しかも球に近い地球儀を、厚紙によって構成する
技術を提供することを目的とする。What can be considered is the use of a composite polyhedron composed of two types of regular polygons. For example, in a soccer ball, as shown in the developed view of FIG. 9, a 32-hedron composed of 12 equal pentagons and 20 regular hexagons having the same side length as the regular pentagon is formed. It's being used. By cutting the leather into such a shape and stitching it (including the seam allowance), as shown in FIG. However, if the cardboard is cut out according to the development shown in FIG. 9 to form a 32-hedron globe, the following problem occurs. That is, FIG. 10B is an enlarged view of a portion J surrounded by a chain line in FIG. The apex angle of a regular hexagon is 120
Since the vertex angle of the regular pentagon is 108 degrees, the angle θ of the illustrated valley-shaped cut portion K is 12 degrees. Since this angle θ is very small (12 degrees), it is extremely difficult to provide a margin for glue or an insert in this portion. It is almost impossible to assemble this even if the glue allowance or the insert is forcibly provided. The present invention has been made in view of the above circumstances, and has as its object to provide a technology that can be assembled without special skill, and that forms a globe close to a sphere by cardboard. .
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに創作した本発明の基本的原理を、その実施例に対応
する図1および図6(A)を参照して説明すると次のご
とくである。すなわち、図6(A)に示すような外観を
有する32面体を厚紙の上に展開すると、図1に示すご
とく12個の正5角形と20個の正3角形とになる。こ
の展開図形に適宜の差込片もしくは糊代を付して切り取
り、図6(A)のように組み立てると、球に近い感触の
多面体が得られる。図1の展開図形の上に予め地図を印
刷しておくと球に近い感触の地球儀が構成される。The basic principle of the present invention created to achieve the above object will be described below with reference to FIGS. 1 and 6A corresponding to the embodiment. It is. That is, when a hexahedron having the appearance as shown in FIG. 6A is developed on cardboard, it becomes 12 regular pentagons and 20 regular triangles as shown in FIG. When this developed figure is cut out with an appropriate insert or glue margin attached and assembled as shown in FIG. 6A, a polyhedron having a feel close to a sphere is obtained. If a map is printed in advance on the developed figure in FIG. 1, a globe having a feeling close to a sphere is formed.
【0006】[0006]
【作用】従来例として挙げた図10(A)の32面体
(サッカーボール)は、その展開図である図10(B)
における谷状部Kの切込角が12度であったのに比し
て、前記図1の部分拡大図である図2(A)における谷
状部Kの切込角は24度となる。このため、差込片を構
成することも糊代を構成することも可能になり、その組
立作業も容易である。さらに、図6(A)の32面体
は、任意の正5角形を底面として机上に置いたとき、こ
れを上下に2分する水平面による切口1´(鎖線で示
す)と稜線とが一致するので、これらの稜線を赤道とす
るように地図を印刷しておけば、異和感を与えない自然
な感触の地球儀が得られる。The 32-hedron (soccer ball) shown in FIG. 10A as a conventional example is an expanded view of FIG. 10B.
The cut angle of the valley K in FIG. 2A, which is a partially enlarged view of FIG. 1, is 24 degrees as compared with the cut angle of the valley K in FIG. For this reason, it is possible to form the insertion piece and the glue allowance, and the assembling work is also easy. Further, in the 32-hedron shown in FIG. 6A, when an arbitrary regular pentagon is placed on a desk as a bottom surface, a cut 1 ′ (indicated by a chain line) formed by a horizontal plane that divides this vertically into two halves coincides with a ridge line. If the map is printed so that these ridges are set to the equator, a globe having a natural feeling without giving a strange feeling can be obtained.
【0007】[0007]
【実施例】図1は本発明に係る32面体の地球儀の展開
図形の1例であって、正5角形P1ないしP12の12
個の正5角形と、正3角形T1ないしT8の8個の正3
角形と、12個の正3角形T0(サフィックスを付した
T01,T02およびT09〜T011を含む)とよりなる
計32個の正多角形で構成されている。(本発明におけ
る5角形は総べて正5角形であるから、単に5角形と略
称することあり、また同様に、正3角形を3角形と略称
することあり)。FIG. 1 shows an example of a developed figure of a hexahedral globe according to the present invention.
Pentagons and eight regular triangles T1 to T8
And square, and a twelve equilateral triangle T0 becomes more and (T0 marked with suffixes 1, T0 2 and T0 9 ~T0 11 a included) total 32 regular polygon. (All pentagons in the present invention are regular pentagons, so they may be simply referred to as pentagons, and similarly, regular triangles may be abbreviated as triangles.)
【0008】上記5角形と3角形とは辺長が等しい。な
おT1ないしT8の8個の3角形と12個の3角形T0
との小計20個の3角形は互いに合同であるが、T1な
いしT8は3辺中の2辺以上を5角形に連接して拘束さ
れており、T0は1辺のみを5角形に連接しているのみ
である。12個の3角形T0のうち、T09〜T011は
拘束を受けるがその他の9個の3角形T0は、展開技法
的な拘束が少ない。これについては後に詳述する。The pentagon and the triangle have the same side length. In addition, 8 triangles T1 to T8 and 12 triangles T0
Are triangular with each other, but T1 to T8 are constrained by connecting two or more of the three sides to a pentagon, and T0 is connected by connecting only one side to a pentagon. There is only. Of the 12 triangles T0, T0 9 ~T0 11 triangular T0 to receive but other nine constraints are less expansion techniques restraint. This will be described later in detail.
【0009】図2は3角形T5と5角形P2との間に形
成される谷状部Kの切込角φの説明図である。正5角形
の頂角は108度,正3角形の頂角は60度であるか
ら、切込角φは24度となる。この値は図10(B)に
示した従来例における切込角θが12度であったのに比
して2倍である。この大きい切込角を利用して、(A)
図のごとく差込片2や差込孔3を設けることが容易であ
り、(B)図のごとく糊代4を設けることも容易であ
る。本発明を実施する際は厚紙上に図1に示した実線の
輪郭に、差込片・差込孔、もしくは糊代(いずれも図示
省略)を付し、断続的な切目を入れて指先で切り抜ける
ようにするとともに、同図に破線で示した折目の線に沿
って線状の圧痕を付して容易に折り曲げられるようにす
る。FIG. 2 is an explanatory diagram of the cutting angle φ of the valley K formed between the triangle T5 and the pentagon P2. Since the apex angle of the regular pentagon is 108 degrees and the apex angle of the regular triangle is 60 degrees, the cutting angle φ is 24 degrees. This value is twice as large as the cutting angle θ of 12 degrees in the conventional example shown in FIG. 10B. Using this large cutting angle, (A)
It is easy to provide the insertion piece 2 and the insertion hole 3 as shown in the figure, and it is also easy to provide the glue allowance 4 as shown in FIG. In practicing the present invention, an insertion piece / insertion hole or glue allowance (both not shown) is attached to the outline of the solid line shown in FIG. 1 on cardboard, and an intermittent cut is made with a fingertip. In addition to cutting through, a linear indentation is provided along a fold line shown by a broken line in FIG.
【0010】以上のように構成された地球儀用材料を工
業的に生産し、経済的に供給するには、32面体を如何
に展開すべきかという問題が有る。いま仮に12個の正
5角形と20個の正3角形(ただし、上記正5角形と辺
長を等しからしめる)とを厚紙から切り抜いて、これら
を机上に並べると、極めて多くの並べ方が有る。すなわ
ち、図6(A)に示した32面体の展開方法は極めて多
い。しかし、実際問題として、展開図形が長方形の用紙
(長,短辺の比が約1.4倍)の中に旨く収まることが
望まれる。すなわち、32面体の大きさを表わす1辺の
長さ寸法(稜の長さ寸法)を与えられた場合には、最小
面積の長方形(比1.4)内に展開することを、また、
用紙の長方形の寸法を、例えばA5版とかB5版という
ように指定された場合には最大寸法の32面体をその中
に展開することが望まれる。[0010] In order to industrially produce and economically supply the globe material constituted as described above, there is a problem how to develop the 32-hedron. Now, if 12 regular pentagons and 20 regular triangles (however, the regular pentagons and the side lengths are equalized) are cut out from cardboard, and these are arranged on a desk, an extremely large number of arrangements are required. Yes. In other words, there are many methods of developing the 32-hedron shown in FIG. However, as a practical problem, it is desired that the developed figure fits in a rectangular sheet (the ratio of the long side to the short side is about 1.4 times). In other words, given the length of one side (length of the ridge) representing the size of the 32-hedron, expansion into a rectangle with a minimum area (ratio 1.4) is performed.
If the rectangular dimensions of the paper are specified, for example, as A5 or B5, it is desirable to expand the largest hexahedron into it.
【0011】図1は、推奨される展開例の中の1例であ
るが、これについて考察すると、符号T0(サフィック
ス付きを含む)を付した12個の正3角形は、その1辺
のみを正5角形の1辺に連接されていて、展開技法上の
制約が少ない。すなわち、正5角形P4に連接している
正3角形T01は、これを鎖線で示したt1の位置に移動
させることが可能であり、同様に正3角形T02はt2位
置に移すことができる。FIG. 1 shows one of the recommended development examples. Considering this, the twelve regular triangles denoted by the symbol T0 (including those with a suffix) have only one side thereof. It is connected to one side of a regular pentagon and has few restrictions on the expansion technique. That is, regular triangle T0 1 which is connected with the positive pentagon P4 is can be moved to the position of t 1 showing it in chain line, likewise regular triangle T0 2 is transferred to t 2 position be able to.
【0012】このような自由度を考慮に残した上で、こ
の図1に示した展開方法を特定するものは、本図1から
9個の正3角形T0を除いて図3に示した図形が、図1
の展開例を特定する骨幹部分である。With the above degrees of freedom taken into consideration, the expansion method shown in FIG. 1 is specified in FIG. 3 except for the nine regular triangles T0 shown in FIG. But Figure 1
It is a diaphysis part which specifies the example of deployment of.
【0013】上記の展開方法を説明するため、図5
(A)に示すように正5角形の任意の辺を底辺aと名付
け、これに隣接する左側の辺を辺bと名付け、同じく右
側の辺を辺cと名付ける。そして、頂点と辺bとを結ぶ
辺を辺dと名付け、同じく頂点と辺eとを結ぶ辺を辺e
と名付ける。図5(B)に示す正3角形の任意の辺を底
辺fと名付け、左側の斜辺を辺g,右側の斜辺を辺hと
名付ける。そして図3に示す如く、厚紙のほぼ中央に第
1の3角形T1を配置し、該第1の3角形T1の辺gに
底辺aを重ね合わせて第1の5角形P1を配置し、該第
1の5角形P1の辺eに底辺fを重ね合わせて第2の3
角形T2を配置し、該第2の3角形T2の辺hに任意の
辺を重ね合わせて第2の5角形P2を配置するととも
に、該3角形T2の辺gに底辺aを重ね合わせて第3の
5角形P3を配置し、該第3の5角形P3の辺bに底辺
fを重ね合わせて第3の3角形T3を配置し、該第3の
3角形T3の辺hに任意の辺を重ね合わせて第4の5角
形P4を配置し、前記第3の5角形P3の辺dに底辺f
を重ね合わせて第4の3角形T4を配置するとともに該
第4の3角形T4の辺hに任意の辺を重ね合わせて第6
の5角形P6を配置し、前記第3の5角形P3の辺cに
底辺fを重ね合わせて第5の3角形T5を配置するとと
もに、該第5の3角形T5の辺gに任意の辺を重ね合わ
せて第5の5角形P5を配置し、前記第1の3角形T1
の辺hに底辺aを重ね合わせて第7の5角形P7を配置
するとともに、該第7の5角形P7の辺eに底辺fを重
ね合わせて第6の3角形T6を配置し、該第6の3角形
T6の辺hに底辺aを重ね合わせて第8の5角形P8を
配置するとともに、該第6の3角形T6の辺gに任意の
辺を重ね合わせて第9の5角形P9を配置し、上記第8
の5角形P8の辺eに底辺fを重ね合わせて第7の3角
形T7を配置し、該第7の3角形T7の辺hに任意の辺
を重ね合わせて第10の5角形P10を配置するととも
に、該第7の3角形T7の辺gに底辺aを重ね合わせて
第11の5角形P11を配置し、該第11の5角形P1
1の辺bに底辺fを重ね合わせて第8の3角形T8を配
置するとともに、該第8の3角形T8の辺hに任意の辺
を重ね合わせて第12の5角形P12を配置し、さら
に、前記第3の5角形P3の辺eに任意の辺を重ね合わ
せて第9の3角形T09を配置するとともに、第8の5
角形P8の辺cに任意の辺を重ね合わせて第10の3角
形T010を配置し、かつ、第1の5角形P1の辺cに任
意の辺を重ね合わせて第11の3角形T011を配置す
る。FIG. 5 is a view for explaining the above-mentioned developing method.
As shown in (A), an arbitrary side of the regular pentagon is named base a, the left side adjacent thereto is named side b, and the right side is similarly named side c. A side connecting the vertex and the side b is named a side d, and a side connecting the vertex and the side e is a side e.
Name it. An arbitrary side of the regular triangle shown in FIG. 5B is named base f, a left oblique side is named side g, and a right oblique side is named side h. Then, as shown in FIG. 3, a first triangle T1 is arranged substantially at the center of the cardboard, a base a is overlapped with a side g of the first triangle T1, and a first pentagon P1 is arranged. The base f is overlapped with the side e of the first pentagon P1 to form a second
A second pentagon P2 is disposed by arranging a polygon T2, overlapping an arbitrary side on a side h of the second triangle T2, and arranging a base a on a side g of the triangle T2. A third pentagon P3 is arranged, a base f is overlapped on a side b of the third pentagon P3, a third triangle T3 is arranged, and an arbitrary side is arranged on a side h of the third triangle T3. Are superimposed to arrange a fourth pentagon P4, and the base f is set on the side d of the third pentagon P3.
Are overlapped with each other to arrange the fourth triangle T4, and any side is overlapped with the side h of the fourth triangle T4 to form the sixth triangle T4.
Is arranged, and the base f is overlapped with the side c of the third pentagon P3 to arrange the fifth triangle T5, and an arbitrary side is set to the side g of the fifth triangle T5. Are superimposed to arrange a fifth pentagon P5, and the first triangle T1
A seventh pentagon P7 is arranged by superimposing the base a on the side h, and a sixth triangle T6 is arranged by superimposing the base f on the side e of the seventh pentagon P7. An eighth pentagon P8 is arranged by superimposing the base a on the side h of the sixth triangle T6, and by superimposing an arbitrary side on the side g of the sixth triangle T6 to form a ninth pentagon P9. And the eighth
The seventh triangle T7 is arranged by superimposing the base f on the side e of the pentagon P8, and the tenth pentagon P10 is arranged by superimposing an arbitrary side on the side h of the seventh triangle T7. At the same time, the eleventh pentagon P11 is arranged by superimposing the base a on the side g of the seventh triangle T7,
An eighth triangle T8 is arranged by superimposing a base f on one side b, and a twelfth pentagon P12 is arranged by superimposing an arbitrary side on a side h of the eighth triangle T8; further, with arranging the triangle T0 9 ninth by superposing arbitrary edge to edge e of the third pentagon P 3, 5 of the 8
Place the triangle T0 10 of the 10 by superimposing any side to side c of the square P8, and triangle T0 11 of the 11 by superimposing any side to side c of the first pentagonal P1 Place.
【0014】本図1から容易に理解し得るように、この
展開図形に対して線対象をなす図形(つまり、本図1を
裏返しにした図形)を用いても、上記実施例におけると
同様に長方形の厚紙の上に32面体を都合良く展開する
ことができる。図4は、図3と異なる実施例の展開図で
あって、5角形および3角形の各辺の呼称は図5に示し
た前記実施例の呼称と同様である。図3の実施例と同様
にして、厚紙のほぼ中央に第1の3角形T1を配置し、
該第1の3角形T1の辺gに底辺aを重ね合わせて第1
の5角形P1を配置し、該第1の5角形P1の辺eに底
辺fを重ね合わせて第2の3角形T2を配置し、該第2
の3角形T2の辺hに任意の辺を重ね合わせて第2の5
角形P2を配置するとともに、該3角形T2の辺gに底
辺aを重ね合わせて第3の5角形P3を配置し、該第3
の5角形P3の辺bに底辺fを重ね合わせて第3の3角
形T3を配置し、該第3の3角形T3の辺hに任意の辺
を重ね合わせて第4の5角形P4を配置し、前記第3の
5角形P3の辺dに底辺fを重ね合わせて第4の3角形
T4を配置するとともに該第4の3角形T4の辺hに任
意の辺を重ね合わせて第6の5角形P6を配置し、前記
第3の5角形P3の辺cに底辺fを重ね合わせて第5の
3角形T5を配置するとともに、該第5の3角形T5の
辺gに任意の辺を重ね合わせて第5の5角形P5を配置
し、前記第1の3角形T1の底辺fに底辺aを重ね合わ
せて第7の5角形P7を配置するとともに、該第7の5
角形P7の辺dに底辺fを重ね合わせて第6の3角形T
6を配置し、該第6の3角形T6の辺gに底辺aを重ね
合わせて第8の5角形P8を配置するとともに、該第6
の3角形T6の辺hに任意の辺を重ね合わせて第9の5
角形P9を配置し、上記第8の5角形P8の辺dに底辺
fを重ね合わせて第7の3角形T7を配置し、該第7の
3角形T7の辺gに任意の辺を重ね合わせて第10の5
角形P10を配置するとともに、該第7の3角形T7の
辺hに底辺aを重ね合わせて第11の5角形P11を配
置し、該第11の5角形P11の辺cに底辺fを重ね合
わせて第8の3角形T8を配置するとともに、該第8の
3角形T8の辺gに任意の辺を重ね合わせて第12の5
角形P12を配置し、さらに、前記第3の5角形P3の
辺eに任意の辺を重ね合わせて第9の3角形T09を配
置するとともに、第8の5角形P8の辺bに任意の辺を
重ね合わせて第10の3角形T010を配置する。As can be easily understood from FIG. 1, even if a graphic which is a line object to this developed graphic (that is, a graphic obtained by turning over this FIG. 1) is used, as in the above embodiment, The 32-hedron can be conveniently spread on rectangular cardboard. FIG. 4 is an exploded view of an embodiment different from that of FIG. 3, and the designation of each side of the pentagon and the triangle is the same as the designation of the embodiment shown in FIG. As in the embodiment of FIG. 3, a first triangle T1 is arranged substantially at the center of the cardboard,
The first triangle T1 is overlapped with the base a on the side g to form a first triangle T1.
Is arranged, a base f is overlapped with a side e of the first pentagon P1, and a second triangle T2 is arranged.
Any side is superimposed on the side h of the triangle T2 of
In addition to arranging the polygon P2, the third pentagon P3 is arranged by superimposing the base a on the side g of the triangle T2.
The third triangle T3 is arranged by overlapping the base f on the side b of the pentagon P3, and the fourth pentagon P4 is arranged by overlapping an arbitrary side on the side h of the third triangle T3. Then, the base f is overlapped with the side d of the third pentagon P3 to arrange the fourth triangle T4, and an arbitrary side is overlapped with the side h of the fourth triangle T4 to form a sixth triangle. A pentagon P6 is arranged, a base f is overlapped with a side c of the third pentagon P3 to arrange a fifth triangle T5, and an arbitrary side is arranged on a side g of the fifth triangle T5. A fifth pentagon P5 is arranged by superimposition, a base a is superimposed on a base f of the first triangle T1, a seventh pentagon P7 is arranged, and the seventh pentagon P7 is arranged.
The sixth triangle T is formed by superimposing the base f on the side d of the polygon P7.
6 is arranged, the base a is overlapped with the side g of the sixth triangle T6, and the eighth pentagon P8 is arranged.
An arbitrary side is superimposed on the side h of the triangle T6 of
A polygon P9 is arranged, a base f is overlapped with the side d of the eighth pentagon P8, a seventh triangle T7 is arranged, and an arbitrary side is overlapped with the side g of the seventh triangle T7. Tenth
While arranging the polygon P10, the eleventh pentagon P11 is arranged by overlapping the base a with the side h of the seventh triangle T7, and the base f is overlapped with the side c of the eleventh pentagon P11. The eighth triangle T8 is arranged in the same manner as described above, and an arbitrary side is superimposed on the side g of the eighth triangle T8 to form a twelfth triangle T8.
Place a square P12, further with placing the triangle T0 9 ninth by superposing arbitrary edge to edge e of the third pentagon P 3, optionally the sides b of the pentagon P8 eighth Are overlapped with each other to arrange a tenth triangle T010.
【0015】上記図4に示した実施例の展開図につい
て、これを裏返した図形となるように展開しても同様の
効果が得られる。The same effect can be obtained by expanding the developed view of the embodiment shown in FIG. 4 so that the figure is turned upside down.
【0016】[0016]
【発明の効果】以上に説明したように本発明の地球儀用
材料を用いると、球体に近い感触の32面体から成る厚
紙製の地球儀を、格別の熟練を要せず容易に組み立てら
れることがことができる。また、本発明の地球儀用材料
の製作方法によれば、上記発明に係る地球儀用材料を経
済的に生産することができる。As described above, the use of the globe material of the present invention makes it possible to easily assemble a cardboard globe consisting of a 32-hedron having a feeling close to a sphere without special skill. Can be. Further, according to the method for producing a globe material of the present invention, the globe material according to the present invention can be economically produced.
【図1】本発明に係る32面体の地球儀用材料の1実施
例を示し、差込片もしくは糊代を除いた平面図である。FIG. 1 is a plan view showing an embodiment of a material for a 32-hedron globe according to the present invention, from which inserts or glue allowance are removed.
【図2】上記実施例の作用・効果を説明するために示し
た。3角形T5付近の平面図である。FIG. 2 is shown to explain the operation and effect of the embodiment. It is a top view near a triangle T5.
【図3】本発明に係る32面体の地球儀用材料の製作方
法の1実施例の、骨幹部の展開図である。FIG. 3 is an exploded view of a diaphysis of an embodiment of the method for producing a material for a 32-hedron globe according to the present invention.
【図4】上記実施例と異なる実施例を示し、同じ構成要
素の配列を異にした骨幹部の展開図である。FIG. 4 is an exploded view of a diaphyseal part, showing an embodiment different from the above-described embodiment, in which the arrangement of the same components is different.
【図5】(A)は図3,図4における正5角形に付した
符号の説明図、(B)は同じく3角形に付した符号の説
明図である。5 (A) is an explanatory view of the reference numerals attached to the regular pentagon in FIGS. 3 and 4, and FIG. 5 (B) is an explanatory view of the reference numerals attached to the same triangle.
【図6】(A)は本発明に適用した32面体の斜視図、
(B)は従来例の地球儀の斜視図である。FIG. 6A is a perspective view of a 32-hedron applied to the present invention,
(B) is a perspective view of a conventional globe.
【図7】A,B,C,D,Eは、それぞれ、存在し得る
5種類の正多面体の斜視図である。FIGS. 7A, 7B, 7C, and 7E are perspective views of five types of regular polyhedrons that can exist.
【図8】a,b,c,d,eは、それぞれ上記5種類の
正多面体の展開図の例である。FIGS. 8A, 8B, 8C, and 8D are examples of developments of the above five types of regular polyhedrons.
【図9】サッカーボールに利用されている公知の32面
体を構成するための展開図の1例である。FIG. 9 is an example of a development view for forming a known 32-hedron used for a soccer ball.
【図10】(A)は上記32面体の斜視図、(B)は上
記展開図における課題の説明図である。FIG. 10 (A) is a perspective view of the above-mentioned 32-hedron, and FIG. 10 (B) is an explanatory view of a problem in the above developed view.
1,1´…多面体よりなる地球儀に描かれた赤道,2…
差込片,3…差込孔,4…糊代。1,1 '... Equator drawn on a polyhedral globe, 2, ...
Insertion piece, 3 ... insertion hole, 4 ... glue allowance.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−112131(JP,A) 実開 昭60−120473(JP,U) (58)調査した分野(Int.Cl.7,DB名) G09B 27/00 - 29/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-112131 (JP, A) JP-A-60-120473 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G09B 27/00-29/10
Claims (7)
長を等しくする20個の正3角形とよりなる32面体を
厚紙の上に展開し、 上記展開図形を組み上げて32面体を形成したとき、上
記の32面体の表面に地球儀状の立体図形をなすよう
に、前記の厚紙の展開図形上に平面的な地図を印刷し、 上記展開図形の輪郭に接合用の余白部分を付して断続的
な切目を入れるとともに、該展開図形の折目の線に沿っ
て線状の圧痕を付したことを特徴とする、32面体の地
球儀用材料。1. A hexahedron composed of 12 regular pentagons and 20 regular triangles having the same side length as the regular pentagon is developed on a cardboard, and the developed figure is assembled to form a hexahedron. Is formed, a flat map is printed on the developed figure of the cardboard so as to form a globe-like three-dimensional figure on the surface of the above-mentioned 32 face, and a margin for joining is added to the outline of the developed figure. 32. A globe material having a hexahedron, characterized in that it is provided with intermittent cuts and linear indentations are formed along the fold lines of the developed figure.
辺のそれぞれについて、差込片と、差込用の孔を設けた
突出片との対偶であることを特徴とする。請求項1に記
載した32面体の地球儀用材料。2. The joint blank portion is a pair of a plug-in piece and a projecting piece provided with a plug-in hole for each of 29 pairs of joint sides. The material for a globe of 32 faces according to claim 1.
を特徴とする。請求項1に記載した32面体の地球儀用
材料。3. The method according to claim 2, wherein the joining margin is a margin for glue. The material for a globe of 32 faces according to claim 1.
よりなる32面体を厚紙上に展開して、32面体の地球
儀用の材料を構成する場合、 正5角形の任意の1辺を底辺aと名付けるとともに、底
辺に隣接する左方の辺を辺b、同じく右方の辺を辺cと
名付け、上記の辺bと頂点とを結ぶ辺を辺d、同じく辺
cと頂点とを結ぶ辺を辺eと名付け、 正3角形の任意の1辺を底辺fと名付けるとともに、該
底辺fの左側に隣接する辺を辺g、同じく右方に隣接す
る辺を辺hと名付け、 厚紙のほぼ中央に第1の3角形T1を配置し、 該第1の3角形T1の辺gに底辺aを重ね合わせて第1
の5角形P1を配置し、 該第1の5角形P1の辺eに底辺fを重ね合わせて第2
の3角形T2を配置し、 該第2の3角形T2の辺hに任意の辺を重ね合わせて第
2の5角形P2を配置するとともに、該3角形T2の辺
gに底辺aを重ね合わせて第3の5角形P3を配置し、 該第3の5角形P3の辺bに底辺fを重ね合わせて第3
の3角形T3を配置し、 該第3の3角形T3の辺hに任意の辺を重ね合わせて第
4の5角形P4を配置し、 前記第3の5角形P3の辺dに底辺fを重ね合わせて第
4の3角形T4を配置するとともに該第4の3角形T4
の辺hに任意の辺を重ね合わせて第6の5角形P6を配
置し、 前記第3の5角形P3の辺cに底辺fを重ね合わせて第
5の3角形T5を配置するとともに、該第5の3角形T
5の辺gに任意の辺を重ね合わせて第5の5角形P5を
配置し、 前記第1の3角形T1の辺hに底辺aを重ね合わせて第
7の5角形P7を配置するとともに、該第7の5角形P
7の辺eに底辺fを重ね合わせて第6の3角形T6を配
置し、 該第6の3角形T6の辺hに底辺aを重ね合わせて第8
の5角形P8を配置するとともに、該第6の3角形T6
の辺gに任意の辺を重ね合わせて第9の5角形P9を配
置し、 上記第8の5角形P8の辺eに底辺fを重ね合わせて第
7の3角形T7を配置し、 該第7の3角形T7の辺hに任意の辺を重ね合わせて第
10の5角形P10を配置するとともに、該第7の3角
形T7の辺gに底辺aを重ね合わせて第11の5角形P
11を配置し、 該第11の5角形P11の辺bに底辺fを重ね合わせて
第8の3角形T8を配置するとともに、該第8の3角形
T8の辺hに任意の辺を重ね合わせて第12の5角形P
12を配置し、 さらに、前記第3の5角形P3の辺eに任意の辺を重ね
合わせて第9の3角形T09を配置するとともに、第8
の5角形P8の辺cに任意の辺を重ね合わせて第10の
3角形T010を配置し、かつ、第1の5角形P1の辺c
に任意の辺を重ね合わせて第11の3角形T011を配置
することを特徴とする、32面体の地球儀用材料の製作
方法。4. When a hexahedron composed of 12 regular pentagons and 20 regular triangles is developed on cardboard to constitute a material for a hexahedral globe, any one of the regular pentagons is used. The side is named base a, the left side adjacent to the base is named side b, the right side is named side c, the side connecting the above-mentioned side b and the vertex is side d, and the side c and the vertex are also named A side connecting the two sides is named side e, an arbitrary side of the regular triangle is named base f, a side adjacent to the left side of the base f is side g, and a side adjacent to the right side is also named side h. A first triangle T1 is arranged substantially at the center of the cardboard, and a base a is overlapped with a side g of the first triangle T1 to form a first triangle T1.
The first pentagon P1 has a base f overlapped with a side e of the first pentagon P1 to form a second pentagon P1.
Is arranged, an arbitrary side is superimposed on a side h of the second triangle T2, a second pentagon P2 is arranged, and a base a is superimposed on a side g of the triangle T2. A third pentagon P3 is arranged in such a manner that a base f is overlapped with a side b of the third pentagon P3 to form a third pentagon P3.
Is arranged, and a fourth pentagon P4 is arranged by superimposing an arbitrary side on a side h of the third triangle T3, and a base f is arranged on a side d of the third pentagon P3. A fourth triangle T4 is disposed by being overlapped with the fourth triangle T4.
A sixth pentagon P6 is arranged by superimposing an arbitrary side on the side h, and a fifth triangle T5 is arranged by superimposing a base f on the side c of the third pentagon P3. Fifth triangle T
A fifth pentagon P5 is arranged by superimposing an arbitrary side on the side g of 5, and a seventh pentagon P7 is arranged by superimposing a base a on the side h of the first triangle T1, The seventh pentagon P
The sixth triangle T6 is arranged by superimposing the base f on the side e of 7 and the base a by superimposing the base a on the side h of the sixth triangle T6.
And the sixth triangle T6
The ninth pentagon P9 is arranged by superimposing an arbitrary side on the side g, and the seventh triangle T7 is arranged by superimposing the base f on the side e of the eighth pentagon P8. The tenth pentagon P10 is arranged by superimposing an arbitrary side on the side h of the seventh triangle T7, and the base a is superimposed on the side g of the seventh triangle T7.
11 and the base f is superimposed on the side b of the eleventh pentagon P11 to arrange the eighth triangle T8, and an arbitrary side is superimposed on the side h of the eighth triangle T8. And the twelfth pentagon P
12 arranged, further, with arranging the triangle T0 9 ninth by superposing arbitrary edge to edge e of the third pentagon P 3, 8
5 triangular T0 10 of the 10 are arranged by overlapping any edge to edge c of the square P8, and side c of the first pentagonal P1 of
A method for manufacturing a material for a hexahedron globe, comprising arranging an eleventh triangle T011 by superposing arbitrary sides on the globe.
5角形、および第1ないし第11の3角形よりなる展開
図形の表裏を反転した展開図形を用いることを特徴とす
る、請求項4に記載した32面体の地球儀用材料の製作
方法。5. A developed graphic obtained by inverting the developed graphic composed of the first to twelfth pentagons and the first to eleventh triangles arranged as described above. 3. The method for producing a 32-hedral globe material described in 1. above.
なる32面体を厚紙上に展開して、32面体の地球儀用
の材料を構成する場合、 5角形の任意の1辺を底辺aと名付けるとともに、底辺
に隣接する左方の辺を辺b、同じく右方の辺を辺cと名
付け、上記の辺bと頂点とを結ぶ辺を辺d、同じく辺c
と頂点とを結ぶ辺を辺eと名付け、 3角形の任意の1辺を底辺fと名付けるとともに、該底
辺fの左側に隣接する辺を辺g、同じく右方に隣接する
辺を辺hと名付け、 厚紙のほぼ中央に第1の3角形T1を配置し、 該第1の3角形T1の辺gに底辺aを重ね合わせて第1
の5角形P1を配置し、 該第1の5角形P1の辺eに底辺fを重ね合わせて第2
の3角形T2を配置し、 該第2の3角形T2の辺hに任意の辺を重ね合わせて第
2の5角形P2を配置するとともに、該3角形T2の辺
gに底辺aを重ね合わせて第3の5角形P3を配置し、 該第3の5角形P3の辺bに底辺fを重ね合わせて第3
の3角形T3を配置し、 該第3の3角形T3の辺hに任意の辺を重ね合わせて第
4の5角形P4を配置し、 前記第3の5角形P3の辺dに底辺fを重ね合わせて第
4の3角形T4を配置するとともに該第4の3角形T4
の辺hに任意の辺を重ね合わせて第6の5角形P6を配
置し、 前記第3の5角形P3の辺cに底辺fを重ね合わせて第
5の3角形T5を配置するとともに、該第5の3角形T
5の辺gに任意の辺を重ね合わせて第5の5角形P5を
配置し、 前記第1の3角形T1の底辺fに底辺aを重ね合わせて
第7の5角形P7を配置するとともに、該第7の5角形
P7の辺dに底辺fを重ね合わせて第6の3角形T6を
配置し、 該第6の3角形T6の辺gに底辺aを重ね合わせて第8
の5角形P8を配置するとともに、該第6の3角形T6
の辺hに任意の辺を重ね合わせて第9の5角形P9を配
置し、 上記第8の5角形P8の辺dに底辺fを重ね合わせて第
7の3角形T7を配置し、 該第7の3角形T7の辺gに任意の辺を重ね合わせて第
10の5角形P10を配置するとともに、該第7の3角
形T7の辺hに底辺aを重ね合わせて第11の5角形P
11を配置し、 該第11の5角形P11の辺cに底辺fを重ね合わせて
第8の3角形T8を配置するとともに、該第8の3角形
T8の辺gに任意の辺を重ね合わせて第12の5角形P
12を配置し、 さらに、前記第3の5角形P3の辺eに任意の辺を重ね
合わせて第9の3角形T09を配置するとともに、第8
の5角形P8の辺bに任意の辺を重ね合わせて第10の
3角形T010を配置しすることを特徴とする、32面体
の地球儀用材料の製作方法。6. When a hexahedron consisting of 12 pentagons and 20 triangles is developed on cardboard to constitute a material for a 32-hedron globe, any one side of the pentagon is a base. a, the left side adjacent to the base is named side b, the right side is named side c, the side connecting the above-mentioned side b and the vertex is side d, and the side c is also named
A side connecting the vertex to the vertex is named side e. An arbitrary side of the triangle is named base f, a side adjacent to the left side of the base f is side g, and a side adjacent to the right side is side h. The first triangle T1 is arranged at substantially the center of the cardboard, and the base a is overlapped with the side g of the first triangle T1 to form the first triangle T1.
The first pentagon P1 has a base f overlapped with a side e of the first pentagon P1 to form a second pentagon P1.
Is arranged, an arbitrary side is superimposed on a side h of the second triangle T2, a second pentagon P2 is arranged, and a base a is superimposed on a side g of the triangle T2. A third pentagon P3 is arranged in such a manner that a base f is overlapped with a side b of the third pentagon P3 to form a third pentagon P3.
Is arranged, and a fourth pentagon P4 is arranged by superimposing an arbitrary side on a side h of the third triangle T3, and a base f is arranged on a side d of the third pentagon P3. A fourth triangle T4 is disposed by being overlapped with the fourth triangle T4.
A sixth pentagon P6 is arranged by superimposing an arbitrary side on the side h, and a fifth triangle T5 is arranged by superimposing a base f on the side c of the third pentagon P3. Fifth triangle T
Arrangement of a fifth pentagon P5 by superimposing an arbitrary side on the side g of 5 and arrangement of a seventh pentagon P7 by superimposing a base a on the bottom f of the first triangle T1; The sixth triangle T6 is arranged by superimposing the base f on the side d of the seventh pentagon P7, and the base a is superimposed on the side g of the sixth triangle P6 by the eighth.
And the sixth triangle T6
Arrange a ninth pentagon P9 by overlapping an arbitrary side on the side h, and place a seventh triangle T7 by overlapping a base f on the side d of the eighth pentagon P8. The tenth pentagon P10 is disposed by overlapping an arbitrary side on the side g of the seventh triangle T7, and the base a is superimposed on the side h of the seventh triangle T7.
11 and the base f is superimposed on the side c of the eleventh pentagon P11 to arrange the eighth triangle T8, and an arbitrary side is superimposed on the side g of the eighth triangle T8. And the twelfth pentagon P
12 arranged, further, with arranging the triangle T0 9 ninth by superposing arbitrary edge to edge e of the third pentagon P 3, 8
5 superimposed any side to side b of the rectangular P8, characterized in that the triangle T0 10 of the 10 arranged, 32 facepiece fabrication methods globes for materials.
5角形、および第1ないし第10の3角形よりなる展開
図形の表裏を反転した展開図形を用いることを特徴とす
る、請求項6に記載した32面体の地球儀用材料の製作
方法。7. A developed figure obtained by inverting a developed figure composed of the first to twelfth pentagons and the first to tenth triangles arranged as described above. 3. The method for producing a 32-hedral globe material described in 1. above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29576792A JP3225115B2 (en) | 1992-11-05 | 1992-11-05 | 32-hedron globe material and method of making the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29576792A JP3225115B2 (en) | 1992-11-05 | 1992-11-05 | 32-hedron globe material and method of making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0728394A JPH0728394A (en) | 1995-01-31 |
JP3225115B2 true JP3225115B2 (en) | 2001-11-05 |
Family
ID=17824908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29576792A Expired - Fee Related JP3225115B2 (en) | 1992-11-05 | 1992-11-05 | 32-hedron globe material and method of making the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3225115B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4910162B2 (en) * | 2005-06-08 | 2012-04-04 | 島中 あゆ子 | Foldable tetrahedral surface model |
JP2015181564A (en) * | 2014-03-20 | 2015-10-22 | 株式会社森川紙器製作所 | Expanded sheet and 32-hedron assembled therewith |
-
1992
- 1992-11-05 JP JP29576792A patent/JP3225115B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0728394A (en) | 1995-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4492723A (en) | Curvilinear polyhedral construction kit | |
US5096204A (en) | Three-dimensional book or game board structure | |
CA2640667C (en) | Three dimensional geometric puzzle | |
US5735520A (en) | Fold-through picture puzzle | |
US7389908B2 (en) | Three-dimensional display form and blank | |
Mitani | 3D origami art | |
Mukerji | Marvelous modular origami | |
JPH075687U (en) | Combination set of elements for setting surfaces with variable design textures and / or shapes | |
JP3225115B2 (en) | 32-hedron globe material and method of making the same | |
JPH01305983A (en) | Set or game for constituting figure, shape or pattern | |
GB2231808A (en) | Jigsaw puzzles | |
US3605324A (en) | Polyhedrons having depressible vertices and internal means for restoring shape | |
JP2004020891A (en) | Teaching material for learning | |
US20070262521A1 (en) | Learning puzzle of geometric shapes | |
KR200257740Y1 (en) | Collapsible paper using play of form ball | |
JPS6118935Y2 (en) | ||
JPH08155137A (en) | Three-dimensional jigsaw puzzle | |
RU2223809C1 (en) | Module for oryghamy and method for manufacturing the same | |
Loper | Mind-Blowing Modular Origami: The Art of Polyhedral Paper Folding: Use Origami Math to fold Complex, Innovative Geometric Origami Models | |
JP3046068U (en) | 3D combination building toys | |
JP3028024B2 (en) | How to make a jigsaw puzzle book | |
JP7391258B1 (en) | Sheet for making assembled block tools, kit for making assembled block tools | |
JPS62105182A (en) | Foldable polygonal body | |
JP2024085441A (en) | Educational toy | |
JPH0410879Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |