JP3225078B2 - Catalyst for syngas production - Google Patents

Catalyst for syngas production

Info

Publication number
JP3225078B2
JP3225078B2 JP06595492A JP6595492A JP3225078B2 JP 3225078 B2 JP3225078 B2 JP 3225078B2 JP 06595492 A JP06595492 A JP 06595492A JP 6595492 A JP6595492 A JP 6595492A JP 3225078 B2 JP3225078 B2 JP 3225078B2
Authority
JP
Japan
Prior art keywords
catalyst
methane
carbon dioxide
reaction
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06595492A
Other languages
Japanese (ja)
Other versions
JPH05270802A (en
Inventor
智行 乾
幸治 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP06595492A priority Critical patent/JP3225078B2/en
Publication of JPH05270802A publication Critical patent/JPH05270802A/en
Application granted granted Critical
Publication of JP3225078B2 publication Critical patent/JP3225078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はメタンと二酸化炭素を反
応させて合成ガスを製造するための接触反応で使用され
る触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used in a catalytic reaction for producing methane by reacting methane with carbon dioxide.

【0002】化石燃料の燃焼に伴う二酸化炭素の排出が
地球温暖化の主原因となって、人類生存の脅威になると
予想されている。このため燃焼により生成する二酸化炭
素を分離回収し、有効利用できれば、二酸化炭素排出が
軽減または抑制されることになり、そのための利用技術
の確立が強く望まれている。本発明はそのための二酸化
炭素利用技術を提供するものである。
[0002] The emission of carbon dioxide from the burning of fossil fuels is expected to be a major cause of global warming and a threat to human survival. For this reason, if carbon dioxide generated by combustion can be separated and recovered and used effectively, carbon dioxide emission will be reduced or suppressed, and establishment of a utilization technique for that purpose is strongly desired. The present invention provides a carbon dioxide utilization technology for that purpose.

【0003】[0003]

【従来の技術】メタンは天然ガスの主成分であり、地球
上に豊富に存在する炭化水素資源である。メタンの主用
途は燃料であるが、このほかに合成ガス(一酸化炭素+
水素)に転化し、C1化学原料としてメタノール、FT
合成油、オキソアルコールが製造されている。
2. Description of the Related Art Methane is a major component of natural gas and is an abundant hydrocarbon resource on the earth. The main use of methane is fuel, but in addition, synthesis gas (carbon monoxide +
Hydrogen), methanol and FT as C 1 chemical raw materials
Synthetic oils and oxo alcohols are produced.

【0004】メタンから合成ガスを製造する方法はスチ
ームをガス化剤とするスチームリフォーミング法が主流
となっている。
[0004] As a method for producing synthesis gas from methane, a steam reforming method using steam as a gasifying agent has become mainstream.

【0005】 CH4+H2O=CO+3H2 (1) 一方、二酸化炭素の有効利用のために、二酸化炭素をガ
ス化剤とする、いわゆる炭酸ガスリフォーミング法が研
究されている。
CH 4 + H 2 O = CO + 3H 2 (1) On the other hand, for effective use of carbon dioxide, a so-called carbon dioxide gas reforming method using carbon dioxide as a gasifying agent has been studied.

【0006】 CH4+CO2=2CO+2H2 (2) 例えば、AshcroftらはAl23にNiを担持した触媒
(ブリティッシュガス製、CRG’F’スチームリフォ
ーミング触媒)にメタンとCO2を等モル供給して常
圧、777℃、W/F(=触媒重量/原料流量)0.0
05g/(Ncc/分)で反応させメタン転化率88%
で合成ガスを得た。しかし触媒上にカーボンが析出し触
媒活性が低下したと述べている。またNiの代わりにR
h,Irなどの貴金属を1%担持した触媒を用いるとメ
タン転化率はほぼ同じでカーボンの析出はなかったと述
べている(Nature Vol. 352, 18 July 1991, 225〜226
頁)。
CH 4 + CO 2 = 2CO + 2H 2 (2) For example, Ashcroft et al. Equimolarly convert methane and CO 2 to a catalyst in which Ni 2 is supported on Al 2 O 3 (manufactured by British Gas, CRG'F 'steam reforming catalyst). At normal pressure, 777 ° C, W / F (= catalyst weight / raw material flow rate) 0.0
Reaction at 05 g / (Ncc / min), methane conversion 88%
To obtain synthesis gas. However, it states that carbon was deposited on the catalyst and the catalytic activity was reduced. Also, R instead of Ni
It was stated that when a catalyst supporting 1% of a noble metal such as h or Ir was used, the methane conversion was almost the same and no carbon was deposited (Nature Vol. 352, 18 July 1991, 225-226).
page).

【0007】また、Gustafson & WaldenはアルミナにP
tを1%またはPdを0.5%担持した触媒にメタンと
CO2をモル比0.9:1.0、1atm、850℃、
W/F 0.007g/(Ncc/分)で反応させ96
%以上のメタン転化率を得ている(US−5,068,
057)。
[0007] Gustafson & Walden reported that P
methane and CO 2 at a molar ratio of 0.9: 1.0, 1 atm, 850 ° C., on a catalyst supporting 1% of t or 0.5% of Pd.
W / F 0.007 g / (Ncc / min) to react 96
% Or more of methane conversion (US-5,068,
057).

【0008】このように貴金属を担持した触媒を用いて
メタンの二酸化炭素によるリフォーミングを行う場合、
高転化率を達成するには800℃以上の高温が必要であ
る。一方、内島らはシリカにRu,Rhを5%と多量に
担持した触媒にメタンとCO2を等モル供給して常圧、
W/F 0.0056g/(Ncc/分)で温度を変え
て反応させた試験結果から、700℃でメタン転化率約
94%および約74%を得ている(触媒 Vol.33, No.
2, 99〜102頁のFig.5)。
[0008] When reforming methane with carbon dioxide using a catalyst supporting a noble metal as described above,
Achieving high conversion requires a high temperature of 800 ° C. or higher. On the other hand, Uchijima et al. Supplied a equimolar amount of methane and CO 2 to a catalyst having a large amount of Ru and Rh supported on silica at 5%,
From the test results obtained by reacting while changing the temperature at 0.0056 g / (Ncc / min) of W / F, about 94% and about 74% of methane conversion were obtained at 700 ° C. (Catalyst Vol. 33, No.
2, pp. 99-102, FIG. 5).

【0009】このように担持量を多くすると700℃程
度の比較的低温度でも転化率を向上させることが可能で
あるが、なお活性は十分とはいえない。
When the amount of supported catalyst is increased, the conversion can be improved even at a relatively low temperature of about 700 ° C., but the activity is still not sufficient.

【0010】[0010]

【発明が解決しようとする課題】反応温度を低下させる
ことは反応器材料に要求される耐熱性を下げることが可
能となり、また反応器の壁を通して外部から加える熱流
束の増大が可能となり反応器の小型化が可能となるなど
実用装置として極めて大きな利益があるため、低温で高
活性な触媒の開発が望まれていた。
Reducing the reaction temperature makes it possible to reduce the heat resistance required of the reactor material, and also to increase the externally applied heat flux through the walls of the reactor. Since there is an extremely great benefit as a practical device, such as the miniaturization of the catalyst, it has been desired to develop a catalyst that is highly active at low temperatures.

【0011】[0011]

【課題を解決するための手段】本発明者はカーボン析出
を極力抑制し、低温で高活性でかつ貴金属成分の担持量
が少なくて済む触媒について研究した結果、アルミナに
ニッケルおよび希土類金属酸化物および少量の白金族金
属を担持した複合触媒がメタンと二酸化炭素の反応に6
00℃程度の低温域で極めて高い活性を発現し、しかも
カーボンの析出がないことを見いだし本発明を達成し
た。
The inventor of the present invention has studied a catalyst which suppresses carbon deposition as much as possible, has high activity at a low temperature, and requires a small amount of a noble metal component carried thereon. Composite catalyst supporting a small amount of platinum group metal reacts with methane and carbon dioxide 6
The present invention has been found to exhibit extremely high activity in a low temperature range of about 00 ° C. and to have no carbon deposition.

【0012】すなわち、本発明はシリカ・アルミナファ
イバーに15wt%のアルミナを被覆した担体に、1.
0wt%の白金、10wt%のニッケル、5.6wt%
のCeO2を担持させたメタンと二酸化炭素を反応させ
て水素と一酸化炭素を合成する合成ガス製造用触媒であ
る。
That is, the present invention provides a silica-alumina
To a carrier coated with 15 wt% alumina on ivever ,
0 wt% platinum, 10 wt% nickel, 5.6 wt%
This is a synthesis gas production catalyst for synthesizing hydrogen and carbon monoxide by reacting methane with CeO 2 and carbon dioxide.

【0013】本発明における希土類金属酸化物として
は、例えば、ランタン(La)、セリウム(Ce)、プ
ラセオジム(Pr)、ネオジム(Nd),サマリウム
(Sm)などの金属の酸化物を挙げることができる。こ
のうちランタン、セリウムの酸化物が特に望ましい。
Examples of the rare earth metal oxide in the present invention include oxides of metals such as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm). . Of these, lanthanum and cerium oxides are particularly desirable.

【0014】本発明における白金族金属としては、白金
(Pt)、パラジウム(Pd)、イリジウム(Ir)、
オスミウム(Os)が好ましい。ルテニウム(Ru)、
ロジウム(Rh)も使用可能であるがメタン化活性が強
く使用条件が制限される。
The platinum group metals in the present invention include platinum (Pt), palladium (Pd), iridium (Ir),
Osmium (Os) is preferred. Ruthenium (Ru),
Rhodium (Rh) can be used, but the methanation activity is strong and the conditions of use are limited.

【0015】本発明における担体としてはアルミナ(A
23)が適している。シリカ(SiO2)は耐熱性が
低く実用には適さない。
As the carrier in the present invention, alumina (A
l 2 O 3 ) are suitable. Silica (SiO 2 ) has low heat resistance and is not suitable for practical use.

【0016】本発明の触媒を構成する各成分の好ましい
組成範囲としては、ニッケルの希土類酸化物に対するモ
ル比が1/10〜1/3の範囲が好ましく、特にモル比
1/5が適している。また白金族金属の希土類酸化物に
対するモル比は1/50〜1/10の範囲が好ましく、
特に好ましくは1/30〜1/10の範囲である。また
ニッケル、白金族金属および希土類酸化物の合計の担体
に対する重量比は1/100〜1/3が適している。
As a preferable composition range of each component constituting the catalyst of the present invention, the molar ratio of nickel to the rare earth oxide is preferably in the range of 1/10 to 1/3, and particularly preferably 1/5. . The molar ratio of the platinum group metal to the rare earth oxide is preferably in the range of 1/50 to 1/10,
Particularly preferably, it is in the range of 1/30 to 1/10. Further, the weight ratio of the total of nickel, platinum group metal and rare earth oxide to the carrier is suitably from 1/100 to 1/3.

【0017】原料中の二酸化炭素とメタンの濃度比は従
来の触媒については、反応時、触媒表面にカーボンが析
出して触媒活性が低下する現象がしばしば見られるた
め、二酸化炭素のメタンに対するモル比を3以上にする
ことが適切とされたが、本発明の触媒を使用する場合に
おいては特に制限はない。
The concentration ratio of carbon dioxide to methane in the raw material is often determined by the fact that, in the case of a conventional catalyst, a phenomenon in which carbon precipitates on the surface of the catalyst during the reaction and the catalytic activity is reduced is often observed. Has been determined to be appropriate, but there is no particular limitation when using the catalyst of the present invention.

【0018】本発明の合成条件は従来の触媒の反応条件
で使用できるが、さらに穏和な条件も選択できる。
Although the synthesis conditions of the present invention can be used under the reaction conditions of conventional catalysts, milder conditions can also be selected.

【0019】すなわち、反応温度は400〜1000℃
の範囲が好ましい。400℃より低い温度では円滑な反
応の進行が確保できないことがあり、また1000℃を
越えると触媒が劣化し易くなる。
That is, the reaction temperature is 400 to 1000 ° C.
Is preferable. If the temperature is lower than 400 ° C., smooth progress of the reaction may not be ensured, and if it exceeds 1000 ° C., the catalyst is liable to be deteriorated.

【0020】反応圧力は減圧、常圧、加圧のいずれの条
件下でも行うことができる。特に本発明では、反応圧力
は1〜100気圧の範囲内にするのがよい。
The reaction can be carried out under reduced pressure, normal pressure or increased pressure. Particularly in the present invention, the reaction pressure is preferably in the range of 1 to 100 atm.

【0021】また、メタン、二酸化炭素(さらに希釈ガ
ス用いた場合には希釈ガス)の原料ガス全体の触媒への
接触時間はW/Fを尺度として通常0.0001〜1.
0g/(Ncc/分)の範囲内とされる。
The contact time of methane and carbon dioxide (or a diluent gas when a diluent gas is used) to the entire raw material gas is usually 0.0001 to 1.
0 g / (Ncc / min).

【0022】[0022]

【実施例】実施例1 (触媒の調製) 直径8mmの円盤状ファイバーフラックス(カーボラン
ダム社製の耐熱性シリカ・アルミナファイバー、厚さ1
mm)を硝酸アルミニウム水溶液に浸漬後、アンモニア
ガスと接触させてゲル化させ、さらに加熱脱硝してファ
イバーフラックスの表面にアルミナ層を形成させてこれ
を担体とした。生成したAl23はファイバーフラック
スに対して15重量%であった。次に塩化白金酸水溶液
に上記担体を浸漬後、乾燥させた。次に硝酸ニッケルと
硝酸セリウムの混合水溶液に浸漬して乾燥させた。分析
の結果、Pt,NiおよびCeO2として各成分の担持
量は担体に対してそれぞれ1.重量%、10.0重量
%、5.6重量%であった。すなわち、Pt/CeO2
のモル比は1/30、Ni/CeO2のモル比は1/5
であった。
Example 1 (Preparation of catalyst) Disc-shaped fiber flux having a diameter of 8 mm (heat-resistant silica-alumina fiber manufactured by Carborundum, thickness 1)
mm) was immersed in an aqueous solution of aluminum nitrate, contacted with ammonia gas to gel, and further heated and denitrated to form an alumina layer on the surface of the fiber flux, which was used as a carrier. The generated Al 2 O 3 was 15% by weight based on the fiber flux. Next, the carrier was immersed in an aqueous chloroplatinic acid solution and dried. Next, it was immersed in a mixed aqueous solution of nickel nitrate and cerium nitrate and dried. As a result of the analysis, the loading amount of each component as Pt, Ni and CeO 2 was 1. It was 0 % by weight, 10.0% by weight, and 5.6% by weight. That is, Pt / CeO 2
Is 1/30, and the molar ratio of Ni / CeO 2 is 1/5.
Met.

【0023】(触媒の前処理)内径8mmの石英製流通
式反応器に上記触媒3枚を充填し、400℃に加熱して
水素を30分間流通させ、還元した(還元後の重量は7
2mgであった。Pt担持量は0.98mg)。
(Pretreatment of Catalyst) The above-mentioned three catalysts were charged into a quartz flow-through reactor having an inner diameter of 8 mm, and heated at 400 ° C. to flow hydrogen for 30 minutes to reduce (the weight after the reduction was 7%).
2 mg. The Pt carrying amount is 0.98 mg).

【0024】(反応試験)触媒を充填した上記反応器に
メタン(10vol%)、二酸化炭素(120vol
%)、窒素(80vol%)の混合ガスを25Ncc/
分流通させ、反応温度350〜700℃の範囲、常圧で
反応させた。空間速度は10000h-1であった。ま
た、触媒上へのカーボンの析出は認められなかった。反
応試験結果を表1に示す。
(Reaction test) Methane (10 vol%) and carbon dioxide (120 vol) were charged into the reactor filled with the catalyst.
%) And nitrogen (80 vol%) at a rate of 25 Ncc /
The reaction mixture was separated and reacted at a reaction temperature of 350 to 700 ° C. at normal pressure. The space velocity was 10,000 h -1 . Also, no precipitation of carbon on the catalyst was observed. Table 1 shows the results of the reaction test.

【0025】比較例1 Ni,CeO2を担持する操作を行わないこと、および
ファイバーフラックスの代わりにハニカム(コージェラ
イト製、外径8mm)を使用することを除いて実施例1
と同じ方法で調製したPtのみ1.0%担持した触媒
(Pt担持量として14.7mg)を使用して反応試験
を実施した。反応器および反応条件は実施例1と同じで
あった。また、触媒上へのカーボンの析出は認められな
かった。反応試験結果を表2に示す。
Comparative Example 1 Example 1 was repeated except that the operation of supporting Ni and CeO 2 was not performed, and that a honeycomb (made of cordierite, an outer diameter of 8 mm) was used instead of the fiber flux.
A reaction test was carried out using a catalyst prepared by the same method as above and supporting only 1.0% of Pt (14.7 mg as a supported amount of Pt). The reactor and reaction conditions were the same as in Example 1. Also, no precipitation of carbon on the catalyst was observed. Table 2 shows the results of the reaction test.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 CO、水素の生成率はメタンが100%反応した場合に
(2)の反応式にしたがうものとして各生成量を換算し
た値である。
[Table 2] The production rates of CO and hydrogen are values obtained by converting the respective production amounts based on the reaction formula (2) when methane reacts 100%.

【0028】[0028]

【発明の効果】本発明の合成ガス製造法によれば700
℃で90%以上の転化率が達成され、反応温度を100
℃以上低下させることができる。また、触媒必要量およ
び高価な白金族金属の必要量を実施例1と比較例1で対
比すると、触媒のPt担持量は1/15に低下すること
から、本発明の複合触媒は従来の貴金属触媒に比べて大
幅に活性が向上していることがわかる。
According to the syngas production method of the present invention, 700
At 90 ° C. a conversion of more than 90% is achieved and the reaction temperature is 100
° C or more. When the required amount of the catalyst and the required amount of the expensive platinum group metal were compared between Example 1 and Comparative Example 1, the amount of Pt supported on the catalyst was reduced to 1/15. It can be seen that the activity is significantly improved as compared with the catalyst.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 23/89 C01B 3/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) B01J 23/89 C01B 3/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカ・アルミナファイバーに15wt
%のアルミナを被覆した担体に、1.0wt%の白金、
10wt%のニッケル、5.6wt%のCeO2を担持
させたメタンと二酸化炭素を反応させて水素と一酸化炭
素を合成する合成ガス製造用触媒。
(1) 15 wt% silica / alumina fiber
% Alumina on a carrier coated with 1.0% by weight of platinum,
A synthesis gas production catalyst for synthesizing hydrogen and carbon monoxide by reacting methane and carbon dioxide supporting 10 wt% of nickel and 5.6 wt% of CeO 2 .
JP06595492A 1992-03-24 1992-03-24 Catalyst for syngas production Expired - Lifetime JP3225078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06595492A JP3225078B2 (en) 1992-03-24 1992-03-24 Catalyst for syngas production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06595492A JP3225078B2 (en) 1992-03-24 1992-03-24 Catalyst for syngas production

Publications (2)

Publication Number Publication Date
JPH05270802A JPH05270802A (en) 1993-10-19
JP3225078B2 true JP3225078B2 (en) 2001-11-05

Family

ID=13301890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06595492A Expired - Lifetime JP3225078B2 (en) 1992-03-24 1992-03-24 Catalyst for syngas production

Country Status (1)

Country Link
JP (1) JP3225078B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002211004A1 (en) * 2000-11-08 2002-05-21 Idemitsu Kosan Co. Ltd. Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
US7067453B1 (en) 2001-07-13 2006-06-27 Innovatek, Inc. Hydrocarbon fuel reforming catalyst and use thereof
WO2006071927A1 (en) 2004-12-23 2006-07-06 Saudi Arabian Oil Company, Thermo-neutral reforming of petroleum-based liquid hydrocarbons
US7700005B2 (en) 2006-12-26 2010-04-20 Saudi Arabian Oil Company Oil-based thermo-neutral reforming with a multi-component catalyst
US10180253B2 (en) 2012-10-31 2019-01-15 Korea Institute Of Machinery & Materials Integrated carbon dioxide conversion system for connecting oxyfuel combustion and catalytic conversion process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日刊工業新聞(平成4年3月6日)

Also Published As

Publication number Publication date
JPH05270802A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
RU2126376C1 (en) Process of partial catalytic oxidation of natural gas, process of synthesis of methanol and process of fischer- tropsch syntheses
JP3743995B2 (en) Methanol reforming catalyst
JP4812993B2 (en) Method and catalyst structure for steam reforming hydrocarbons
EP0738235B1 (en) Process for the production of hydrogen/carbon monoxide mixtures or hydrogen from methane
US5149464A (en) Catalytic gas conversion method
US6455182B1 (en) Shift converter having an improved catalyst composition, and method for its use
JP4819235B2 (en) Method for catalytic conversion of carbon monoxide using water in a hydrogen-containing gas mixture
JP3514826B2 (en) Method for catalytic partial oxidation of hydrocarbons
US4996180A (en) Catalyst of copper oxide and ceria
EP1222024A1 (en) Nickel-rhodium based catalysts and process for preparing synthesis gas
JP2001232197A (en) Methanol reforming catalyst, methanol reforming device and methanol reforming method
TWI294413B (en) Method for converting co and hydrogen into methane and water
WO2005094988A1 (en) Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
RU2292237C1 (en) Catalyst, method for preparation thereof, and synthetic gas production process
JP3225078B2 (en) Catalyst for syngas production
JPH05270803A (en) Production of synthetic gas from methane and carbon dioxide as source material
JPS6012132A (en) Heat resistant catalyst and use thereof
GB2106415A (en) A method of preparing a supported catalyst
JP2000342968A (en) Catalyst and producing method
JPH05208134A (en) Oxidation process and catalyst for catalytic partial oxidation of hydrocarbon
JP2000246106A (en) Catalyst
JPH07187605A (en) Method for reforming lower hydrocarbon fuel
JP2007516825A (en) Reforming catalyst
JP4663095B2 (en) Hydrogen purification equipment
JP2001232198A (en) Catalyst and manufacturing method of catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11