JP3224640B2 - Apparatus and method for measuring concentration by LIF - Google Patents

Apparatus and method for measuring concentration by LIF

Info

Publication number
JP3224640B2
JP3224640B2 JP18995393A JP18995393A JP3224640B2 JP 3224640 B2 JP3224640 B2 JP 3224640B2 JP 18995393 A JP18995393 A JP 18995393A JP 18995393 A JP18995393 A JP 18995393A JP 3224640 B2 JP3224640 B2 JP 3224640B2
Authority
JP
Japan
Prior art keywords
fluorescence
laser
light
molecule
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18995393A
Other languages
Japanese (ja)
Other versions
JPH0743303A (en
Inventor
祥啓 出口
松平 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18995393A priority Critical patent/JP3224640B2/en
Publication of JPH0743303A publication Critical patent/JPH0743303A/en
Application granted granted Critical
Publication of JP3224640B2 publication Critical patent/JP3224640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微粉炭バーナ、ディー
ゼルエンジン、ボイラ等の化学種濃度・温度計測に用い
られるLIF(レーザ誘起蛍光法:Laser Induced Fluo
rescense)による濃度計測装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LIF (Laser Induced Fluo) used for measuring the concentration and temperature of chemical species in pulverized coal burners, diesel engines, boilers, and the like.
The present invention relates to an apparatus and a method for measuring concentration by rescense.

【0002】[0002]

【従来の技術】従来の一般的なLIFによる濃度計測装
置を図4に示す。同図において、1は励起用パルスレー
ザで、この励起用パルスレーザ1により色素レーザ2を
発振させ、例えばNO等の測定対象分子の電子エネルギ
ーに対応した波長のレーザ光を出力させる。色素レーザ
2から発振されたレーザ光は、ビームエクスパンダ3に
おいて、シート状にされた後に測定場4に照射される。
2. Description of the Related Art A conventional general LIF concentration measuring apparatus is shown in FIG. In FIG. 1, reference numeral 1 denotes a pulse laser for excitation. A dye laser 2 is oscillated by the pulse laser 1 for excitation, and a laser beam having a wavelength corresponding to the electron energy of a molecule to be measured such as NO is output. The laser beam oscillated from the dye laser 2 is applied to the measurement field 4 after being formed into a sheet in the beam expander 3.

【0003】測定場4において励起された測定対象分子
から発せられる蛍光は、レンズ5で集光された後にCC
Dカメラ6で計測される。このCCDカメラ6は、色素
レーザ2の発振と同期を取るために同期ライン7で接続
される。
[0003] Fluorescence emitted from a molecule to be measured excited in the measurement field 4 is collected by a lens 5 and then condensed.
It is measured by the D camera 6. The CCD camera 6 is connected by a synchronization line 7 to synchronize with the oscillation of the dye laser 2.

【0004】上記蛍光は、LIFによる濃度計測におい
ては、図5に示すように、測定対象となる分子の電子エ
ネルギー差に対応する波長の入射光を、電子が吸収する
ことで分子は上位電子準位へと励起された後に、放射や
衝突の過程を経て、安定した基底準位へ遷移する際に観
察されるものである。
In the concentration measurement by LIF, as shown in FIG. 5, the fluorescence absorbs incident light having a wavelength corresponding to the electron energy difference of the molecule to be measured, and the molecule absorbs the incident light. After being excited to the ground level, it is observed during transition to a stable ground level through the process of radiation and collision.

【0005】そして、測定対象分子の濃度は、測定対象
分子からの蛍光強度により決定される。例えば、図6に
示すように、蛍光強度が200ppm ,500ppm ,10
00ppm の3種類測定された場合には、1000ppm が
計測された測定場の分子濃度が高いことになる。しか
し、一般に液体燃焼場や固体燃焼場等では図7に示すよ
うに測定対象分子からの蛍光だけではなく、液体燃料又
は固体燃料から背景光(バックグラウンド蛍光)が発せ
られる。
[0005] The concentration of the molecule to be measured is determined by the intensity of the fluorescence from the molecule to be measured. For example, as shown in FIG. 6, the fluorescence intensity is 200 ppm, 500 ppm, 10 ppm.
In the case where three types of 00 ppm are measured, the molecular concentration of the measurement field where 1000 ppm is measured is high. However, in a liquid combustion field, a solid combustion field, or the like, generally, not only the fluorescence from the measurement target molecule but also background light (background fluorescence) is emitted from the liquid fuel or the solid fuel as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】測定対象分子の濃度を
求めるためには、上記背景光を除去する必要があるが、
この背景光は、測定対象分子からの蛍光と同時に発せら
れるため、これら二つの蛍光を分けることは困難であ
る。このために従来は、液体燃焼場や固体燃焼場にはL
IFを適用することが出来ないという問題があった。
In order to determine the concentration of the molecule to be measured, it is necessary to remove the background light.
Since this background light is emitted simultaneously with the fluorescence from the molecule to be measured, it is difficult to separate these two fluorescences. For this reason, conventionally, a liquid combustion field or a solid combustion field has
There was a problem that the IF could not be applied.

【0007】本発明は上記実情に鑑みてなされたもの
で、液体燃焼場や固体燃焼場等においても、LIFによ
る濃度計測を行なうことができるLIFによる濃度計測
装置及び方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus and method for measuring concentration using LIF, which can measure concentration using LIF even in a liquid combustion field or a solid combustion field. I do.

【0008】[0008]

【課題を解決するための手段】本発明に係るLIFによ
る濃度計測装置は、励起用パルスレーザ光を出射する励
起用パルスレーザと、前記励起用パルスレーザ光に基づ
き、測定対象分子からの蛍光がピークになるような波長
を有する第1のレーザ光を励起する第1の色素レーザ
と、前記励起用パルスレーザ光に基づき、前記測定対象
分子からの蛍光を発生しない波長を有する第2のレーザ
光を励起する第2の色素レーザと、前記第1のレーザ光
及び前記第2のレーザ光を所定の時間差で測定場に照射
する手段と、前記時間差に応じてシャッタを切り、前記
第1のレーザ光によって励起される前記測定対象分子か
らの蛍光及び背景光を撮影する第1のCCDカメラ及び
前記第2のレーザ光によって励起される背景光を撮影す
る第2のCCDカメラと、前記第1のCCDカメラの出
力から前記第2のCCDカメラの出力を差し引いて前記
測定対象分子の発する蛍光を抽出する手段とを具備する
ことを特徴とする。
According to the present invention, there is provided an LIF-based concentration measuring apparatus which emits an excitation pulse laser beam.
An excitation pulse laser and an excitation pulse laser beam.
Wavelength at which fluorescence from the molecule to be measured peaks
Dye laser that excites a first laser beam
And the measurement object based on the excitation pulse laser beam.
Second laser having a wavelength that does not generate fluorescence from molecules
A second dye laser for exciting light, and the first laser light
And irradiating the measurement field with the second laser light at a predetermined time difference
Means for releasing the shutter according to the time difference,
The target molecule excited by the first laser beam
A first CCD camera for photographing the fluorescent light and the background light;
Photographing background light excited by the second laser light;
A second CCD camera, and an output of the first CCD camera.
Subtracting the output of the second CCD camera from the force
Means for extracting the fluorescence emitted by the molecule to be measured
It is characterized by the following.

【0009】また、本発明に係るLIFによる濃度計測
方法は、測定対象分子からの蛍光がピークになるような
波長を有する第1のレーザ光を測定場に照射し、前記第
1のレーザ光によって励起される前記測定対象分子から
の蛍光及び背景光を第1のカメラで撮影し、前記測定対
象分子からの蛍光を発生しない波長を有する第2のレー
ザ光を前記測定場に照射し、前記第2のレーザ光によっ
て励起される背景光を第2のカメラで撮影し、前記第1
のカメラで撮影された蛍光及び背景光の出力から前記第
2のカメラで撮影された背景光の出力を差し引いて測定
対象分子のみの蛍光を抽出することを特徴とする。
Further, in the method for measuring the concentration by LIF according to the present invention, the fluorescence from the molecule to be measured peaks.
Irradiating a measurement field with a first laser beam having a wavelength,
From the target molecule excited by the laser light
Of the fluorescence and background light of the first camera,
A second laser having a wavelength that does not generate fluorescence from an elephant molecule
The measurement field is irradiated with laser light and the second laser light
The background light excited by the second camera is photographed by the second camera.
From the output of the fluorescence and background light taken by the camera
Measured by subtracting the output of the background light captured by camera 2
It is characterized in that only the fluorescence of the target molecule is extracted.

【0010】[0010]

【作用】励起用パルスレーザからのレーザ光により、第
1及び第2の色素レーザを発振させる。この際、まず、
第1の色素レーザから測定対象分子からの蛍光がピーク
になるような波長を有する第1のレーザ光が出力され、
その後、僅かな時間間隔をおいて第2の色素レーザか
ら、測定対象分子からの蛍光を発生しない波長を有する
第2のレーザ光が出力される。この波長の異なる二つの
レーザ光は、ミラー、ビームスプリッタ等を介して合体
された後、測定場に照射される。
The first and second dye lasers are oscillated by the laser light from the excitation pulse laser. At this time,
Fluorescence from the target molecule from the first dye laser peaks
A first laser beam having a wavelength such that
After that, at a short time interval, the second dye laser has a wavelength that does not generate fluorescence from the molecule to be measured.
The second laser light is output. The two laser beams having different wavelengths are combined via a mirror, a beam splitter, and the like, and then applied to a measurement field.

【0011】測定場において、励起された測定対象分子
及び液体燃料、固体燃料等の背景部より生ずる蛍光は、
第1及び第2の色素レーザに同期して動作するを2台の
CCDカメラで撮影される。この際、第1の色素レーザ
に同期したCCDカメラにより、測定対象分子からの蛍
光と背景光が撮影され、第2の色素レーザに同期したC
CDカメラにより、背景光のみが撮影される。
In the measurement field, the excited fluorescence from the molecule to be measured and the background of liquid fuel, solid fuel, etc.
The images, which operate in synchronization with the first and second dye lasers, are photographed by two CCD cameras. At this time, fluorescence and background light from the molecule to be measured are photographed by a CCD camera synchronized with the first dye laser, and the CCD camera synchronized with the second dye laser.
The CD camera captures only background light.

【0012】従って、2台のCCDカメラの出力の一方
から他方を差引くことによって、測定対象分子の発する
蛍光のみを抽出でき、測定対象分子の二次元濃度分布を
知ることができる。
Accordingly, by subtracting the output of one of the two CCD cameras from the other, only the fluorescence emitted from the molecule to be measured can be extracted, and the two-dimensional concentration distribution of the molecule to be measured can be known.

【0013】[0013]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。本発明の一実施例に係るLIF(レーザ誘起蛍
光法:Laser Induced Fluorescense)による濃度計測装
置の構成例を図1に示す。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a configuration of a concentration measuring apparatus using LIF (Laser Induced Fluorescence) according to an embodiment of the present invention.

【0014】同図に示すように励起用パルスレーザ11
から出力されるレーザ光は、ビームスプリッタ12によ
り分岐され、その一方は第1の色素レーザ13aに送ら
れ、他方はミラー14で反射して第2の色素レーザ13
bに送られる。色素レーザ13a,13bは、励起用パ
ルスレーザ11からのレーザ光により発振し、測定用の
レーザ光La1,La2を出力する。この色素レーザ1
3a,13bから出力されるレーザ光La1,La2
は、ミラー15及びビームスプリッタ16により同軸上
に合体され、ビームエクスパンダ17を介して液体燃焼
場や、固体燃焼場等の測定場18に照射される。
As shown in FIG.
Is split by a beam splitter 12, one of which is sent to a first dye laser 13a, and the other is reflected by a mirror 14 and reflected by a second dye laser 13a.
b. The dye lasers 13a and 13b oscillate with laser light from the excitation pulse laser 11, and output measurement laser lights La1 and La2. This dye laser 1
Laser light La1, La2 output from 3a, 13b
Are coaxially combined by a mirror 15 and a beam splitter 16 and are irradiated via a beam expander 17 to a measurement field 18 such as a liquid combustion field or a solid combustion field.

【0015】この場合、上記色素レーザ13aは、測定
場18における測定対象分子からの蛍光がピークになる
ような波長を有するレーザ光La1を発生し、色素レー
ザ13bは、測定対象分子からの蛍光を発生しない波長
を有し、測定場17における液体燃料、固体燃料等によ
る背景からの背景光を得るためのレーザ光La2を発生
するように設定される。更に、上記色素レーザ13aと
色素レーザ13bとは,僅かな時間差例えば50〜10
0nsの時間差を持ってレーザ光La1,La2を発生
するように設定される。
In this case, in the dye laser 13a, the fluorescence from the molecule to be measured in the measurement field 18 has a peak.
The laser beam La1 having such a wavelength is generated, and the dye laser 13b emits a wavelength that does not generate fluorescence from the molecule to be measured.
And is set to generate a laser beam La2 for obtaining background light from the background of the liquid fuel, the solid fuel, or the like in the measurement field 17. Further, the dye laser 13a and the dye laser 13b have a slight time difference, for example, 50 to 10 minutes.
The laser beams La1 and La2 are set to be generated with a time difference of 0 ns.

【0016】そして、上記レーザ光La1,La2の照
射により測定場18に生じる蛍光を、レンズ19a,1
9bで集光し、CCDカメラ20a,20bにより撮影
する。この場合、CCDカメラ20a,20bは、色素
レーザ13a,13bから同期ライン21a,21bを
介して与えられる同期信号に同期してシャッタ動作を行
なうようになっている。
The fluorescence generated in the measurement field 18 by the irradiation of the laser beams La1 and La2 is transmitted to the lenses 19a and 1a.
The light is condensed by 9b and photographed by the CCD cameras 20a and 20b. In this case, the CCD cameras 20a and 20b perform a shutter operation in synchronization with a synchronization signal given from the dye lasers 13a and 13b via the synchronization lines 21a and 21b.

【0017】また、CCDカメラ20a,20bで撮影
された画像情報は、図示しないが、画像処理回路へ送ら
れる。この画像処理回路は、CCDカメラ20aの撮影
画像からCCDカメラ20bの撮影画像を差し引くこと
により、測定対象分子のみの蛍光強度を抽出して二次元
濃度分布を得ている。
Image information captured by the CCD cameras 20a and 20b is sent to an image processing circuit (not shown). This image processing circuit obtains a two-dimensional density distribution by extracting the fluorescence intensity of only the measurement target molecule by subtracting the image captured by the CCD camera 20b from the image captured by the CCD camera 20a.

【0018】次に上記実施例の動作について説明する。
一般に、測定対象分子が励起される(蛍光を発する)波
長の範囲は非常に狭く、強い励起波長(レーザ波長)依
存性を有する。一方、液体燃料や固体燃料等からの蛍光
は励起波長に対する依存性が少ない。
Next, the operation of the above embodiment will be described.
Generally, the range of the wavelength at which the measurement target molecule is excited (emits fluorescence) is very narrow, and has a strong excitation wavelength (laser wavelength) dependence. On the other hand, fluorescence from liquid fuel, solid fuel, and the like has little dependence on the excitation wavelength.

【0019】そこで、図2に示すように波長の異なる二
つのレーザ光、即ち、測定対象分子からの蛍光がピーク
になるような波長を有するレーザ光La1、及び測定対
象分子からの蛍光を発生しない波長を有し、液体燃料、
固体燃料等の背景部が発する背景光を得るためのレーザ
光La2を用いると、図3に示すように、レーザ光La
1により測定対象分子からの蛍光及び背景光(測定対象
分子からの蛍光+液体、固体燃料からの蛍光強度)の強
度を計測でき、レーザ光2により背景光(液体、固体燃
料からの蛍光強度)のみを計測できる。
Therefore, as shown in FIG. 2, two laser beams having different wavelengths, that is, the fluorescence from the molecule to be measured has a peak.
Laser beam La1, and measurement pairs having a wavelength such that
Having a wavelength that does not generate fluorescence from elephant molecules, liquid fuel,
When a laser beam La2 for obtaining background light emitted from a background portion such as a solid fuel is used, as shown in FIG.
1 can measure the intensity of the fluorescence from the molecule to be measured and the background light (fluorescence from the molecule to be measured plus the fluorescence intensity from the liquid or solid fuel), and the laser beam 2 can be used to measure the background light (fluorescence intensity from the liquid or solid fuel). Only can be measured.

【0020】即ち、励起用パルスレーザ11からの励起
光により、まず、色素レーザ13aからレーザ光La1
を発生し、続いて微少時間後、例えば50〜100ns
後に色素レーザ13bからレーザ光La2を発生して測
定場18に照射する。そして、このレーザ光の照射に同
期してCCDカメラ20a,20bを動作させ、測定場
18における蛍光を撮影する。この結果、CCDカメラ
20aにより、レーザ光La1に基づく測定対象分子か
らの蛍光及び背景光が撮影され、CCDカメラ20bに
より、レーザ光La2に基づく背景光のみが撮影され
る。
That is, the excitation light from the excitation pulse laser 11 first causes the dye laser 13a to emit the laser light La1 from the dye laser 13a.
, And after a very short time, for example, 50 to 100 ns
Thereafter, a laser beam La2 is generated from the dye laser 13b and irradiated to the measurement field 18. Then, the CCD cameras 20a and 20b are operated in synchronization with the irradiation of the laser light, and the fluorescence in the measurement field 18 is photographed. As a result, the CCD camera 20a captures fluorescence and background light from the measurement target molecule based on the laser beam La1, and the CCD camera 20b captures only background light based on the laser beam La2.

【0021】そして、CCDカメラ20a,20bの撮
影画像を画像処理回路に出力し、図3に示すようにCC
Dカメラ20aの撮影画像から得られる蛍光A(測定対
象分子による蛍光+背景光)より、CCDカメラ20b
の撮影画像から得られる蛍光B(背景光)を差し引くこ
とによって、測定対象分子のみの蛍光強度を抽出するこ
とができ、測定対象分子の二次元濃度分布を知ることが
できる。
Then, the photographed images of the CCD cameras 20a and 20b are output to an image processing circuit, and as shown in FIG.
From the fluorescence A (fluorescence due to the molecule to be measured + background light) obtained from the image captured by the D camera 20a, the CCD camera 20b
By subtracting the fluorescence B (background light) obtained from the photographed image, the fluorescence intensity of only the measurement target molecule can be extracted, and the two-dimensional concentration distribution of the measurement target molecule can be known.

【0022】[0022]

【発明の効果】以上詳記したように本発明によれば、L
IFによる濃度計測において、液体燃料、固体燃料等の
背景部からの背景光を除去でき、従来測定が困難であっ
た微粉炭バーナやエンジン等における二次元ガス成分濃
度計測をLIFを用いて行なうことができる。
As described above in detail, according to the present invention, L
In the concentration measurement by IF, the background light from the background part such as liquid fuel and solid fuel can be removed, and the two-dimensional gas component concentration measurement in pulverized coal burners, engines, etc., which was difficult to measure conventionally, using LIF Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るLIFによる濃度計測
装置の構成を示す図。
FIG. 1 is a diagram showing a configuration of a concentration measuring device using LIF according to one embodiment of the present invention.

【図2】同実施例における測定対象分子及び液体・固体
燃料からの蛍光特性を示す図。
FIG. 2 is a diagram showing fluorescence characteristics from molecules to be measured and liquid / solid fuel in the same example.

【図3】同実施例に係る背景光の除去に関する図。FIG. 3 is a view related to removal of background light according to the embodiment.

【図4】従来のLIFによる濃度測定の構成を示すブロ
ック図。
FIG. 4 is a block diagram showing a configuration of a conventional concentration measurement by LIF.

【図5】従来のLIFによる濃度測定における蛍光を説
明するための図。
FIG. 5 is a diagram for explaining fluorescence in a conventional concentration measurement by LIF.

【図6】従来のLIFによる濃度測定における濃度と蛍
光強度の関係を表わす図。
FIG. 6 is a diagram showing a relationship between a concentration and a fluorescence intensity in a conventional concentration measurement by LIF.

【図7】従来のLIFによる濃度測定における背景光を
説明するための図。
FIG. 7 is a view for explaining background light in a conventional concentration measurement by LIF.

【符号の説明】[Explanation of symbols]

11 励起用パルスレーザ 12 ビームスプリッタ 13a,13b 色素レーザ 14,15 ミラー 16 ビームスプリッタ 17 ビームエクスパンダ 18 測定場 19a,19b 集光用レンズ 20a,20b CCDカメラ 21a,21b 同期ライン DESCRIPTION OF SYMBOLS 11 Excitation pulse laser 12 Beam splitter 13a, 13b Dye laser 14, 15 Mirror 16 Beam splitter 17 Beam expander 18 Measurement field 19a, 19b Condensing lens 20a, 20b CCD camera 21a, 21b Synchronization line

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−58444(JP,A) 特開 昭61−213974(JP,A) 特開 平2−71135(JP,A) 特開 平3−150448(JP,A) 特開 昭64−9345(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/62 - 21/74 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-58444 (JP, A) JP-A-61-213974 (JP, A) JP-A-2-71135 (JP, A) JP-A-3- 150448 (JP, A) JP-A-64-9345 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/62-21/74 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励起用パルスレーザ光を出射する励起用
パルスレーザと、 前記励起用パルスレーザ光に基づき、測定対象分子から
の蛍光がピークになるような波長を有する第1のレーザ
光を励起する第1の色素レーザと、 前記励起用パルスレーザ光に基づき、前記測定対象分子
からの蛍光を発生しない波長を有する第2のレーザ光を
励起する第2の色素レーザと、 前記第1のレーザ光及び前記第2のレーザ光を所定の時
間差で測定場に照射する手段と、 前記時間差に応じてシャッタを切り、前記第1のレーザ
光によって励起される前記測定対象分子からの蛍光及び
背景光を撮影する第1のCCDカメラ及び前記第2のレ
ーザ光によって励起される背景光を撮影する第2のCC
Dカメラと、 前記第1のCCDカメラの出力から前記第2のCCDカ
メラの出力を差し引いて前記測定対象分子の発する蛍光
を抽出する手段とを具備することを特徴とするLIFに
よる濃度計測装置。
1. An excitation pulse laser beam for excitation is emitted.
A pulse laser and, based on the excitation pulse laser light,
Laser having a wavelength such that the fluorescence of the light becomes a peak
A first dye laser that excites light, and the measurement target molecule based on the excitation pulse laser light.
A second laser beam having a wavelength that does not generate fluorescence from
A second dye laser to be excited, and the first laser light and the second laser light
A means for irradiating the measurement field with a time difference, and a shutter released in accordance with the time difference;
Fluorescence from the measurement target molecule excited by light and
A first CCD camera for photographing background light and the second CCD camera;
Second CC for capturing background light excited by laser light
D camera and the second CCD camera from the output of the first CCD camera.
Fluorescence emitted by the molecule to be measured by subtracting the output of the camera
And a means for extracting
Concentration measuring device.
【請求項2】 測定対象分子からの蛍光がピークになる
ような波長を有する第1のレーザ光を測定場に照射し、 前記第1のレーザ光によって励起される前記測定対象分
子からの蛍光及び背景光を第1のカメラで撮影し、 前記測定対象分子からの蛍光を発生しない波長を有する
第2のレーザ光を前記測定場に照射し、 前記第2のレーザ光によって励起される背景光を第2の
カメラで撮影し、 前記第1のカメラで撮影された蛍光及び背景光の出力か
ら前記第2のカメラで撮影された背景光の出力を差し引
いて測定対象分子のみの蛍光を抽出することを特徴とす
るLIFによる濃度計測方法。
2. The fluorescence from the molecule to be measured reaches a peak.
The measurement field is irradiated with a first laser light having such a wavelength, and the measurement object is excited by the first laser light.
The fluorescence from the child and the background light are photographed by the first camera, and have a wavelength that does not generate fluorescence from the molecule to be measured.
Irradiating the measurement field with a second laser beam, and applying background light excited by the second laser beam to a second laser beam;
The fluorescence and background light output from the first camera
Subtract the output of the background light captured by the second camera
And extracts the fluorescence of only the molecules to be measured.
Concentration measurement method using LIF.
JP18995393A 1993-07-30 1993-07-30 Apparatus and method for measuring concentration by LIF Expired - Fee Related JP3224640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18995393A JP3224640B2 (en) 1993-07-30 1993-07-30 Apparatus and method for measuring concentration by LIF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18995393A JP3224640B2 (en) 1993-07-30 1993-07-30 Apparatus and method for measuring concentration by LIF

Publications (2)

Publication Number Publication Date
JPH0743303A JPH0743303A (en) 1995-02-14
JP3224640B2 true JP3224640B2 (en) 2001-11-05

Family

ID=16249964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18995393A Expired - Fee Related JP3224640B2 (en) 1993-07-30 1993-07-30 Apparatus and method for measuring concentration by LIF

Country Status (1)

Country Link
JP (1) JP3224640B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2945799A (en) 1998-03-30 1999-10-18 Packard Instrument Company, Inc. Improvements in and relating to biomedical assays
FR2856792B1 (en) * 2003-06-27 2006-09-15 Commissariat Energie Atomique METHOD AND DEVICE FOR ASSAYING A BIOLOGICAL OR CHEMICAL SAMPLE
US20070122344A1 (en) 2005-09-02 2007-05-31 University Of Rochester Medical Center Office Of Technology Transfer Intraoperative determination of nerve location
US20080161744A1 (en) 2006-09-07 2008-07-03 University Of Rochester Medical Center Pre-And Intra-Operative Localization of Penile Sentinel Nodes
US8406860B2 (en) 2008-01-25 2013-03-26 Novadaq Technologies Inc. Method for evaluating blush in myocardial tissue
US10492671B2 (en) 2009-05-08 2019-12-03 Novadaq Technologies ULC Near infra red fluorescence imaging for visualization of blood vessels during endoscopic harvest
JP6028096B2 (en) 2012-06-21 2016-11-16 ノバダック テクノロジーズ インコーポレイテッド Angiography and perfusion quantification and analysis techniques
CN107209118B (en) * 2014-09-29 2021-05-28 史赛克欧洲运营有限公司 Imaging of target fluorophores in biological materials in the presence of autofluorescence
KR102012880B1 (en) 2014-10-09 2019-08-22 노바다크 테크놀러지즈 유엘씨 Quantification of absolute blood flow in tissue using fluorescence-mediated photoplethysmography
JP6931705B2 (en) 2017-02-10 2021-09-08 ノバダック テクノロジーズ ユーエルシー Open Field Handheld Fluorescence Imaging Systems and Methods
JP2022535925A (en) * 2019-06-07 2022-08-10 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and Apparatus for Detecting Fluids by Computer Vision Applications
CN115684119B (en) * 2022-11-18 2023-12-26 西安交通大学 Synchronous measuring device for NH free radical and NO pollutant in ammonia combustion field

Also Published As

Publication number Publication date
JPH0743303A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP3224640B2 (en) Apparatus and method for measuring concentration by LIF
EP0352789B1 (en) Photoacoustic signal detecting device
US5303710A (en) Apparatus for imaging an object in or through a scattering medium using coherent anti-Stokes Raman scattering
CN110836876B (en) Super-resolution microscopy method and system based on saturated pumping-stimulated radiation detection
CN114895450B (en) Super-resolution microscopic imaging system and method based on second harmonic
JP2001194303A (en) Device for analyzing diffusion motion of fluorescent molecule
JPH02262038A (en) Optical-waveform measuring apparatus
CN109154567A (en) At being grouped as measurement system and at being grouped as measuring method
JP3377706B2 (en) 3D temperature / concentration measuring device
JP2994859B2 (en) Gas temperature measurement method
JP3539436B2 (en) Scanning laser microscope
JP3197132B2 (en) Measuring device using laser light
JPH09210909A (en) Measuring device using laser beam
JP3281857B2 (en) Temperature distribution measuring device in combustor
JPH09292462A (en) Underwater two-dimensional searching device by laser radar
JPH07198348A (en) Measurement device of surface shape
JP2003207449A (en) Hygroscopic method using laser excitation fluorescence method, and hygroscopic method and apparatus
JP3374726B2 (en) How to photograph the mixture distribution
JPH10206330A (en) Laser emission spectral analysis method and device therefor
RU1398660C (en) Device for forming image of dactyloscopic imprints
JP3500139B2 (en) Composition measuring device using laser
JPH03282253A (en) Method and apparatus for detecting photo-acoustic signal and method for detecting defect in semiconductor element
JP2021173657A (en) Imaging system and imaging method
JPH06221917A (en) Beam pattern measuring method for laser flux
JPH077234A (en) Dye laser oscillation equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees