JP3221209B2 - Oil content measurement method - Google Patents

Oil content measurement method

Info

Publication number
JP3221209B2
JP3221209B2 JP03131594A JP3131594A JP3221209B2 JP 3221209 B2 JP3221209 B2 JP 3221209B2 JP 03131594 A JP03131594 A JP 03131594A JP 3131594 A JP3131594 A JP 3131594A JP 3221209 B2 JP3221209 B2 JP 3221209B2
Authority
JP
Japan
Prior art keywords
mixed solvent
acetone
hexane
oil
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03131594A
Other languages
Japanese (ja)
Other versions
JPH07244041A (en
Inventor
和尋 松尾
壽一 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03131594A priority Critical patent/JP3221209B2/en
Priority to DE69530020T priority patent/DE69530020T2/en
Priority to EP95102490A priority patent/EP0669151B1/en
Priority to CN95100013A priority patent/CN1048646C/en
Publication of JPH07244041A publication Critical patent/JPH07244041A/en
Priority to US08/753,688 priority patent/US5714071A/en
Priority to CN99105394.XA priority patent/CN1114097C/en
Application granted granted Critical
Publication of JP3221209B2 publication Critical patent/JP3221209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は油分測定方法に関し、カ
ラー陰極線管のシャドウマスクプレス工程で使用される
プレスオイルの脱脂洗浄効果の判定、工場排水中の微量
オイルの測定、ポリエチレン製の袋の滑剤の分析、半導
体装置の製造工程で用いられるシリコーンオイルの付着
量の測定など、各種油分の測定に有用な方法を提供す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil content measuring method, and more particularly to a method for judging the degreasing effect of press oil used in a shadow mask press process of a color cathode ray tube, measuring a trace amount of oil in factory drainage, and measuring a polyethylene bag. Provided is a method useful for measurement of various oil components, such as analysis of a lubricant and measurement of the adhesion amount of silicone oil used in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】近年、油分の測定においては、たとえば
油などの有機物が必ずC−H結合をもっているので、そ
のC−H結合の赤外線領域2920cm-1付近での特異
吸収強度を測定して定量するという方法が実施されてい
る。この方法においては、油分の溶出にC−H結合をも
たない四塩化炭素が使用される。
2. Description of the Related Art In recent years, in the measurement of oil content, since an organic substance such as oil always has a C--H bond, the specific absorption intensity near the infrared region of 2,920 cm -1 of the C--H bond is measured and quantified. A method of doing so has been implemented. In this method, carbon tetrachloride having no CH bond is used for elution of the oil component.

【0003】以下に従来の油分測定方法について説明す
る。図7は従来の油分測定に用いられる赤外分光測定用
セルを示す。図7において、61はセル本体で、開口部
62が設けられたガラス製の筒状体63と、その両端部
分を気密に封止する、赤外光透過性の窓板64,65と
で構成されている。66はガラス製の蓋体で、筒状体6
3に設けられた開口部62にはめ、セル本体61を気密
に封止する。
[0003] A conventional oil content measuring method will be described below. FIG. 7 shows a conventional infrared spectrometry cell used for oil measurement. In FIG. 7, reference numeral 61 denotes a cell main body, which comprises a glass cylindrical body 63 provided with an opening 62 and window plates 64 and 65 that transmit infrared light and hermetically seal both ends thereof. Have been. 66 is a lid made of glass,
3. The cell main body 61 is hermetically sealed by fitting it into the opening 62 provided in the device 3.

【0004】このような構造の油分測定セルにおいて、
油分を溶解させた四塩化炭素を開口部62からセル本体
61に入れ、開口部62に蓋体66をしてから、赤外光
に不活性な二枚の窓板64,65を通してセル本体61
に赤外光を透過させて、油分のC−H結合の特異吸収強
度を測定する。
In the oil measuring cell having such a structure,
The carbon tetrachloride in which the oil is dissolved is put into the cell main body 61 through the opening 62, the lid 66 is placed in the opening 62, and then the cell main body 61 is passed through the two window plates 64 and 65 that are inert to infrared light.
Through which infrared light is transmitted to measure the specific absorption intensity of the C—H bond of the oil component.

【0005】[0005]

【発明が解決しようとする課題】この従来の方法では、
油分の溶剤にオゾン層破壊係数の大きい四塩化炭素を使
用する。四塩化炭素は、1987年度に採択されたモン
トリーオール議定書で西暦2000年までに全廃するこ
とが義務づけられており、環境保護の面から早急に使用
量の削減に取り組まなければならない物質である。
In this conventional method,
Carbon tetrachloride having a large ozone depletion potential is used as the oil solvent. Carbon tetrachloride is required to be completely abolished by the year 2000 in the Montory All Protocol adopted in 1987, and is a substance that must be promptly worked to reduce its use in terms of environmental protection.

【0006】本発明はこのような環境保護上使用を避け
なければならないハロゲン化炭素を使用することなく、
油分を測定できる方法を提供しようとするものである。
[0006] The present invention does not use such halogenated carbon which must be avoided for environmental protection.
It is intended to provide a method capable of measuring oil content.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明の油分の測定法は、複数種の揮発性有機溶剤
からなり、最低共沸点がこれら揮発性有機溶剤それぞれ
の沸点より低い混合溶剤で油分を溶解し、混合溶剤と油
分の沸点差を利用して、混合溶剤を除去し、油分を選択
的に取り出して2920cm-1付近におけるC−H結合
の赤外線吸収強度から定量を行う方法である。
In order to achieve this object, an oil content measuring method of the present invention comprises a plurality of types of volatile organic solvents, and the lowest azeotropic point is lower than the boiling point of each of these volatile organic solvents. The oil is dissolved in the mixed solvent, the mixed solvent is removed by utilizing the difference in boiling point between the mixed solvent and the oil, the oil is selectively taken out, and the oil content is quantitatively determined from the infrared absorption intensity of the CH bond at around 2,920 cm -1. Is the way.

【0008】[0008]

【作用】本発明の方法では、複数種の揮発性有機溶剤か
らなり、最低共沸点がこれら揮発性有機溶剤それぞれの
沸点より低い混合溶剤を油分の溶剤として使用すること
で、四塩化炭素が不要となる。そして、本発明では有機
溶剤がC−H結合の吸収帯をもつが、油分と混合溶剤の
沸点差を利用することで溶剤を除去し、有機溶剤のもつ
C−H結合が測定結果に影響を及ぼすおそれがない。
In the method of the present invention, carbon tetrachloride is not required by using a mixed solvent comprising a plurality of types of volatile organic solvents and having a minimum azeotropic point lower than the boiling point of each of these volatile organic solvents as a solvent for the oil component. Becomes In the present invention, the organic solvent has an absorption band of C—H bonds, but the solvent is removed by utilizing the boiling point difference between the oil and the mixed solvent, and the C—H bonds of the organic solvent affect the measurement result. There is no danger.

【0009】[0009]

【実施例】複数種の揮発性有機溶剤からなる共沸混合溶
剤においては、それを構成する揮発性有機溶剤の混合比
を変えることでそれぞれ蒸発量の比率が変化する。その
ため、沸点の低い揮発性有機溶剤が最終的に蒸発するよ
うに共沸混合溶剤の混合比を調整することによって、溶
剤の除去のための時間が大幅に短縮される。それによっ
て、測定に要する時間がいちじるしく短縮される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In an azeotropic solvent composed of a plurality of types of volatile organic solvents, the ratio of the amount of evaporation changes by changing the mixing ratio of the constituent volatile organic solvents. Therefore, by adjusting the mixing ratio of the azeotropic mixed solvent so that the volatile organic solvent having a low boiling point is finally evaporated, the time for removing the solvent is greatly reduced. Thereby, the time required for the measurement is significantly reduced.

【0010】たとえば脂肪族炭化水素類溶剤であるヘキ
サンとケトン類溶剤であるアセトンとの二成分系の混合
溶剤を例にとると、この混合溶剤の組成比率と沸点との
関係は図5に示すようになる。すなわち、ヘキサンが1
00重量%であるとき沸点が69℃で、アセトンの組成
比率の値が大きくなるに従って沸点が低下し、ヘキサン
41重量%、アセトン59重量%であるとき沸点(49
℃)がもっとも低くなり、さらにアセトンの重量比率が
高まるに従って沸点が高くなり、アセトン100重量%
で56℃となる。これから、共沸点もしくはほぼそれに
等しい組成比率の混合溶剤を使用すれば、もっとも効果
的に溶剤を除去することができ、測定対象の油剤を抽出
することができる。すなわち、ヘキサンとアセトンとを
ほぼ41対59の重量比で混合したとき、その混合溶剤
は最低共沸点である49℃を示し、49℃もしくはそれ
より若干高い温度に熱してやることで、容易に除去され
る。
For example, taking as an example a binary mixed solvent of hexane as an aliphatic hydrocarbon solvent and acetone as a ketone solvent, the relationship between the composition ratio of this mixed solvent and the boiling point is shown in FIG. Become like That is, hexane is 1
The boiling point is 69 ° C. when the amount is 00% by weight, and the boiling point decreases as the value of the composition ratio of acetone increases.
C)), the boiling point increases as the weight ratio of acetone increases, and 100% by weight of acetone
To 56 ° C. From this, the use of a mixed solvent having an azeotropic point or a composition ratio substantially equal to the azeotropic point enables the solvent to be removed most effectively, and allows the oil agent to be measured to be extracted. That is, when hexane and acetone are mixed at a weight ratio of about 41:59, the mixed solvent exhibits a minimum azeotropic point of 49 ° C., and is easily removed by heating to 49 ° C. or slightly higher. Is done.

【0011】図6は、ヘキサン、アセトン、およびヘキ
サン・アセトン共沸混合溶剤を室温(20℃)に保持し
たときの、それぞれが蒸発して減少する様子を示す。こ
れからも、ヘキサンとアセトンとの共沸混合溶剤が、ヘ
キサンおよびアセトンのいずれよりも蒸発減量が顕著で
あることがわかる。
FIG. 6 shows how hexane, acetone, and a hexane / acetone azeotrope are evaporated and reduced when they are kept at room temperature (20 ° C.). From this, it can be seen that the azeotropic mixed solvent of hexane and acetone is more remarkable in evaporation loss than any of hexane and acetone.

【0012】ヘキサンとアセトンとの混合溶剤の最低共
沸点はほとんどすべての油分の沸点よりも低く、これま
で測定が非常に困難であった低い温度で揮発する油分に
ついても測定をすることができる。そして、アセトンの
比率がほぼ共沸混合比率よりも若干大きい値となって
も、アセトンの沸点(56℃)以下で溶剤を除去するこ
とができる。
The minimum azeotropic point of a mixed solvent of hexane and acetone is lower than the boiling point of almost all oil components, and it is possible to measure oil components that evaporate at low temperatures, which has been very difficult to measure until now. And even if the ratio of acetone becomes a value slightly larger than the azeotropic mixture ratio, the solvent can be removed at a boiling point of acetone (56 ° C.) or lower.

【0013】また、下記の表1に示すように、ヘキサン
とアセトンとは、エステル系オイルについてはそれぞれ
が単独で溶解するものの、炭化水素系オイルやシリコー
ン系オイルについては異なった性質を示す。すなわち、
ヘキサンは、炭化水素系オイルを溶解するけれども、単
独ではシリコーン系オイルを溶解することが困難なもの
である。これに対して、アセトンは、単独では炭化水素
系オイルに対する溶解力が比較的弱いけれども、シリコ
ーン系オイルを溶解する。
[0013] As shown in Table 1 below, hexane and acetone have different properties with hydrocarbon-based oils and silicone-based oils, although each of hexane and acetone is dissolved alone. That is,
Hexane dissolves hydrocarbon-based oils, but it is difficult to dissolve silicone-based oils alone. On the other hand, acetone alone dissolves a silicone-based oil, although it has a relatively low solubility in a hydrocarbon-based oil.

【0014】ヘキサンとアセトンとの混合溶剤を用いる
ことによって、それぞれの特徴を補完され、測定対象が
いちじるしく増加する。
By using a mixed solvent of hexane and acetone, each characteristic is complemented, and the number of objects to be measured is greatly increased.

【0015】[0015]

【表1】 [Table 1]

【0016】ヘキサン以外にもそれに代えてペンタン、
2−メチルブタン、または2−メチルペンタンを、ま
た、アセトン以外にもそれに代えてメチルエチルケト
ン、2−ペンタノン、3−ペンタノン、2−ヘキサン、
またはメチルイソブチルケトンを使用してとの混合溶剤
を用いても、同様の結果が得られる。
In addition to hexane, pentane,
2-methylbutane, or 2-methylpentane, in addition to acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexane,
Alternatively, a similar result can be obtained by using a mixed solvent with the use of methyl isobutyl ketone.

【0017】以下本発明の方法の一実施例について、図
面を参照しながら説明する。 〔第1実施例〕図1〜図3は本発明の第1の実施例の方
法を説明するための図であり、図1は油分抽出装置の構
造の一例を示す図、図2および図3は油分測定のための
試料作製工程図である。
An embodiment of the method of the present invention will be described below with reference to the drawings. First Embodiment FIGS. 1 to 3 are views for explaining a method according to a first embodiment of the present invention. FIG. 1 is a view showing an example of the structure of an oil extraction device, and FIGS. FIG. 4 is a sample preparation process diagram for oil content measurement.

【0018】図において、1は恒温槽で、ヘキサンとア
セトンとの混合溶剤2が入れられている。3は加熱装置
で、恒温槽1を熱して、混合溶剤2を最低共沸点以上の
温度に保持してそれを気化させるためのものである。4
はヘキサン導入管、5はアセトン導入管で、それぞれバ
ルブ6,7を開くことで恒温槽1内にヘキサン、アセト
ンを補給する。8は試料処理室、9は溶剤蒸気配管で、
バルブ10を備え、それを開くことで恒温槽1から試料
処理室8に溶剤蒸気を導入する。11は加熱装置で、溶
剤蒸気配管9を覆うように配置され、この溶剤蒸気配管
9を加熱して混合溶剤の凝結を防止するためのものであ
る。12はセラミック製容器で、定量すべき油分を入れ
るためのものであり、試料処理室8内に配置されてい
る。13は加熱装置で、セラミック製容器12を加熱し
て、測定対象の油分の沸点より低く、混合溶剤の沸点よ
りも高い温度に保持するためのものである。14はステ
ンレス鋼製の試料支持体で、試料処理室8の上部に貫通
させ、その先端部分がセラミック製容器12の上方に位
置するよう配置されている。15は測定対象の油分が付
着した試料で、試料支持体14の先端近傍に取り付けら
れている。16は冷却装置で、試料処理室8の外部に突
出した試料支持体14の他端部分に結合され、試料支持
体14を通して試料15を冷却し、混合溶剤蒸気を凝結
させるためのものである。17は窒素ガス導入管、18
は窒素ガス排出管で、バルブ19,20を開閉すること
によって試料処理室8内に窒素ガスを導入し、排出す
る。21は圧力調整バルブで、試料処理室8内の圧力を
調整するためのものである。22はガスクロマトグラフ
ィーで、恒温槽1内の溶剤蒸気の成分比率を検出するた
めのものである。23はマイクロコンピューターを備え
た制御装置で、ガスクロマトグラフィー22の出力信号
に応じてバルブ6,7を開閉制御して、恒温槽1内にヘ
キサン、アセトンを補給して、混合溶剤2を共沸混合比
に保つ。
In FIG. 1, reference numeral 1 denotes a thermostat, which contains a mixed solvent 2 of hexane and acetone. Reference numeral 3 denotes a heating device for heating the constant temperature bath 1 to maintain the mixed solvent 2 at a temperature not lower than the minimum azeotropic point and vaporize it. 4
Is a hexane introduction pipe, and 5 is an acetone introduction pipe, and hexane and acetone are replenished into the thermostat 1 by opening the valves 6 and 7, respectively. 8 is a sample processing chamber, 9 is a solvent vapor pipe,
A valve 10 is provided, and by opening it, a solvent vapor is introduced from the thermostat 1 into the sample processing chamber 8. Reference numeral 11 denotes a heating device which is disposed so as to cover the solvent vapor pipe 9, and is for heating the solvent vapor pipe 9 to prevent the mixed solvent from condensing. Reference numeral 12 denotes a ceramic container for storing an oil to be quantified, which is disposed in the sample processing chamber 8. Reference numeral 13 denotes a heating device for heating the ceramic container 12 to maintain the temperature at a temperature lower than the boiling point of the oil component to be measured and higher than the boiling point of the mixed solvent. Reference numeral 14 denotes a sample support made of stainless steel, which penetrates into the upper part of the sample processing chamber 8, and is disposed so that the tip portion is located above the ceramic container 12. Reference numeral 15 denotes a sample to which the oil to be measured adheres, which is attached near the tip of the sample support 14. A cooling device 16 is connected to the other end portion of the sample support 14 protruding outside the sample processing chamber 8 and cools the sample 15 through the sample support 14 to condense the mixed solvent vapor. 17 is a nitrogen gas inlet pipe, 18
Is a nitrogen gas discharge pipe for introducing and discharging nitrogen gas into the sample processing chamber 8 by opening and closing valves 19 and 20. Reference numeral 21 denotes a pressure adjusting valve for adjusting the pressure in the sample processing chamber 8. Reference numeral 22 denotes a gas chromatography for detecting the component ratio of the solvent vapor in the thermostat 1. Reference numeral 23 denotes a control device equipped with a microcomputer, which controls the opening and closing of the valves 6 and 7 according to the output signal of the gas chromatography 22, replenishes hexane and acetone into the thermostat 1, and azeotropically mixes the mixed solvent 2. Keep at mixing ratio.

【0019】以上のように構成された油分抽出装置にお
いて、まず、試料処理室8を開放して試料支持体3の先
端部分に試料15を取り付けてから、試料処理室8を閉
じ、その内部の空気を窒素ガスに置換する。すなわち、
バルブ19,20を開いて、窒素ガス導入管6から試料
処理室8内に窒素ガスを導入するとともに、窒素ガス排
出管18から試料処理室8内の空気を排出する。一方、
恒温層1内のヘキサンとアセトンとの混合溶剤2を加熱
装置3でその沸点よりも高い温度で加熱して気化させ
る。試料処理室8内が窒素ガスに置換された時点でバル
ブ10を開き、混合溶剤の蒸気を加熱装置11で覆った
溶剤蒸気配管9の中を通し、試料処理室8に導入する。
試料処理室8内の圧力を圧力調整バルブ21で調整し
て、一定に保つ。試料支持体14は冷却装置16によっ
て冷却されており、その先端部分に取り付けられた試料
15も冷却される。試料処理室8にある混合溶剤の蒸気
は、冷却された試料15と接することで冷却されて凝結
し、液体となって、試料15の付着油分などの有機物を
溶解する。抽出有機物は液化した混合溶剤とともに、そ
の下方に配置されたセラミック製容器12内へ滴下す
る。セラミック製容器12は加熱装置13で所定の温度
に保持されているので、沸点の低い共沸溶剤はただちに
揮発し、それよりも沸点の高い抽出有機物がセラミック
製容器12内に残る。
In the oil extractor constructed as described above, first, the sample processing chamber 8 is opened, the sample 15 is attached to the tip of the sample support 3, and then the sample processing chamber 8 is closed. Replace air with nitrogen gas. That is,
By opening the valves 19 and 20, nitrogen gas is introduced into the sample processing chamber 8 from the nitrogen gas introducing pipe 6, and air in the sample processing chamber 8 is discharged from the nitrogen gas discharging pipe 18. on the other hand,
The mixed solvent 2 of hexane and acetone in the thermostatic layer 1 is heated by the heating device 3 at a temperature higher than its boiling point to be vaporized. When the inside of the sample processing chamber 8 is replaced with nitrogen gas, the valve 10 is opened, and the mixed solvent vapor is introduced into the sample processing chamber 8 through the solvent vapor pipe 9 covered with the heating device 11.
The pressure in the sample processing chamber 8 is adjusted by the pressure adjusting valve 21 and kept constant. The sample support 14 is cooled by the cooling device 16, and the sample 15 attached to the tip is also cooled. The vapor of the mixed solvent in the sample processing chamber 8 is cooled and condensed by coming into contact with the cooled sample 15, turns into a liquid, and dissolves organic matter such as oil adhering to the sample 15. The extracted organic matter is dropped together with the liquefied mixed solvent into the ceramic container 12 disposed below the mixed solvent. Since the ceramic container 12 is maintained at a predetermined temperature by the heating device 13, the azeotropic solvent having a low boiling point volatilizes immediately, and the extracted organic matter having a higher boiling point remains in the ceramic container 12.

【0020】溶剤を完全に除去した後、図2(a)に示
すように、セラミック製容器12内に臭化カリウム粉末
31を入れ、スパチュラー32でセラミック製容器12
の底面を削り取るようにかき混ぜる。臭化カリウム粉末
31の結晶の摩擦力によりセラミック製容器12の壁面
に付着した抽出有機物33がかき出されて、臭化カリウ
ム粉末31中に分散する。それから、図3に示すよう
に、加圧錠剤成形器41の本体42に抽出有機物33を
臭化カリウム粉末31に分散させた状態のまま入れ、加
圧錠剤成形器の蓋体43を加圧することで赤外分光測定
用錠剤を作製する。この赤外分光測定用錠剤について、
公知の赤外線分光測定方法で2920cm -1付近におけ
るC−H結合の吸収強度を測定することにより油分量を
定量する。
After the solvent has been completely removed, as shown in FIG.
As shown, the potassium bromide powder is placed in the ceramic container 12.
31 and put in a ceramic container 12 with a spatula 32.
Stir to scrape off the bottom of. Potassium bromide powder
The wall surface of the ceramic container 12 due to the frictional force of the crystal 31
Extracted organic matter 33 attached to the surface is scraped off and potassium bromide is removed.
Disperse in the system powder 31. Then, as shown in FIG.
Then, the extracted organic matter 33 is added to the main body 42 of the pressurized tablet press 41.
Put in the state of being dispersed in potassium bromide powder 31, and add
Infrared spectroscopy measurement by pressing the lid 43 of the tablet press
Make tablets for use. About this tablet for infrared spectrometry,
2920 cm by known infrared spectroscopy -1Nearby
The oil content is determined by measuring the absorption strength of the CH bond.
Quantify.

【0021】恒温層1内の混合溶剤2は気化がはやく進
み、そのまま放置すると比較的短期間に成分比が変化し
てしまう。本実施例では、恒温層1内の混合溶剤蒸気の
成分比をガスクロマトグラフィー22で検出し、成分比
の平衡状態を制御装置23で監視する。その平衡状態が
崩れたことが検出されたときには、制御装置23により
蒸発量に応じてバルブ6,7の開閉度合いを調整して、
へキサンおよびアセトンの供給量を制御し、つねに理論
共沸混合比に混合溶剤2を保持する。
The mixed solvent 2 in the constant temperature layer 1 is rapidly vaporized, and if left as it is, the component ratio changes in a relatively short time. In the present embodiment, the component ratio of the mixed solvent vapor in the thermostatic layer 1 is detected by the gas chromatography 22, and the equilibrium state of the component ratio is monitored by the controller 23. When it is detected that the equilibrium state has collapsed, the controller 23 adjusts the degree of opening and closing of the valves 6 and 7 according to the amount of evaporation,
The supply amounts of hexane and acetone are controlled, and the mixed solvent 2 is always maintained at the theoretical azeotropic mixing ratio.

【0022】〔第2実施例〕以下本発明の第2の実施例
について、図4を参照しながら説明する。
[Second Embodiment] A second embodiment of the present invention will be described below with reference to FIG.

【0023】図4は本発明の第2の実施例において油分
および有機物を抽出するために使用される装置の構造を
示す図である。図4において、41は温度調節機構付き
加熱装置で、その上方に局所排気装置42が配置されて
いる。43は試料煮沸用ガラス製シャーレで、アセトン
とヘキサンの混合溶剤45を入れるためのものである。
46は測定対象となる試料である。
FIG. 4 is a view showing the structure of an apparatus used for extracting oil and organic substances in a second embodiment of the present invention. In FIG. 4, reference numeral 41 denotes a heating device with a temperature control mechanism, and a local exhaust device 42 is disposed above the heating device. Reference numeral 43 denotes a petri dish made of glass for boiling a sample, in which a mixed solvent 45 of acetone and hexane is put.
Reference numeral 46 denotes a sample to be measured.

【0024】まず、加熱装置41に通電して発熱させ、
所定の温度に保っておく。温度調節機構付き加熱装置4
1の上に試料煮沸用ガラス製シャーレ43をおき、それ
に適当な大きさに切断もしくは破壊した試料46を試料
煮沸用シャーレ43に入れる。それからアセトンとヘキ
サンとの混合溶剤45を、試料46が十分に浸る量だけ
入れ、一定時間、一定の温度で加熱溶出する。一定時間
経過した後、試料46を試料煮沸用シャーレ43から取
り出し、さらに加熱を続ける。試料煮沸用シャーレ43
中の溶剤45が徐々に減量したところで、セラミック製
容器に移し変え、常温で溶剤を完全に除去する。溶剤除
去後、臭化カリウム粉末を加え、第1実施例と同じ手順
で赤外分光測定用錠剤を作り、それを使用してC−H結
合の吸収強度を測定することにより油分の定量をする。
First, the heating device 41 is energized to generate heat,
Keep at a predetermined temperature. Heating device 4 with temperature control mechanism
A sample boiling glass petri dish 43 is placed on 1, and a sample 46 cut or broken into an appropriate size is put into the sample boiling petri dish 43. Then, a mixed solvent 45 of acetone and hexane is added in such an amount that the sample 46 is sufficiently immersed, and the mixture is heated and eluted at a fixed temperature for a fixed time. After a certain period of time, the sample 46 is taken out of the sample boiling petri dish 43 and heating is continued. Petri dish 43 for boiling sample
When the amount of the solvent 45 gradually decreases, the solvent 45 is transferred to a ceramic container, and the solvent is completely removed at room temperature. After removing the solvent, potassium bromide powder is added, and a tablet for infrared spectrometry is prepared in the same procedure as in the first example, and the oil content is determined by measuring the absorption intensity of the CH bond using the tablet. .

【0025】本実施例によれば、ヘキサンとアセトンと
の二成分系の混合溶剤を用いることにより、従来ヘキサ
ン単独で溶解が困難であったシリコーン系オイルにも、
またアセトン単独では溶解が困難である高分子オイルも
溶解が可能になり、測定対象についての制約がいちじる
しく緩和され、多種の油分量を容易に測定することがで
きる。また、溶剤の除去についても、混合溶剤が低沸点
であるために非常に容易である。
According to the present embodiment, by using a binary solvent mixture of hexane and acetone, even a silicone oil which has been difficult to dissolve with hexane alone can be used.
In addition, it becomes possible to dissolve even high-molecular oil which is difficult to dissolve in acetone alone, so that the restriction on the object to be measured is remarkably relieved and various oil contents can be easily measured. The removal of the solvent is also very easy because the mixed solvent has a low boiling point.

【0026】本発明の方法は、たとえばカラー陰極線管
のシャドウマスクプレス工程で使用されるプレスオイル
の脱脂洗浄効果の判定、工場排水中の微量オイルの測
定、ポリエチレン製の袋の滑剤の分析、半導体装置の製
造工程で用いられるシリコーンオイルの付着量の測定、
合成樹脂などの成形の際に使用される滑剤の抽出・測定
などに適用することができる。
The method of the present invention can be used, for example, to judge the degreasing effect of press oil used in the shadow mask pressing step of a color cathode ray tube, to measure a trace amount of oil in factory wastewater, to analyze the lubricant in a polyethylene bag, Measurement of the amount of silicone oil used in the manufacturing process of the device,
The present invention can be applied to extraction and measurement of a lubricant used in molding a synthetic resin or the like.

【0027】[0027]

【発明の効果】本発明の方法は、複数種の揮発性有機溶
剤からなり、最低共沸点がこれら揮発性有機溶剤それぞ
れの沸点より低い混合溶剤を油分の溶剤として使用する
ので、溶剤としてこれまで広く使用されてきた四塩化炭
素が不要となり、環境に対する安全性が高められる。そ
して、有機溶剤がC−H結合の吸収帯をもつものの、混
合溶剤の沸点が低いことから、油分との沸点差を利用す
ることで溶剤を容易に除去することができ、かつ、有機
溶剤のもつC−H結合が測定結果に影響を及ぼすおそれ
がない。
According to the method of the present invention, a mixed solvent comprising a plurality of types of volatile organic solvents and having a minimum azeotropic point lower than the boiling point of each of these volatile organic solvents is used as a solvent for the oil component. This eliminates the need for carbon tetrachloride, which has been widely used, and enhances environmental safety. And, although the organic solvent has a C—H bond absorption band, since the boiling point of the mixed solvent is low, the solvent can be easily removed by utilizing the boiling point difference with the oil component, and the organic solvent The C—H bond does not affect the measurement result.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の方法において使用され
る油分抽出装置の構造の一例を示す図
FIG. 1 is a diagram showing an example of the structure of an oil extractor used in a method according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の方法における油分測定
のための試料作製工程図
FIG. 2 is a sample preparation process diagram for measuring oil content in the method according to the first embodiment of the present invention.

【図3】本発明の第1の実施例の方法における油分測定
のための試料作製工程図
FIG. 3 is a sample preparation process diagram for measuring oil content in the method of the first embodiment of the present invention.

【図4】本発明の第2の実施例の方法における油分およ
び有機物を抽出するために使用される装置の構造を示す
FIG. 4 is a diagram showing the structure of an apparatus used for extracting oil and organic matter in the method according to the second embodiment of the present invention.

【図5】ヘキサンとアセトンとの二成分系混合溶剤の組
成比率と沸点との関係を示す図
FIG. 5 is a diagram showing the relationship between the composition ratio of a binary mixed solvent of hexane and acetone and the boiling point.

【図6】ヘキサン、アセトンおよびヘキサン・アセトン
共沸混合溶剤を室温(20℃)に保持したときの放置時
間と残量との関係を示す図
FIG. 6 is a diagram showing the relationship between the remaining time and the remaining amount when hexane, acetone, and a hexane / acetone azeotrope are kept at room temperature (20 ° C.).

【図7】従来の油分測定に用いられる赤外分光測定用セ
ルの斜視図
FIG. 7 is a perspective view of a conventional cell for infrared spectrometry used for oil measurement.

【符号の説明】 1 恒温槽 2 ヘキサンとアセトンとの混合溶剤 3 加熱装置 4 ヘキサン導入管 5 アセトン導入管 6,7 バルブ 8 試料処理室 9 溶剤蒸気配管 10 バルブ 11 加熱装置 12 セラミック製容器 13 加熱装置 14 ステンレス鋼製の試料支持体 15 試料 16 冷却装置 17 窒素ガス導入管 18 窒素ガス排出管 19,20 バルブ 21 圧力調整バルブ 22 ガスクロマトグラフィー 23 マイクロコンピューターを備えた制御装置 31 臭化カリウム粉末 32 スパチュラー 33 抽出有機物 41 温度調節機構付き加熱装置 42 局所排気装置 43 試料煮沸用ガラス製シャーレ 45 アセトンとヘキサンの混合溶剤 46 試料[Description of Signs] 1 Thermostatic bath 2 Mixed solvent of hexane and acetone 3 Heating device 4 Hexane introduction tube 5 Acetone introduction tube 6,7 Valve 8 Sample processing chamber 9 Solvent vapor piping 10 Valve 11 Heating device 12 Ceramic vessel 13 Heating Device 14 Sample support made of stainless steel 15 Sample 16 Cooling device 17 Nitrogen gas inlet tube 18 Nitrogen gas outlet tube 19, 20 Valve 21 Pressure regulating valve 22 Gas chromatography 23 Control device with microcomputer 31 Potassium bromide powder 32 Spatula 33 Extracted organic matter 41 Heating device with temperature control mechanism 42 Local exhaust device 43 Glass petri dish for sample boiling 45 Mixed solvent of acetone and hexane 46 Sample

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−126844(JP,A) 特開 昭61−133298(JP,A) 特開 平7−233398(JP,A) 丸善株式会社「化学便覧基礎編 改訂 第3版」P.▲II▼−145 昭和59年 (58)調査した分野(Int.Cl.7,DB名) G01N 33/28 G01N 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-126844 (JP, A) JP-A-61-133298 (JP, A) JP-A-7-233398 (JP, A) Maruzen Co., Ltd. Handbook Basics Revised 3rd Edition " (II) -145 1984 (58) Field surveyed (Int. Cl. 7 , DB name) G01N 33/28 G01N 1/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数種の揮発性有機溶剤からなる、最低
共沸点が前記揮発性有機溶剤それぞれの沸点より低い混
合溶剤で油分を溶解し、前記混合溶剤と前記油分の沸点
差を利用して、前記混合溶剤を除去し、前記油分を選択
的に取り出してC−H結合の赤外線吸収強度を測定し、
その値にもとづいて前記油分の定量を行う油分測定方
法。
An oil component is dissolved in a mixed solvent comprising a plurality of types of volatile organic solvents and having a minimum azeotropic point lower than the boiling point of each of the volatile organic solvents, and utilizing a boiling point difference between the mixed solvent and the oil component. Removing the mixed solvent, selectively taking out the oil component and measuring the infrared absorption intensity of the CH bond,
An oil content measurement method for quantifying the oil content based on the value.
【請求項2】 混合溶剤が互いに沸点の異なる複数種の
揮発性有機溶剤である請求項1記載の油分測定方法。
2. The method according to claim 1, wherein the mixed solvent is a plurality of volatile organic solvents having different boiling points.
【請求項3】 混合溶剤がケトン類溶剤および脂肪族炭
化水素類溶剤からなる請求項1または2記載の油分測定
方法。
3. The method according to claim 1, wherein the mixed solvent comprises a ketone solvent and an aliphatic hydrocarbon solvent.
【請求項4】 混合溶剤が互いに沸点の異なる複数種の
揮発性有機溶剤である請求項1,2または3記載の油分
測定方法。
4. The method according to claim 1, wherein the mixed solvent is a plurality of volatile organic solvents having different boiling points.
【請求項5】 混合溶剤が最低共沸点をもつ請求項1,
2または3記載の油分測定方法。
5. The method according to claim 1, wherein the mixed solvent has a minimum azeotropic point.
4. The method for measuring oil content according to 2 or 3.
【請求項6】 混合溶剤の最低共沸点が定量すべき油分
の沸点より低い請求項5記載の油分測定方法。
6. The oil content measuring method according to claim 5, wherein the lowest azeotropic point of the mixed solvent is lower than the boiling point of the oil component to be determined.
【請求項7】 混合溶剤がヘキサンおよびアセトンから
なる請求項1記載の油分測定方法。
7. The method according to claim 1, wherein the mixed solvent comprises hexane and acetone.
【請求項8】 混合溶剤がヘキサンおよびアセトンから
なり、前記ヘキサンの組成比率が前記混合溶剤の最低共
沸点を示す組成比率以上である請求項6記載の油分測定
方法。
8. The method for measuring an oil content according to claim 6, wherein the mixed solvent comprises hexane and acetone, and the composition ratio of the hexane is not less than the composition ratio showing the lowest azeotropic point of the mixed solvent.
【請求項9】 混合溶剤がヘキサンおよびアセトンから
なり、前記ヘキサンの組成比率が44重量%以下であ
り、アセトンが56重量%以上である請求項6記載の油
分測定方法。
9. The method according to claim 6, wherein the mixed solvent comprises hexane and acetone, wherein the composition ratio of the hexane is 44% by weight or less, and the acetone content is 56% by weight or more.
【請求項10】 混合溶剤がヘキサンおよびアセトンか
らなり、前記ヘキサンの組成比率が44〜34重量%で
あり、アセトンが56〜66重量%である請求項6記載
の油分測定方法。
10. The method according to claim 6, wherein the mixed solvent comprises hexane and acetone, wherein the composition ratio of the hexane is 44 to 34% by weight and the amount of acetone is 56 to 66% by weight.
JP03131594A 1994-02-24 1994-03-01 Oil content measurement method Expired - Fee Related JP3221209B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP03131594A JP3221209B2 (en) 1994-03-01 1994-03-01 Oil content measurement method
DE69530020T DE69530020T2 (en) 1994-02-24 1995-02-22 Organic matter extraction method, solvent to be used in this method and method of measuring the organic matter content
EP95102490A EP0669151B1 (en) 1994-02-24 1995-02-22 Method for extracting organic substance, solvent for use in said method, and method for measuring content of organic substance
CN95100013A CN1048646C (en) 1994-02-24 1995-02-24 Method for extracting organic substance, solvent for use in said method, and method for measuring content of organic substance
US08/753,688 US5714071A (en) 1994-02-24 1996-11-27 Method for extracting organic substance, solvent for use in said method, and method for measuring content of organic substance
CN99105394.XA CN1114097C (en) 1994-02-24 1999-04-30 Method for determining organic matter content in material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03131594A JP3221209B2 (en) 1994-03-01 1994-03-01 Oil content measurement method

Publications (2)

Publication Number Publication Date
JPH07244041A JPH07244041A (en) 1995-09-19
JP3221209B2 true JP3221209B2 (en) 2001-10-22

Family

ID=12327855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03131594A Expired - Fee Related JP3221209B2 (en) 1994-02-24 1994-03-01 Oil content measurement method

Country Status (1)

Country Link
JP (1) JP3221209B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丸善株式会社「化学便覧基礎編 改訂第3版」P.▲II▼−145 昭和59年

Also Published As

Publication number Publication date
JPH07244041A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
Price Vapor pressure determination by thermogravimetry
Abdellatef Kinetic spectrophotometric determination of tramadol hydrochloride in pharmaceutical formulation
US4151253A (en) High-precision pressure
JP3221209B2 (en) Oil content measurement method
Troni et al. Improving a variation of the DSC technique for measuring the boiling points of pure compounds at low pressures
Mandal Evaluation of microwave drying for pharmaceutical granulations
JP2004069413A (en) Method for determining the quantity of silicon in organic silicon compound
US5714071A (en) Method for extracting organic substance, solvent for use in said method, and method for measuring content of organic substance
Lerdkanchanaporn et al. An investigation of the evaporation of stearic acid using a simultaneous TG-DTA unit
Mierzwa et al. Ultrasound accelerated solid-liquid extraction for the determination of selenium in biological samples by electrothermal atomization atomic absorption spectrometry
Cady et al. Freezing points of the system water-hydrogen fluoride
Matusiewicz et al. Hydride generation graphite furnace atomic absorption determination of bismuth in clinical samples with in situ preconcentration
Nicholson et al. Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb.
CN209542531U (en) A kind of higher boiling clean agent fire suppressant thermal decomposer under air atmosphere
Wright A Method for a More Complete Examination of Binary Liquid Mixtures.
JPH0772056A (en) Analysis method and decomposition/dry-up device for analysis
EP0583208A3 (en) Procedure and apparatus for programmed thermal desorption.
Dobrjakov et al. The limiting activity coefficient of phenol in water and some organic solvents from differential ebulliometry
Jones et al. Determination of deuterium in organic compounds by infrared spectrophotometry
Ayuttaya et al. Henry’s law constants derived from equilibrium static cell measurements for dilute organic–water mixtures
Murthy et al. A method for the rapid ashing of milk for radionuclide analysis
Martin et al. Determination of selenium in bovine liver by Zeeman-effect atomic absorption spectrometry using a palladium-copper chemical modifier
Smith Preparation of Gas Chromatographic Packings by Frontal Analysis
Cuddeback et al. Modified Soxhlet extractor for high pressure application
Wright et al. CLXXVII.—The effect of gases on the colour of iodine vapour, and the solvent action of various vapours on solid iodine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees