JP3220630B2 - Manufacturing method of photoelectric conversion element - Google Patents

Manufacturing method of photoelectric conversion element

Info

Publication number
JP3220630B2
JP3220630B2 JP29803795A JP29803795A JP3220630B2 JP 3220630 B2 JP3220630 B2 JP 3220630B2 JP 29803795 A JP29803795 A JP 29803795A JP 29803795 A JP29803795 A JP 29803795A JP 3220630 B2 JP3220630 B2 JP 3220630B2
Authority
JP
Japan
Prior art keywords
layer
cadmium
photoelectric conversion
conversion element
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29803795A
Other languages
Japanese (ja)
Other versions
JPH09139517A (en
Inventor
和典 高田
和也 岩本
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29803795A priority Critical patent/JP3220630B2/en
Publication of JPH09139517A publication Critical patent/JPH09139517A/en
Application granted granted Critical
Publication of JP3220630B2 publication Critical patent/JP3220630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池をはじめ
とする光電変換素子の製造法に関する。
The present invention relates to a method for manufacturing a photoelectric conversion element such as a solar cell.

【0002】[0002]

【従来の技術】光電変換素子による太陽光発電は、化石
燃料と異なり太陽光線という無尽蔵なエネルギーを利用
するため燃料の枯渇の心配がないこと、さらに化石燃料
を燃焼させた際に発生する有害ガスなどの発生がないク
リーンなエネルギーであること、無人化や自動化が簡便
であることなどの利点があり、今後のエネルギー発生の
手段として大きな期待がかけられている。
2. Description of the Related Art Unlike fossil fuels, solar power generation using photoelectric conversion elements uses inexhaustible energy such as sunlight, so there is no need to worry about fuel depletion, and harmful gases generated when fossil fuels are burned. It has advantages such as clean energy with no generation of energy, easy unmanned operation and easy automation, and is expected to be a great means of generating energy in the future.

【0003】光電変換素子の材料としては、単結晶、多
結晶、あるいはアモルファスのシリコンやII−VI族ある
いはIII−V族化合物半導体、あるいは有機物半導体な
どが挙げられるが、化合物半導体はその多くが直接遷移
型の光吸収を示し、吸収係数が大きなこと、シリコンに
比べて禁制帯幅が広く高い変換効率が期待できること、
高温動作時における効率の減少が小さく高集光動作が可
能であることなどの特徴をもっている。中でも硫化カド
ミウム(CdS)層とテルル化カドミウム(CdTe)層よりなるC
dS/CdTe太陽電池の変換効率は17%にものぼることが理論
的に示されており、また、その製造法においてもシリコ
ンデバイス作成のような半導体製造プロセスに比べ、安
価に大面積化が可能な印刷方式を用いられることから将
来の発展が期待されている。
[0003] Materials for the photoelectric conversion element include single crystal, polycrystal, or amorphous silicon, II-VI or III-V compound semiconductors, and organic semiconductors. It exhibits transition-type light absorption, has a large absorption coefficient, has a wide bandgap compared with silicon, and can be expected to have high conversion efficiency.
It has features such as a small decrease in efficiency during high-temperature operation and a high light-collecting operation. Among them, C consisting of cadmium sulfide (CdS) layer and cadmium telluride (CdTe) layer
The conversion efficiency of dS / CdTe solar cells has been theoretically shown to be as high as 17%, and the manufacturing method can be used to increase the area at a lower cost than semiconductor manufacturing processes such as silicon device manufacturing. The future development is expected from the use of various printing methods.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、印刷方
式によりCdS/CdTe太陽電池を構成した場合、半導体層が
厚膜となるためp−n接合部への光の透過性に優れず、
さらに半導体層の抵抗が高いものとなることから、変換
効率が低くなる課題を有していた。
However, when a CdS / CdTe solar cell is formed by a printing method, the semiconductor layer becomes thick, so that light transmission to a pn junction is not excellent.
Further, since the resistance of the semiconductor layer becomes high, there is a problem that the conversion efficiency becomes low.

【0005】これに対し、半導体層を薄膜化する方法と
して、一般に蒸着法、スパッタ法あるいは近接昇華法が
挙げられるが、これらの手法では大面積化が困難である
上に、製造コストも高いものとなる。
On the other hand, as a method for thinning a semiconductor layer, a vapor deposition method, a sputtering method or a proximity sublimation method is generally used. However, these methods are difficult to increase the area and have high manufacturing costs. Becomes

【0006】このため上記の課題を解決し、安価に大面
積の光電変換素子を構成する方法として、CdS層におい
ては有機カドミウム硫化物錯体を熱分解することにより
CdS層を形成する方法が提案されている。この方法で形
成したCdS層には、有機物が分解し分解ガスとして散逸
していく際に形成された孔が生じている。
[0006] Therefore, as a method of solving the above-mentioned problem and inexpensively forming a large-area photoelectric conversion element, in a CdS layer, an organic cadmium sulfide complex is thermally decomposed.
A method for forming a CdS layer has been proposed. The CdS layer formed by this method has pores formed when the organic matter is decomposed and dissipated as a decomposition gas.

【0007】一方、CdTe層を前記種々の方法により形成
した場合、気相にあるCdTe粒子は高い運動エネルギーを
有していることからCdS表面近傍では外部からの相互作
用を受けにくく、ほぼ直線的に運動し、CdS表面に析出
すると考えられる。このため前記方法で形成されたCdS
層上にCdTe層を形成する場合、CdS層に存在する孔の内
壁にむらなくCdTe層を形成することは困難であり、CdS
層表面にp−n接合を形成しない部分が生じる。その結
果、このようにして構成した光電変換素子においては、
変換効率が低下する課題を有していた。
On the other hand, when the CdTe layer is formed by the above-described various methods, the CdTe particles in the gas phase have high kinetic energy, so that they are hardly affected by external interaction near the CdS surface and are substantially linear. It is thought that it moves to the surface and precipitates on the CdS surface. Therefore, CdS formed by the above method
When forming a CdTe layer on the layer, it is difficult to form a CdTe layer evenly on the inner wall of the hole existing in the CdS layer,
A portion where no pn junction is formed occurs on the layer surface. As a result, in the photoelectric conversion element thus configured,
There is a problem that the conversion efficiency is reduced.

【0008】本発明は、以上の課題を解決し、変換効率
の高い光電変換素子を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a photoelectric conversion element having high conversion efficiency.

【0009】[0009]

【課題を解決するための手段】本発明の硫化カドミウム
を主体とする層と、テルル化カドミウムを主体とする層
を有する光電変換素子においては、少なくとも有機カド
ミウム硫化物錯体を含む前駆体より形成した硫化カドミ
ウムを主体とする層上に、テルル化カドミウムを主体と
する層を電解析出法により形成するものである。
In the photoelectric conversion device of the present invention having a layer mainly composed of cadmium sulfide and a layer mainly composed of cadmium telluride, it is formed from a precursor containing at least an organic cadmium sulfide complex. A layer mainly composed of cadmium telluride is formed on a layer mainly composed of cadmium sulfide by an electrolytic deposition method.

【0010】特に、テルル化カドミウムを主体とする層
は、硫化カドミウムを主体とする層上に金属カドミウム
層と金属テルル層を交互に電解析出させた後、該析出物
を加熱焼成することにより形成する。
In particular, the layer mainly composed of cadmium telluride is formed by alternately electrolytically depositing a metal cadmium layer and a metal tellurium layer on a layer mainly composed of cadmium sulfide, and then heating and firing the deposit. Form.

【0011】また、有機カドミウム硫化物錯体として
は、S-Cd-Sの結合を有するものが好ましく、ジチオカー
バマトカドミウム錯体、トリチオ炭酸カドミウム錯体、
キサントゲン酸カドミウム錯体あるいはチアゾールカド
ミウム錯体より選ばれる有機カドミウム硫化物錯体を用
いる。
The organic cadmium sulfide complex preferably has an S-Cd-S bond, and is preferably a dithiocarbamato cadmium complex, a cadmium trithiocarbonate complex,
An organic cadmium sulfide complex selected from a cadmium xanthate complex or a thiazole cadmium complex is used.

【0012】[0012]

【発明の実施の形態】電解析出させるためのめっき液中
での粒子の運動エネルギーは、先に述べた気相中での運
動エネルギーに比べ小さい。例えば、Cd2+がCdS表面で
還元されるとCdS近傍ではCd2+の濃度が低くなり、その
濃度勾配によりめっき液の沖合いからCd 2+イオンが補給
される。Cd2+はCdS表面近傍まで拡散により移動し、そ
の後、CdS層の凹凸に沿って形成されたごく表面近傍の
電気二重層内において、はじめて電場により加速されCd
S表面に析出する。その結果、CdS層に存在する孔の内部
へもむらなくCdTe層を析出させることができ、変換効率
の高い光電変換素子を得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a plating solution for electrolytic deposition
The kinetic energy of the particle at
Smaller than kinetic energy. For example, Cd2+Is on the CdS surface
When reduced, Cd near CdS2+The concentration of
Cd from offshore of plating solution due to concentration gradient 2+Ion replenishes
Is done. Cd2+Move by diffusion to the vicinity of the CdS surface, and
After that, very near the surface formed along the unevenness of the CdS layer
In the electric double layer, Cd accelerated by an electric field for the first time
Precipitates on the S surface. As a result, the inside of the hole existing in the CdS layer
CdTe layer can be deposited evenly and conversion efficiency
And a photoelectric conversion element having a high density can be obtained.

【0013】また、CdTe層を電解析出法により形成する
ためには、CdとTeを析出させることが必要である。この
ためめっき液としては、CdイオンとTeイオンをともに含
有するもの、例えばCdSO4水溶液にTeO2を溶解させたも
のなどが用いられる。しかしながらTeO2の溶解度は小さ
なものであるため、Teの析出によりめっき液の組成が変
化しやすい。この問題を解決するために、陽極として金
属Te電極と不活性電極の2極の構成とし、各々に流れる
電流を別々に制御する方法や、めっき液にTeO2を過剰に
加え、TeO2が飽和した状態とする方法が提案されてい
る。しかしながら、前者の方法ではめっき装置の構成が
複雑になる問題があり、また後者の方法ではCdS層の析
出速度がTeO2の溶解速度により律速されてしまう問題を
有していた。
In order to form a CdTe layer by an electrolytic deposition method, it is necessary to precipitate Cd and Te. For this reason, a plating solution containing both Cd ions and Te ions, for example, a solution obtained by dissolving TeO 2 in a CdSO 4 aqueous solution is used. However, since the solubility of TeO 2 is small, the composition of the plating solution tends to change due to the precipitation of Te. To solve this problem, a two-pole structure of the metal Te electrode and the inert electrode as an anode, and a method of controlling the current flowing in each separately, added in excess TeO 2 in a plating solution, TeO 2 is saturated There has been proposed a method for achieving the state. However, the former method has a problem that the configuration of the plating apparatus is complicated, and the latter method has a problem that the deposition rate of the CdS layer is limited by the dissolution rate of TeO 2 .

【0014】また、いずれの場合においてもCdTe層を化
学量論比で析出させるためには、陰極の電位、めっき液
のpH等を精密に制御する必要があり、その制御によって
は製膜されたCdTe層の特性にばらつきが生じる。
In any case, in order to deposit a CdTe layer at a stoichiometric ratio, it is necessary to precisely control the potential of the cathode, the pH of the plating solution, and the like. The characteristics of the CdTe layer vary.

【0015】以上の問題を解決し、化学量論比に近いCd
Te層を簡便に得ることができるCdTe層の電解析出法とし
て、Cd層とTe層を交互に別のめっき装置を用いて析出さ
せ、その後CdTeとする方法が特に好ましく用いられる。
[0015] The above problem is solved, and Cd close to the stoichiometric ratio is obtained.
As a method for electrolytically depositing a CdTe layer from which a Te layer can be easily obtained, a method in which a Cd layer and a Te layer are alternately deposited by using another plating apparatus and then converted to CdTe is particularly preferably used.

【0016】またさらに、有機カドミウム硫化物錯体と
しては、S-Cd-Sの結合を有するものが好ましく、このよ
うな構造を有するものとして、ジチオカーバマトカドミ
ウム錯体、トリチオ炭酸カドミウム錯体、キサントゲン
酸カドミウム錯体あるいはチアゾールカドミウム錯体よ
り選ばれる有機カドミウム硫化物錯体が好ましく用いら
れる。
Further, as the organic cadmium sulfide complex, those having an S--Cd--S bond are preferable, and those having such a structure include dithiocarbamatocadmium complexes, cadmium trithiocarbonate complexes, cadmium xanthate. An organic cadmium sulfide complex selected from a complex or a thiazole cadmium complex is preferably used.

【0017】[0017]

【実施例】以下、本発明について図面を参照しながら詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings.

【0018】(実施例1)本実施例においては、有機カ
ドミウム硫化物錯体としてジエチルジチオカーバマトカ
ドミウム錯体(Cd(S2CNEt2)2、以下DEDTCCで表す)を用
いてCdS層を形成し、電解析出法によりCdTe層を形成
し、光電変換素子を構成した例について説明を行う。
Example 1 In this example, a CdS layer was formed using a diethyldithiocarbamatocadmium complex (Cd (S 2 CNEt 2 ) 2 , hereinafter represented by DEDTCC) as an organic cadmium sulfide complex. An example in which a CdTe layer is formed by an electrolytic deposition method to form a photoelectric conversion element will be described.

【0019】CdS層は、以下のようにして形成した。ま
ず、DEDTCCをN,N-ジメチルホルムアミド(以下DMFで表
す)に溶解させた後、ガラス基板上に塗布し、DMFを蒸
発させた。このガラス基板を加熱し、ガラス基板上のDE
DTCCを気化させると同時に、これと対向させて設置した
ITO透明電極を形成した光電変換素子のガラス基板上でD
EDTCC蒸気を熱分解させCdS層を形成した。
The CdS layer was formed as follows. First, DEDTCC was dissolved in N, N-dimethylformamide (hereinafter referred to as DMF), applied to a glass substrate, and DMF was evaporated. This glass substrate is heated and DE on the glass substrate
The DTCC was vaporized and installed facing it
D on the glass substrate of the photoelectric conversion element with ITO transparent electrodes
EDTCC vapor was pyrolyzed to form CdS layer.

【0020】この基板上にCdTe層を下記の電解析出法に
より形成した。めっき液としては、pH=2.7にH2SO4で調
製した1mol/lのCdSO4水溶液を用い、さらにこの水溶液
にテルル源としてTeO2を飽和させた。
A CdTe layer was formed on this substrate by the following electrolytic deposition method. As a plating solution, a 1 mol / l CdSO 4 aqueous solution prepared with H 2 SO 4 at a pH of 2.7 was used, and this aqueous solution was saturated with TeO 2 as a tellurium source.

【0021】上記のCdS層を形成したガラス基板上の透
明電極にリード端子を接続して陰極とし、陽極としては
金属テルルのロッドを用いた。
A lead terminal was connected to the transparent electrode on the glass substrate on which the above-mentioned CdS layer was formed to form a cathode, and a metallic tellurium rod was used as an anode.

【0022】このようにして構成しためっき装置を用い
て、CdTe層を形成した。その後CdTe層中でアクセプター
として作用する銅微粉末を混合したカーボン電極をCdTe
層上にスクリーン印刷により形成し、その後375℃で焼
成することにより銅をCdTe中に拡散させCdTe層をp型半
導体とした。最後に銀−インジウム電極を形成し、光電
変換素子を構成した。
A CdTe layer was formed using the plating apparatus configured as described above. Then, a carbon electrode mixed with fine copper powder acting as an acceptor in the CdTe layer was
The layer was formed by screen printing on the layer, and then baked at 375 ° C. to diffuse copper into CdTe, thereby forming the CdTe layer as a p-type semiconductor. Finally, a silver-indium electrode was formed, thereby forming a photoelectric conversion element.

【0023】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は15.03%
の値を示し、開路電圧として0.831Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 15.03%
And the value of 0.831 V was shown as the open circuit voltage.

【0024】比較のために、近接昇華法により形成した
CdTe層を用いて光電変換素子を構成し、その変換効率を
測定したところ14.85%の値を示し、開路電圧0.812Vの値
を示した。
For comparison, it was formed by the proximity sublimation method.
A photoelectric conversion element was formed using the CdTe layer, and the conversion efficiency was measured. The value was 14.85%, and the open circuit voltage was 0.812 V.

【0025】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0026】(実施例2)本実施例においては、実施例
1と同様に有機カドミウム硫化物錯体としてDEDTCCを用
いCdS層を形成し、電解析出法によりCdTe層を形成し、
光電変換素子を構成した例について説明を行う。
(Example 2) In this example, a CdS layer was formed using DEDTCC as an organic cadmium sulfide complex as in Example 1, and a CdTe layer was formed by electrolytic deposition.
An example in which a photoelectric conversion element is configured will be described.

【0027】CdS層は、実施例1と同様の方法で形成し
た。このCdS層上にCdTe層中でアクセプターとして作用
する銅を添加した金属テルルのロッドを陽極として用い
た以外は、実施例1と同様の電解析出法でCdTe層を形成
した。
The CdS layer was formed in the same manner as in Example 1. A CdTe layer was formed on the CdS layer by the same electrolytic deposition method as in Example 1, except that a rod of metal tellurium to which copper acting as an acceptor in the CdTe layer was added was used as an anode.

【0028】その後カーボン電極、銀−インジウム電極
をスクリーン印刷法により形成し、光電変換素子を構成
した。
Thereafter, a carbon electrode and a silver-indium electrode were formed by a screen printing method to form a photoelectric conversion element.

【0029】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は15.04%
の値を示し、開路電圧は0.826Vの値を示した。
When the conversion efficiency of the photoelectric conversion device thus obtained was measured under simulated sunlight, the conversion efficiency was 15.04%.
And the open circuit voltage was 0.826V.

【0030】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0031】(実施例3)本実施例においては、実施例
1と同様に有機カドミウム硫化物錯体としてDEDTCCを用
いCdS層を形成し、電解析出法によりCdTe層を形成し、
光電変換素子を構成した例について説明を行う。
Example 3 In this example, a CdS layer was formed using DEDTCC as an organic cadmium sulfide complex in the same manner as in Example 1, and a CdTe layer was formed by an electrolytic deposition method.
An example in which a photoelectric conversion element is configured will be described.

【0032】CdS層は、実施例1と同様の方法で形成し
た。このCdS層上に下記の電解析出法によりCdTe層を形
成した。
The CdS layer was formed in the same manner as in Example 1. On this CdS layer, a CdTe layer was formed by the following electrolytic deposition method.

【0033】電解析出を行う際の陽極は、実施例2で用
いた銅を添加した金属テルルのロッドとグラファイトの
ロッドの2極構成とした。この2極に流れる酸化電流が
2:1となるよう電流を調整して通じ、CdS層上にCdTe層を
形成した。
The anode used for the electrolytic deposition was of a two-electrode structure consisting of a metallic tellurium rod to which copper was added and a graphite rod used in Example 2. The oxidation current flowing through these two poles
The CdTe layer was formed on the CdS layer by adjusting the current so that the current became 2: 1.

【0034】その後カーボン電極、銀−インジウム電極
をスクリーン印刷法により形成し、光電変換素子を構成
した。
Thereafter, a carbon electrode and a silver-indium electrode were formed by a screen printing method to form a photoelectric conversion element.

【0035】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は15.02%
の値を示し、開路電圧は0.815Vの値を示した。
When the conversion efficiency of the photoelectric conversion device thus obtained was measured under simulated sunlight, the conversion efficiency was 15.02%
And the open circuit voltage was 0.815V.

【0036】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a photoelectric conversion element with high efficiency can be obtained according to the present invention.

【0037】(実施例4)本実施例においては、実施例
1と同様に有機カドミウム硫化物錯体としてDEDTCCを用
いCdS層を形成し、電解析出法によりCd層とTe層を交互
に形成し、光電変換素子を構成した例について説明を行
う。
Example 4 In this example, a CdS layer was formed using DEDTCC as an organic cadmium sulfide complex in the same manner as in Example 1, and a Cd layer and a Te layer were alternately formed by an electrolytic deposition method. An example in which a photoelectric conversion element is configured will be described.

【0038】CdS層は、実施例1と同様の方法で形成し
た。このCdS層上に下記の電解析出法によりCd層とTe層
を交互に形成した。
The CdS layer was formed in the same manner as in Example 1. Cd layers and Te layers were alternately formed on the CdS layer by the following electrolytic deposition method.

【0039】まず、CdS層上にCd層を形成した。その
際、めっき液としてはCdSO4水溶液を用い、陽極として
は金属Cdのロッドを用いた。続いて充分水洗した後、Cd
層上にTe層を形成した。その際、めっき液としてはテル
ル化水素の飽和水溶液を用い、Cd層を形成した基板を陽
極に、陰極に金属テルルのロッドを用いた。以上のCd層
の形成ならびにTe層の形成を繰り返し行うことでCdS層
上にCd層とTe層を交互に形成した。しかる後、これら基
板を650℃で2時間加熱処理することによりCdTe結晶層を
形成した。
First, a Cd layer was formed on the CdS layer. At that time, a CdSO 4 aqueous solution was used as a plating solution, and a metal Cd rod was used as an anode. After washing with water, Cd
A Te layer was formed on the layer. At that time, a saturated aqueous solution of hydrogen telluride was used as a plating solution, a substrate on which a Cd layer was formed was used as an anode, and a metal tellurium rod was used as a cathode. By repeating the formation of the Cd layer and the formation of the Te layer, a Cd layer and a Te layer were alternately formed on the CdS layer. Thereafter, these substrates were heat-treated at 650 ° C. for 2 hours to form CdTe crystal layers.

【0040】その後、CdTe層上に銅微粉末を混合したカ
ーボン電極をスクリーン印刷により形成し、350℃で15
分間焼成することにより、銅をCdTe中に拡散させCdTe層
をp型半導体とした。最後に銀−インジウム電極を形成
し、光電変換素子を構成した。
Thereafter, a carbon electrode mixed with fine copper powder was formed on the CdTe layer by screen printing.
By baking for minutes, copper was diffused into CdTe, and the CdTe layer was changed to a p-type semiconductor. Finally, a silver-indium electrode was formed, thereby forming a photoelectric conversion element.

【0041】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は15.03%
の値を示し、開路電圧は0.821Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 15.03%
And the open circuit voltage was 0.821V.

【0042】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0043】(実施例5)本実施例においては、実施例
1と同様に有機カドミウム硫化物錯体としてDEDTCCを用
いCdS層を形成し、電解析出法によりCd層とTe層を交互
に形成し、光電変換素子を構成した例について説明を行
う。
Example 5 In this example, a CdS layer was formed using DEDTCC as an organic cadmium sulfide complex in the same manner as in Example 1, and a Cd layer and a Te layer were alternately formed by an electrolytic deposition method. An example in which a photoelectric conversion element is configured will be described.

【0044】CdS層は、実施例1と同様の方法で形成し
た。このCdS層上に下記の電解析出法によりCd層とTe層
を交互に形成した。
The CdS layer was formed in the same manner as in Example 1. Cd layers and Te layers were alternately formed on the CdS layer by the following electrolytic deposition method.

【0045】まず、CdS層上にCd層の形成を実施例4と
同様の方法で行った。続いて充分水洗した後、Cd層上に
Te層を形成した。その際、めっき液としてはTeO2の飽和
水溶液を用い、Cd層を形成した基板を陰極に、陽極に金
属テルルのロッドを用いた。以上のCd層の形成ならびに
Te層の形成を繰り返し行うことでCdS層上にCd層とTe層
を交互に形成した。しかる後、これら基板を650℃で2時
間熱処理することによりCdTe結晶層を形成した。
First, a Cd layer was formed on the CdS layer in the same manner as in Example 4. Then, after thoroughly washing with water, place it on the Cd layer.
A Te layer was formed. At that time, a saturated aqueous solution of TeO 2 was used as a plating solution, a substrate on which a Cd layer was formed was used as a cathode, and a metal tellurium rod was used as an anode. Formation of the above Cd layer and
By repeatedly forming the Te layer, a Cd layer and a Te layer were alternately formed on the CdS layer. Thereafter, these substrates were heat-treated at 650 ° C. for 2 hours to form CdTe crystal layers.

【0046】その後、CdTe層上に銅微粉末を混合したカ
ーボン電極をスクリーン印刷により形成し、350℃で15
分間焼成することにより、銅をCdTe中に拡散させCdTe層
をp型半導体とした。最後に銀−インジウム電極を形成
し、光電変換素子を構成した。
Thereafter, a carbon electrode mixed with copper fine powder was formed on the CdTe layer by screen printing.
By baking for minutes, copper was diffused into CdTe, and the CdTe layer was changed to a p-type semiconductor. Finally, a silver-indium electrode was formed, thereby forming a photoelectric conversion element.

【0047】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は15.00%
の値を示し、開路電圧は0.826Vの値を示した。
When the conversion efficiency of the photoelectric conversion device thus obtained was measured under simulated sunlight, the conversion efficiency was 15.00%.
And the open circuit voltage was 0.826V.

【0048】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a photoelectric conversion element with high efficiency can be obtained according to the present invention.

【0049】(実施例6)有機カドミウム錯体として実
施例1で用いたDEDTCCに代えて、ジメチルジチオカーバ
マトカドミウム錯体(Cd(S2CNMe2)2)を用いた以外は実
施例1と同様の方法で、光電変換素子を構成した。
Example 6 The same procedure as in Example 1 was carried out except that a dimethyldithiocarbamatocadmium complex (Cd (S 2 CNMe 2 ) 2 ) was used instead of the DEDTCC used in Example 1 as the organic cadmium complex. By the method, a photoelectric conversion element was configured.

【0050】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は14.93%
の値を示し、開路電圧は0.826Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 14.93%
And the open circuit voltage was 0.826V.

【0051】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0052】(実施例7)有機カドミウム錯体として実
施例1で用いたDEDTCCに代えて、トリチオ酸カドミウム
錯体(CdCS3)を用いた以外は実施例1と同様の方法
で、光電変換素子を構成した。
Example 7 A photoelectric conversion element was constructed in the same manner as in Example 1 except that cadmium trithioate (CdCS 3 ) was used instead of the DEDTCC used in Example 1 as an organic cadmium complex. did.

【0053】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は14.91%
の値を示し、開路電圧は0.819Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 14.91%
And the open circuit voltage showed a value of 0.819V.

【0054】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0055】(実施例8)有機カドミウム錯体として実
施例1で用いたDEDTCCに代えて、エチルキサントゲン酸
カドミウム錯体(Cd(S2COEt)2)を用いた以外は実施例
1と同様の方法で、光電変換素子を構成した。
Example 8 A method similar to that of Example 1 was used except that a cadmium ethylxanthate complex (Cd (S 2 COEt) 2 ) was used instead of the DEDTCC used in Example 1 as an organic cadmium complex. And a photoelectric conversion element.

【0056】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は14.93%
の値を示し、開路電圧は0.821Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 14.93%.
And the open circuit voltage was 0.821V.

【0057】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high-efficiency photoelectric conversion element can be obtained according to the present invention.

【0058】(実施例9)有機カドミウム錯体として実
施例1で用いたDEDTCCに代えて、2-メルカプトベンゾチ
アゾールカドミウム錯体を用いた以外は実施例1と同様
の方法で、光電変換素子を構成した。
Example 9 A photoelectric conversion element was constructed in the same manner as in Example 1 except that a 2-mercaptobenzothiazole cadmium complex was used instead of the DEDTCC used in Example 1 as an organic cadmium complex. .

【0059】このようにして得た光電変換素子の変換効
率を疑似太陽光下で測定したところ、変換効率は14.94%
の値を示し、開路電圧は0.822Vの値を示した。
When the conversion efficiency of the photoelectric conversion element thus obtained was measured under simulated sunlight, the conversion efficiency was 14.94%
And the open circuit voltage was 0.822V.

【0060】以上のことより本発明によると高効率の光
電変換素子が得られることがわかった。
From the above, it has been found that a high efficiency photoelectric conversion element can be obtained according to the present invention.

【0061】なお、本発明の実施例においては、CdTe層
を形成するためのめっき液としてCdSO4水溶液にTeO2
加えたものを用いたが、CdSO4に代えてCdCl2などの他の
カドミウム化合物、TeO2に代えてテルル酸塩などの他の
テルル化合物を用いても同様の効果が得られ、本発明は
CdTe層を形成するためのめっき液としてこれら実施例に
挙げたものに限定されるものではない。
In the embodiment of the present invention, a plating solution for forming a CdTe layer was prepared by adding TeO 2 to a CdSO 4 aqueous solution. However, instead of CdSO 4 , another cadmium such as CdCl 2 was used. The same effect can be obtained by using another tellurium compound such as a telluric acid salt instead of the compound and TeO 2.
The plating solution for forming the CdTe layer is not limited to those listed in these examples.

【0062】また、本発明の実施例においては、有機カ
ドミウム硫化物錯体としてジエチルジチオカーバマトカ
ドミウム錯体などを用いたが、2−メルカプトメチルベ
ンゾイミダゾールなどの他の有機カドミウム硫化物錯体
を用いても同様の効果が得られ、本発明は有機カドミウ
ム硫化物錯体としてこれら実施例に挙げたものに限定さ
れるものではない。
Further, in the examples of the present invention, a diethyldithiocarbamatocadmium complex or the like is used as the organic cadmium sulfide complex, but other organic cadmium sulfide complexes such as 2-mercaptomethylbenzimidazole may be used. Similar effects are obtained, and the present invention is not limited to the organic cadmium sulfide complex described in these examples.

【0063】[0063]

【発明の効果】以上のように本発明によれば、少なくと
も有機カドミウム硫化物錯体を含む前駆体より形成した
硫化カドミウムを主体とする層上に、テルル化カドミウ
ムを主体とする層を電解析出法により形成することによ
り、変換効率の高い光電変換素子を得ることができた。
As described above, according to the present invention, at least a layer mainly composed of cadmium telluride is formed on a layer mainly composed of cadmium sulfide formed from a precursor containing an organic cadmium sulfide complex. By forming by a method, a photoelectric conversion element with high conversion efficiency could be obtained.

フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−146271(JP,A) 特表 平7−500948(JP,A)Continuation of front page (72) Inventor Shigeo Kondo 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-146271 (JP, A) Special Table Hei 7-500948 (JP) , A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 硫化カドミウムを主体とする層と、テル
ル化カドミウムを主体とする層を有する光電変換素子の
製造法であり、少なくとも、S−Cd−Sの結合を有す
る有機カドミウム硫化物錯体を含む前駆体より形成した
硫化カドミウムを主体とする層上に、テルル化カドミウ
ムを主体とする層を電解析出法により形成し、テルル化
カドミウムを主体とする層は、硫化カドミウムを主体と
する層上に金属カドミウム層と金属テルル層を交互に電
解析出させた後、該析出物を加熱焼成することによりテ
ルル化カドミウム結晶としたことを特徴とする光電変換
素子の製造法。
1. A method for producing a photoelectric conversion element having a layer mainly composed of cadmium sulfide and a layer mainly composed of cadmium telluride, wherein at least an organic cadmium sulfide complex having an S—Cd—S bond is used. A layer mainly composed of cadmium telluride is formed by electrolytic deposition on a layer mainly composed of cadmium sulfide formed from a precursor containing
The layer mainly composed of cadmium mainly consists of cadmium sulfide.
Cadmium and tellurium layers alternately
After analysis, the precipitate is heated and fired to
A method for producing a photoelectric conversion element, which is a cadmium luluride crystal .
【請求項2】 硫化カドミウムを主体とする層と、テル
ル化カドミウムを主体とする層を有する光電変換素子の
製造法であり、少なくとも、S−Cd−Sの結合を有す
ジチオカーバマトカドミウム錯体、キサントゲン酸カ
ドミウム錯体あるいはチアゾールカドミウム錯体からな
る群より選ばれる有機カドミウム硫化物錯体を含む前駆
体より形成した硫化カドミウムを主体とする層上に、テ
ルル化カドミウムを主体とする層を電解析出法により形
成することを特徴とする光電変換素子の製造法。
2. A method for producing a photoelectric conversion element having a layer mainly composed of cadmium sulfide and a layer mainly composed of cadmium telluride, wherein at least a dithiocarbamatocadmium complex having an S—Cd—S bond is provided . Xanthate
Domate complex or thiazole cadmium complex
A cadmium telluride-based layer formed by an electrolytic deposition method on a cadmium sulfide-based layer formed from a precursor containing an organic cadmium sulfide complex selected from the group consisting of: Device manufacturing method.
JP29803795A 1995-11-16 1995-11-16 Manufacturing method of photoelectric conversion element Expired - Fee Related JP3220630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29803795A JP3220630B2 (en) 1995-11-16 1995-11-16 Manufacturing method of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29803795A JP3220630B2 (en) 1995-11-16 1995-11-16 Manufacturing method of photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH09139517A JPH09139517A (en) 1997-05-27
JP3220630B2 true JP3220630B2 (en) 2001-10-22

Family

ID=17854312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29803795A Expired - Fee Related JP3220630B2 (en) 1995-11-16 1995-11-16 Manufacturing method of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3220630B2 (en)

Also Published As

Publication number Publication date
JPH09139517A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
US7560641B2 (en) Thin film solar cell configuration and fabrication method
US4642140A (en) Process for producing chalcogenide semiconductors
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US4400244A (en) Photo-voltaic power generating means and methods
US7763794B2 (en) Heterojunction photovoltaic cell
KR20100075951A (en) Photovoltaic devices including an interfacial layer
WO2002091483A2 (en) Improved photovoltaic device
JPH0685444B2 (en) Cd-rich solar cell including Hg-lower 1-X Cd-lower x Te layer and method of manufacturing the same
JP2018046196A (en) Photoelectric conversion device and manufacturing method of photoelectric conversion device
Mandati et al. CuIn1− xGaxSe2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition
US4296188A (en) Cd(Se,Te) Alloy photovoltaic materials
US4425194A (en) Photo-voltaic power generating means and methods
Neumann‐Spallart et al. Photoelectrochemical properties of semiconducting cadmium mercury telluride thin films with bandgaps between 1.47 and 1.08 eV
CN102810597B (en) Methods of forming a window layer in a cadmium telluride based thin film photovoltaic device
Nakato et al. pn Junction silicon electrode coated with noble metal for efficient solar photoelectrolysis of hydrogen iodide.
JP3220630B2 (en) Manufacturing method of photoelectric conversion element
JP2002093471A (en) Photoelectric transfer device, its manufacturing method, and solar battery system
Tsin et al. Photo-assisted electrodeposition of a ZnO front contact on ap/n junction
Saaminathan et al. Importance of pulse reversal effect of CdSe thin films for optoelectronic devices
JPH09148597A (en) Manufacture of solar cell
KR940007590B1 (en) Manufacturing method of silicon solar cell
Viswanathan Study of copper-free back contacts to thin film cadmium telluride solar cells
Ghamarian et al. Pulse Electrochemical Deposition and Photo-electrochemical Characterization of CuInSe2 Thin Films
JP2003179237A (en) Forming method of semiconductor thin film and solar battery
JP3077574B2 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees