JP3220444B2 - Construction method of rotary press-fit steel pipe pile - Google Patents

Construction method of rotary press-fit steel pipe pile

Info

Publication number
JP3220444B2
JP3220444B2 JP2000272639A JP2000272639A JP3220444B2 JP 3220444 B2 JP3220444 B2 JP 3220444B2 JP 2000272639 A JP2000272639 A JP 2000272639A JP 2000272639 A JP2000272639 A JP 2000272639A JP 3220444 B2 JP3220444 B2 JP 3220444B2
Authority
JP
Japan
Prior art keywords
pile
steel pipe
tip
rotary press
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000272639A
Other languages
Japanese (ja)
Other versions
JP2001146741A (en
Inventor
英一郎 佐伯
仁 大木
裕 平嶋
智樹 竹田
誠 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000272639A priority Critical patent/JP3220444B2/en
Publication of JP2001146741A publication Critical patent/JP2001146741A/en
Application granted granted Critical
Publication of JP3220444B2 publication Critical patent/JP3220444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は鋼管の先端に羽根状
鋼板を取り付けた、回転圧入式の鋼管杭の施工方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for constructing a steel pipe pile of a rotary press-fit type, in which a blade-like steel plate is attached to the tip of a steel pipe.

【0002】[0002]

【従来の技術】鋼管の先端に羽根状鋼板を設けた回転圧
入鋼管杭に回転力を与え、地盤に貫入させる工法におけ
る施工管理については、施工時の入力エネルギーと先端
抵抗の関係を導いた、特願平11−054783号に示
す施工管理式が提案されている。これは施工時のトル
ク、貫入量、上載荷重を測定しながら、先端抵抗値Rp
を同時に算出し、Rp 値を施工管理上の判断基準として
打止め可否判断をするというものであった。特願平11
−054783号に示される、先端抵抗値Rp 値は、以
下のようになっている。 Rp=[2πTb0+Lb{(1−c)S+cP+απDw’}−QwhπDw’ −QwvS]/{(1−c)S+cP+απ(Dp’+Dw’)} (1) 記号の説明 Rp :底板部における貫入抵抗 (kN) Tb0 :杭先端に作用するトルク (kN・m) Lb :杭先端に作用する上載荷重 (kN) c :羽根の上向き強制変形によって定まる係数 S :1回転当たりの貫入量 (m) P :羽根のピッチ (m) Dw' :羽根の作用円(回転方向の合力が作用する円)の直径 (m) Dp' :底板または底板部の作用円の直径 (m) Qwh :水平刃先抵抗力 (kN) Qwv :鉛直刃先抵抗力 (kN) α :地盤と羽根(鋼板)の摩擦係数
2. Description of the Related Art As for construction management in a method of applying a rotating force to a rotary press-fitting steel pipe pile having a blade-shaped steel plate at the tip of a steel pipe to penetrate into the ground, the relationship between input energy at the time of construction and tip resistance has been derived. A construction management formula shown in Japanese Patent Application No. Hei 11-054783 has been proposed. This is to measure the tip resistance Rp while measuring the torque, penetration amount and overload during construction.
Are calculated at the same time, and it is determined whether or not stopping is possible using the Rp value as a criterion in construction management. Japanese Patent Application 11
The tip resistance value Rp shown in -054783 is as follows. Rp = [2πTb 0 + Lb { (1-c) S + cP + απDw '} - QwhπDw' -QwvS] / {(1-c) S + cP + απ (Dp '+ Dw')} (1) Explanation of Symbols rp: penetration resistance of the bottom plate portion ( kN) Tb 0 : Torque acting on pile tip (kN · m) Lb: Overlay load acting on pile tip (kN) c: Coefficient determined by upward forced deformation of blade S: Penetration per rotation (m) P : The pitch of the blade (m) Dw ': The diameter of the working circle of the blade (the circle on which the resultant force acts in the rotating direction) (m) Dp': The diameter of the working circle of the bottom plate or the bottom plate (m) Qwh: The resistance of the horizontal cutting edge (kN) Qwv: Vertical edge resistance (kN) α: Coefficient of friction between the ground and blades (steel plate)

【0003】またこの外に、従来にもトルクによる施工
管理の方法が存在するが、地盤強度と直接関係のある式
を導いておらず、定性的な変化を確認するに留まってい
る。トルクは施工条件により非常にバラツクものである
が、従来のトルクによる施工管理方法は、このバラツキ
を定量的に評価できるものではなかった。
[0003] In addition to the above, there is a construction management method using torque in the past, but an equation directly related to the ground strength has not been derived, and only a qualitative change has been confirmed. The torque varies greatly depending on the construction conditions, but the conventional construction management method using torque cannot quantitatively evaluate this variation.

【0004】一方、建築物等を地盤上に安定に構築する
には、圧入杭の支持力が設計通りに得られている必要が
あるが、設計支持力を保証する為に必要な根入れ長さが
下記のように記載されている。「建築基礎構造設計指
針」には、埋め込み杭では「支持杭の場合には支持層へ
の根入れ長さを、杭径の1〜2倍程度にすることが望ま
しい」とあり、場所打ち杭では「通常の地盤条件の場所
では支持層中への根入れ長さを1m以上とすることが望
ましい」と示されている。また道路橋示方書には「杭の
許容支持力」として、打ち込み杭では「杭先端の極限支
持力度(Qd )は根入れ深さが5dに満たない場合低減
される。これは先端閉塞効果の影響を考慮したものであ
る。」とあり、場所打ち杭では「杭先端は良質な支持地
盤中に杭径程度貫入されること」、また中堀杭では「支
持層には杭径以上根入れさせるものとし」と記載されて
いる。以上を理由に、何れの杭も支持層への根入れが必
要と考えられ、杭径程度の根入れ(羽根付鋼管杭は羽根
径程度≒杭径の2倍)を施工管理上で規定している。回
転圧入工法では、各社において深度管理で打ち止め管理
が行われており、図3に示すように、支持層への根入れ
は1Dw(Dwは羽根径)以上となっている。さらに杭先
端部の閉塞効果について、建築基礎構造設計指針では、
開端杭においては先端閉塞効率が問題となるとし、「閉
塞効率は支持層への根入れ長さによって決まり、 η =(開端杭の見かけの先端支持力)/(閉端杭の先端支持力) η =0.16Lb/Di, 2 ≦ Lb/Di ≦ 5 η =0.8, 5 < Lb/Di Lb:支持層への根入れ深さ(m)、Di:杭の内径(m) 」 の関係式が示されている。そのため開端の杭について
は、大きい根入れ深さ(Lb > 5Di )を取ることが
慣例となっている。
On the other hand, in order to construct a building or the like on the ground stably, it is necessary that the supporting force of the press-fitting pile is obtained as designed, but the embedding length necessary to guarantee the designed supporting force is required. Is described as follows: The "Building Foundation Structure Design Guidelines" states that for embedded piles, "In the case of a support pile, it is desirable that the depth of penetration into the support layer is about 1-2 times the pile diameter." It states, "It is desirable that the length of the burial into the support layer is 1 m or more in a place under normal ground conditions." In addition, in the specification of the road bridge, "the permissible bearing capacity of the pile" is set as "the ultimate bearing capacity (Qd) of the pile tip is reduced when the embedding depth is less than 5d. The effect is taken into account. "For cast-in-place piles," the tip of the pile must penetrate into the high-quality support ground to the extent of the pile diameter. " Shall be described. " For the above reasons, it is considered that all piles need to be embedded in the support layer, and the embedding of the pile diameter is required (for steel pipe piles with feathers, about the feather diameter ≒ twice the pile diameter). ing. In the rotary press-in method, each company performs stop control by depth control, and as shown in FIG. 3 , the depth of penetration into the support layer is 1 Dw (Dw is the blade diameter) or more. In addition, regarding the blockage effect at the tip of the pile,
In the case of open-ended piles, the tip closing efficiency is considered to be a problem. "The closing efficiency is determined by the length of penetration into the support layer, η = (apparent tip supporting force of open-ended pile) / (tip supporting force of closed-ended pile) η = 0.16 Lb / Di, 2 ≦ Lb / Di ≦ 5 η = 0.8, 5 <Lb / Di Lb: Depth of penetration into the support layer (m), Di: inside diameter of pile (m) ” The relational expression is shown. For this reason, it is customary for an open-end pile to have a large embedding depth (Lb> 5Di).

【0005】[0005]

【発明が解決しようとする課題】上記の特願平11−0
54783号に示される、先端抵抗値Rp 値を求める式
は、式中に未知数の係数 α、cと伝達率atr (特願平
11−054783号中ではa)が存在するため、条件
設定が複雑になり、地盤調査結果(土質試験)や施工す
る杭の形状(羽根径、羽根ピッチ)が揃っており、施工
管理者が回転圧入杭の施工特性に十分に精通している必
要があった。またRp 値は施工時のデータを入力して求
める為、演算しながら管理することになる。この施工管
理では施工結果より得られる出力で打ち止め可否を判定
することになり、施工上予測を立てづらく、施工管理上
扱いにくい面もあった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application No. 11-0 is disclosed.
The formula for calculating the tip resistance value Rp shown in US Pat. No. 5,478,833 is complicated because the unknown coefficients α and c and the transmissivity atr (a in Japanese Patent Application No. 11-054783) exist in the formula. The results of the ground survey (soil test) and the shape of the pile to be constructed (blade diameter, blade pitch) were uniform, and the construction manager had to be sufficiently familiar with the construction characteristics of the rotary press-fitting pile. Further, since the Rp value is obtained by inputting the data at the time of construction, it is managed while calculating. In this construction management, the possibility of stopping is determined based on the output obtained from the construction result, which makes it difficult to make predictions in construction and is difficult to handle in construction management.

【0006】また、杭の支持層への根入れ深さに関して
は、杭の支持力は本来地盤強度から決まるものであり、
根入れ深さに依存するものではないことが解っている。
しかしながら各規基準が根入れ長さを大きく取るように
要求しているのは、従来工法においては支持層の判別が
難しく、又根入れ長さを大きくとれば、杭先端部がより
固い地盤に到達する可能性が高くなり、その結果先端支
持力の信頼性が得られるとする根拠に基づいている。一
般的に支持層には不陸があり、深度管理で支持層を検知
することは非常に難しく、信頼性に乏しい。トルクなど
を併用して検知する施工法も見られるが、地盤強度を定
量的に評価するには至っていない。
[0006] Further, with respect to the depth of penetration of the pile into the support layer, the supporting force of the pile is originally determined by the ground strength.
It turns out that it does not depend on the depth of embedding.
However, each standard requires that the length of the pile be deeper, because it is difficult to determine the support layer in the conventional method, and if the length of the pile is longer, the pile tip will become harder. This is based on the grounds that it is more likely to be reached, resulting in more reliable tip support. Generally, the support layer has irregularities, and it is very difficult to detect the support layer by depth management, and the reliability is poor. There is also a construction method that detects using a combination of torque and the like, but it has not been possible to quantitatively evaluate the ground strength.

【0007】さらに、実際に鋼管杭を地盤に圧入する際
の問題点として、従来技術では以下のような諸点が挙げ
られる。支持層への根入れには時間とエネルギー(回転
力、掘削力)が必要となり、1日に施工できる数が限ら
れてくる。また回転圧入工法の場合、トルクが不足した
状態で根入れを試みると、必ず貫入量が小さくなる為、
支持層を乱しながらの貫入になり、設置状況は極めて悪
いものとなる。支持層は固く締まった地盤である為、打
撃、回転圧入の場合は、杭先端を強固なものに設計され
ていないと杭先端が壊れる可能性があり、不経済なもの
になり易い。場所打ち杭、埋め込み杭の場合は、先端が
支持層へ到達していることが判別しにくく、根入れでき
ているかを保証する手段として大きな根入れを必要と
し、施工するエネルギーを過大に必要としているので、
無駄が多い。
[0007] Further, as a problem when actually inserting a steel pipe pile into the ground, there are the following points in the prior art. Time and energy (rotational power, excavation power) are required for embedding into the support layer, and the number of works that can be performed in one day is limited. Also, in the case of the rotary press-fitting method, if the rooting is attempted in a state where the torque is insufficient, the penetration amount will always be small,
The penetration is made while disturbing the support layer, and the installation situation is extremely bad. Since the support layer is a firm ground, in the case of impact or rotary press-fitting, if the tip of the pile is not designed to be strong, the tip of the pile may be broken, which tends to be uneconomical. In the case of cast-in-place piles and embedded piles, it is difficult to determine that the tip has reached the support layer, and a large penetration is required as a means to ensure that the pile has been embedded. Because
There is much waste.

【0008】本願発明は、従来の鋼管杭の有する上記の
問題点を有利に解決するために、施工管理上最も把握し
やすいトルク値と、地盤の強度を表すN値および先端支
持力Quの関係を明らかにし、適切な重機の選定や、設
計通りの支持力を得る支持層の判別を可能にし、杭先端
部の根入れ長を最小限にとどめる、先端が開端および閉
端である回転圧入鋼管杭の施工方法を提供することを目
的とする。
According to the present invention, in order to advantageously solve the above-mentioned problems of the conventional steel pipe pile, the relationship between the torque value which is most easily grasped in the construction management, the N value representing the strength of the ground, and the tip supporting force Qu. Rotating press-fit steel pipes with open and closed ends, enabling the selection of appropriate heavy equipment and the determination of the support layer that obtains the designed bearing capacity, and minimizing the length of the pile tip. An object of the present invention is to provide a construction method of a pile.

【0009】[0009]

【課題を解決するための手段】本願発明者は特願平11
−054783号に示されている式を展開し、同時に施
工試験を行い、データの蓄積および解析を行って、実用
上有効である簡便な式を導くに至った。請求項1の発明
の回転圧入鋼管杭の施工方法は、先端に羽根状鋼板を備
え、地中に回転圧入される回転圧入鋼管杭の施工方法に
おいて、地盤調査結果から得られた地盤強度(N値)か
ら、施工時に必要とするトルク値を次式により算定する
ことを特徴とする。 Tt=a・N・Dpm−b・Lt・Dp Tt:トルク(kN・m) Dp:杭径(m) Lt:上載荷重(kN) N :標準貫入試験より得られるN値 a,b,m:係数および指数(但しmは2〜3)
Means for Solving the Problems The present inventor has disclosed Japanese Patent Application No. Hei 11
Developing the equation shown in -054783, conducting construction tests at the same time, accumulating and analyzing data, and leading to a simple equation that is practically effective. The method for constructing a rotary press-fit steel pipe pile according to the first aspect of the present invention is a method for constructing a rotary press-fit steel pipe pile having a blade-like steel plate at the tip and being rotationally press-fitted into the ground. Value), the torque value required at the time of construction is calculated by the following equation. Tt = a · N · Dp m −b · Lt · Dp Tt: Torque (kN · m) Dp: Pile diameter (m) Lt: Overhead load (kN) N: N value obtained from standard penetration test a, b, m: coefficient and exponent (where m is 2-3)

【0010】また、請求項2の発明の回転圧入鋼管杭の
施工方法は、次式により、施工に必要なトルクを算出
し、適切な回転圧入鋼管杭用施工機械を選択することを
特徴とする。 Tt=a・N・Dpm Tt:トルク(kN・m) Dp:杭径(m) N :標準貫入試験より得られるN値 a,m:係数および指数(但しmは2〜3)
[0010] Further, the construction method of the rotary press-fit steel pipe pile according to the second aspect of the present invention is characterized in that a torque required for the construction is calculated by the following equation and an appropriate rotary press-fit steel pipe pile construction machine is selected. . Tt = a · N · Dp m Tt: Torque (kN · m) Dp: pile diameter (m) N: obtained from SPT N values a, m: factor, and index (where m is 2-3)

【0011】請求項3の発明の回転圧入鋼管杭の施工方
法は、施工時に重機に作用するトルク値から、次式によ
り先端支持力(Qu)を算出し、Qu値に応じて回転圧
入鋼管杭の貫入継続、または貫入完了を制御することを
特徴とする、回転圧入鋼管杭の施工方法。 Qu=X・Dpn・Tt Qu:先端支持力(kN) Tt:トルク(kN・m) Dp:杭径(m) X,n:係数および指数(但しnは2−m)
According to a third aspect of the present invention, there is provided a method for constructing a rotary press-fit steel pipe pile, comprising calculating a tip support force (Qu) from a torque value acting on a heavy equipment at the time of construction by the following equation, and according to the Qu value. A method for constructing a rotary press-fit steel pipe pile, characterized by controlling the continuation of penetration or the completion of penetration. Qu = X · Dp n · Tt Qu: tip supporting force (kN) Tt: Torque (kN · m) Dp: pile diameter (m) X, n: coefficient and the exponent (wherein n is 2-m)

【0012】請求項4の発明の回転圧入鋼管杭の施工方
法は、先端に羽根状鋼板を備え、地中に回転圧入される
羽根付き鋼管杭において、請求項1に記載の算式により
トルク値、および請求項3に記載の算式により先端支持
力(Qu)を算出することにより、杭先端部の支持層へ
の根入れ長さを、羽根径以下の量で打ち止めることを特
徴とする。
According to a fourth aspect of the present invention, there is provided a method for constructing a rotary press-fit steel pipe pile, wherein a blade-like steel pipe is provided at a tip end of the steel pipe pile, and the torque value is calculated by the formula according to claim 1. The tip support force (Qu) is calculated by the formula according to claim 3 to stop the penetration depth of the tip of the pile into the support layer in an amount equal to or less than the blade diameter.

【0013】請求項5の発明の回転圧入鋼管杭の施工方
法は、回転圧入鋼管杭の設計先端支持力を、下式により
算定し、施工管理目標値とすることを特徴とする。 先端支持力(kN) = qd・Aw+qdh・Awi qd :αd・N qdh :qdh = αh・N・L/Dp 但しL>5Dpの時および閉端杭の時は、L/Dp=5とする αd :羽根部分(Aw部分)の先端支持力係数 αh :閉塞土砂部分(Awi部分)または底板部分(Awi部分)の先 端支持力係数 L:支持層への根入長さ (m) N:先端N値 Aw:外側羽根の見付面積 (m2),Aw=π・(Dw2−Dp2)/4 Awi:底板部見付面積 (m2),Awi=π・Dp2/4 Dw:羽根径 (m) Dp:杭径 (m)
[0013] A method of constructing a rotary press-fit steel pipe pile according to a fifth aspect of the present invention is characterized in that a design support force at the design tip of the rotary press-fit steel pipe pile is calculated by the following equation and used as a construction management target value. Tip support force (kN) = qd · Aw + qdh · Awi qd: αd · Nqdh: qdh = αh · NL·L / Dp However, when L> 5Dp and in the case of a closed end pile , L / Dp = 5. : Tip support force coefficient of blade part (Aw part) αh: Tip support force coefficient of closed soil and sand part (Awi part) or bottom plate part (Awi part) L: Length of penetration into support layer (m) N: Tip N value Aw: locate the area of the outer wing (m 2), Aw = π · (Dw 2 -Dp 2) / 4 Awi: bottom plate find area (m 2), Awi = π · Dp 2/4 Dw: Blade diameter (m) Dp: pile diameter (m)

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を、図面を参
照して説明する。図1(A)は本発明に係る回転圧入鋼
管杭の正面図、(B)は同縦断面説明図、図2は回転圧
入鋼管杭の下方斜視図、図3(A)は本発明の施工方法
における回転圧入杭の貫入メカニズムと貫入完了状態を
示す模式図、(B)は同じく従来技術の模式図である。
図4は本発明に係る回転圧入鋼管杭内部に、閉塞効果促
進突起を具備した状態を示す断面図、図5は図4におけ
るA−A断面図、図6は閉塞効果促進突起を具備した回
転圧入鋼管杭の正面図、図7は同じく平面図である。図
8は本発明に係る、先端が閉端した回転圧入鋼管杭の下
方斜視図、図9は同じく閉端した2枚羽根の回転圧入鋼
管杭の下方斜視図、図10は同じく閉端回転圧入鋼管杭
の下方斜視図である。図11は本発明に係る閉端回転圧
入鋼管杭の底面板掘削刃の状態を示す下方斜視図、図1
2は同じく2枚羽根の閉端回転圧入鋼管杭の掘削刃の状
態を示す下方斜視図である。なお、図面に使用した記号
は、以下の通りである。 Dw : 羽根外径(m) Dwi : 羽根内径(m) Dp : 回転圧入鋼管杭外径(m) Dpi : 回転圧入鋼管杭内径(m) Tt : 杭頭に作用するトルク(kN・m) Lt : 杭頭に作用する上載荷重(kN) P : 羽根のピッチ(m)(再掲) この外の記号については、算定式毎に説明しているの
で、一括説明は省略する。
Embodiments of the present invention will be described with reference to the drawings. 1A is a front view of a rotary press-fit steel pipe pile according to the present invention, FIG. 1B is a vertical sectional explanatory view of the same, FIG. 2 is a lower perspective view of the rotary press fit steel pipe pile, and FIG. FIG. 3B is a schematic view showing a penetration mechanism of a rotary press-fitting pile and a penetration completed state in the method, and FIG.
FIG. 4 is a cross-sectional view showing a state in which a rotating effect press-fitting steel pipe pile according to the present invention is provided with a closing effect promoting projection, FIG. 5 is a sectional view taken along line AA in FIG. 4, and FIG. FIG. 7 is a plan view of the front view of the press-fit steel pipe pile. 8 is a lower perspective view of a rotary press-fit steel pipe pile having a closed end according to the present invention, FIG. 9 is a lower perspective view of a two-bladed rotary press-fit steel pipe pile also having a closed end, and FIG. It is a downward perspective view of a steel pipe pile. FIG. 11 is a lower perspective view showing the state of the bottom plate excavating blade of the closed-end rotary press-fit steel pipe pile according to the present invention, FIG.
2 is a lower perspective view showing the state of the cutting edge of the closed-end rotary press-fit steel pipe pile of the two blades. The symbols used in the drawings are as follows. Dw: Blade outer diameter (m) Dwi: Blade inner diameter (m) Dp: Rotary press-fit steel pipe pile outer diameter (m) Dpi: Rotary press-fit steel pipe pile inner diameter (m) Tt: Torque (kN · m) acting on pile head : Overlay load acting on the pile head (kN) P: Pitch of blade (m) (reprinted) Symbols other than these are described for each calculation formula, so the collective description is omitted.

【0015】本発明の特色は、実際に施工する前に、予
め定められた算式を用いて、施工上必要なトルク値、先
端支持力等を算定することである。なお、地盤強度N値
については、施工前の地盤調査結果によって把握され
る。本発明者は、特願平11−054783号に示した
(1)式を展開し、施工管理上最も把握しやすいトルク
と、地盤の強度を表すN値の関係を導いた。(1)式に
おいて、以下のことを考慮する。 ・打止め時の貫入量Sが羽根のピッチPとほぼ等しくな
るように施工すると、S≒P であり、 (1−c)S+cP=(1−c)P+cP=P となる ・水平刃先抵抗力による消費エネルギーは Qwh・π・Dw'=2π・Qwh・(Dw'/2)=2πTbwh Tbwh:水平刃先抵抗力によるトルク と表現でき、トルクによる消費エネルギー2πTb0との
関係で 2πTb0−2πTbwh=2πTbとおくと Tb=Tb0−Tbwh となる ・鉛直刃先抵抗力による消費エネルギーは、微少のため
無視する従って(1)式は、次式のようになる。 Rp ={2πTb+Lb(P+απDw’)}/{P+απ(Dp’+Dw’)} (1)’ PはDp の関数を採用しており、またDp’、Dw’もD
p の関数であり、次のように表される。 P=g・Dp g:羽根形状を決める係数 Dp’=2/3・Dp Dw’={2(h3−1)}/{3(h2−1)}・Dp =i・Dp h:羽根径比 =Dw/Dp i={2(h3−1)}/{3(h2−1)} 従って(1)’式は、貫入抵抗Rp を、トルクTtとTb
の関係及び上載荷重LtとLbの関係を用いて、Tb,Lt
および杭径Dp の関係に整理でき、次式のようにな
る。 Tb =atr・Tt、Lb=atr・Lt atr:トルクTt、上載荷重Ltの杭下端への伝達率 Rp = X1・Tt /Dp + Y1・Lt (2) X1=2π・atr/{(2/3+i)α・π+g} Y1=atr(i・α・π+g)/{(2/3+i)α・π+g} X1、Y1は、杭の形状及び施工パラメータから導かれる
係数であり、施工記録より求められる。一方、Rp は底
板見付部分の支持力を表している為、平均N値と底板面
積に比例する関係を持つ。しかしながら回転圧入開端杭
の場合は、径の変化に伴い刃先抵抗と底板部抵抗の依存
率が地盤の状態によって変化することや,大径杭におい
ては管内土の閉塞率が要因となり、貫入時の管内土の挙
動や羽根部の抵抗が関係し、底板面積ないしは杭径に比
例することが判った。(杭径に比例する場合から面積に
比例する場合がある) Rp = α1・N・Dp1〜2 (3) α1:先端支持力係数 よって(2)式と(3)式より、Tt とN値、Lt、Dp
の間に次のような関係が導かれる。 α1・N・Dp1〜2 = X1・Tt /Dp + Y1・Lt ∴ Tt =(α1・N・Dp1〜2 − Y1・Lt)・Dp/X1 Tt =a・N・Dpm −b・Lt・Dp (4) m = 2〜3 a =α1/X1,b=Y1/X1 (4)式より明らかなように、トルクは第1項より平均
N値に比例し、Dp の2乗から3乗に比例すると言え
る。また第2項が負であることから上載荷重は施工時に
おいてはトルクを低減させる効果があり、上載荷重を負
荷しなければ必要トルクは大きくなることが判る。
A feature of the present invention is that a torque value, a tip support force, and the like necessary for construction are calculated by using a predetermined formula before actual construction. It should be noted that the ground strength N value is grasped from the ground survey result before construction. The present inventor developed the equation (1) shown in Japanese Patent Application No. 11-054783 and derived the relationship between the torque that is most easily grasped in the construction management and the N value representing the strength of the ground. In the equation (1), the following is considered. -When construction is performed so that the penetration amount S at the time of hitting is substantially equal to the pitch P of the blade, S ≒ P, and (1-c) S + cP = (1-c) P + cP = P. energy consumption Qwh · π · Dw '= 2π · Qwh · (Dw' / 2) = 2πTb by wh Tb wh: torque and can be expressed by the horizontal edge resistance, 2πTb 0 in relation to the energy consumption 2PaiTb 0 by the torque - Taking 2πTb wh = 2πTb, Tb = Tb 0 −Tb wh・ The energy consumption due to the resistance of the vertical cutting edge is so small that it is neglected. Therefore, the expression (1) becomes as follows. Rp = {2πTb + Lb (P + απDw ′)} / {P + απ (Dp ′ + Dw ′)} (1) ′ P adopts the function of Dp, and Dp ′ and Dw ′ are D
It is a function of p and is expressed as P = g · Dp g: Coefficient for determining blade shape Dp ′ = 2/3 · Dp Dw ′ = {2 (h 3 −1)} / {3 (h 2 −1)} · Dp = i · Dph: Blade diameter ratio = Dw / Dpi = {2 (h 3 -1)} / {3 (h 2 -1)} Therefore, the equation (1) ′ shows that the penetration resistance Rp is equal to the torque Tt and Tb.
Tb, Lt using the relationship of
And the pile diameter Dp can be arranged as follows. Tb = atr · Tt, Lb = atr · Lt atr: torque Tt, overburden transmissibility Rp = X 1 · Tt / Dp + Y 1 · Lt to pile the lower end of the load Lt (2) X 1 = 2π · atr / { (2/3 + i) α · π + g} Y 1 = atr (i · α · π + g) / {(2/3 + i) α · π + g} X 1 and Y 1 are coefficients derived from the shape and construction parameters of the pile. Required from construction records. On the other hand, since Rp represents the supporting force at the bottom plate found portion, it has a relationship proportional to the average N value and the bottom plate area. However, in the case of a rotary press-fit open-end pile, the dependence of the cutting edge resistance and the bottom plate resistance changes depending on the ground conditions as the diameter changes, and in the case of large-diameter piles, the blockage rate of the soil inside the pipe becomes a factor. It was found that the behavior of the soil in the pipe and the resistance of the blades were related and were proportional to the bottom plate area or pile diameter. (In some cases, it is proportional to the area of the pile, but it is proportional to the area.) Rp = α1 · N · Dp 1-2 (3) α1: Tip support force coefficient Therefore, from equations (2) and (3), Tt and N Value, Lt, Dp
The following relationship is derived between. α1 · N · Dp 1~2 = X 1 · Tt / Dp + Y 1 · Lt ∴ Tt = (α1 · N · Dp 1~2 - Y 1 · Lt) · Dp / X 1 Tt = a · N · Dp m− b · Lt · Dp (4) m = 2−3 a = α1 / X 1 , b = Y 1 / X 1 As is clear from the equation (4), the torque is proportional to the average N value from the first term. However, it can be said that Dp is proportional to the second to third powers. Further, since the second term is negative, it can be seen that the overload has the effect of reducing the torque during construction, and that the required torque increases if no overload is applied.

【0016】このことから、逆に重機を選定する上で
は、上載荷重を無視すれば必要トルクは大きくなると判
断されるため、選択する重機の能力に余裕を持つことが
出来、即ち施工上安全側の判断が出来ることになる。以
上から重機の選定をする上では(4)式の第2項目を削
除して、 Tt =a・N・Dpm (5) N:地盤調査結果から得られるN値 を用いる。
On the contrary, when selecting a heavy machine, it is determined that the required torque will be increased if the load on the vehicle is neglected, so that the capacity of the selected heavy machine can be given a margin. Can be determined. In order to selection of heavy machinery from above to remove the second item of the equation (4), Tt = a · N · Dp m (5) N: an N value obtained from ground survey results.

【0017】施工管理上用いる先端支持力Quの根拠は
以下の通りである。トルクと地盤強度N値の関係は
(4)式の通りであるから、求められるN値より先端支
持力の推定が可能となる。 Tt =a・N・Dpm −b・Lt・Dp の関係式より導かれる、トルクより導かれる地盤強度N
は、 N = (Tt +b・Lt・Dp )/(a・Dpm ) (6) N :トルク及び上載荷重から算出されるN値 先端支持力は、地盤強度N値に比例し先端面積に比例す
る関係にあるので(6)式と先端支持力の関係から Qu =α1・N・A=α1・(Tt+b・Lt・Dp)/(a・Dpm)・f・Dp2 =X・Dpn1・Tt +Y・Lt・Dp n2 (7) A :先端面積(m2) =π・Dp2/4・{1+(h2−1)e} =f・Dp2 e :羽根における支持力係数の有効率 Tt :トルク(kN・m) Lt :上載荷重 (kN) α1 :先端支持力係数 X :X1、f より求まる定数 =α1・f/a=α1・f/(α1/X1)=f・X1 Y :Y1 、f より求まる定数 =α1・b・f/a=α1・(Y1/X1)・f/(α1/X1)=f・Y1 n1:n2 = 2−m n2:n2 = 3−m を導くことが出来る。(7)式の関係式から判るよう
に、上載荷重Lt を負荷することによりQuを増加する
効果があるが、一般的に上載荷重は層の変化する場合に
必要とする荷重で、各々の層に貫入する時は羽根による
推進力で貫入するため、自重以上の上載荷重を負荷する
オペレーションは必要としない。2項目の上載荷重の項
を無視することで、Quを安全側に評価することができ
る。従って(7)式の2項目は削除してトルクから先端
支持力の関係を導く式とした。この場合の、自重分の上
載荷重の誤差は微小となり、またX中に包含されると考
えて良い。 Qu X・Dpn・Tt (8) nは n = 2−m (9) となる。以上より、(8)式によって打止めを管理す
る。施工時には打止め値として設定された設計Qu値が
あり、その値に到達することが打止め条件となる。その
他に、設計Qu値から換算されるトルク値によって打止
め条件を判断することもある。
The basis of the tip support force Qu used for construction management is as follows. Since the relationship between the torque and the ground strength N value is as shown in equation (4), the tip support force can be estimated from the obtained N value. Tt = a · N · Dp m -b · Lt · Dp derived from the equation, soil strength N derived from the torque
Is, N = (Tt + b · Lt · Dp) / (a · Dp m) (6) N: N value tip supporting force calculated from torque and overburden load is proportional to the tip area is proportional to the ground intensity N value since the relationship of (6) and the tip Qu from the supporting force of the relationship = α1 · N · a = α1 · (Tt + b · Lt · Dp) / (a · Dp m) · f · Dp 2 = X · Dp n1 · Tt + Y · Lt · Dp n2 (7) a: the tip area (m 2) = π · Dp 2/4 · {1+ (h 2 -1) e} = f · Dp 2 e: supporting force coefficient at the blade effective rate Tt: torque (kN · m) Lt: overburden load (kN) [alpha] 1: front end supporting force coefficient X: X 1, f from calculated constant = α1 · f / a = α1 · f / (α1 / X 1) = f · X 1 Y: constant obtained from Y 1 and f = α 1 · b · f / a = α 1 · (Y 1 / X 1 ) · f / (α 1 / X 1 ) = f · Y 1 n1: n2 = 2 −m n2: n2 = 3-m can be derived . As can be seen from the relational expression of the equation (7), applying the overlying load Lt has the effect of increasing Qu, but generally the overlying load is the load required when the layer changes, and Since the blade penetrates with the propulsive force of the blade when penetrating into the vehicle, there is no need to perform an operation of applying an overload greater than its own weight. By ignoring the two items of the overload, Qu can be evaluated on the safe side. Therefore, the two items in the expression (7) are deleted and the expression for deriving the relationship of the tip support force from the torque is used. In this case, the error of the overlaid load corresponding to the own weight becomes very small and may be considered to be included in X. Qu = X · Dp n · Tt (8 ) n becomes n = 2-m (9) . From the above, the stop is managed by the equation (8). At the time of construction, there is a design Qu value set as a stop value, and reaching the value is a stop condition. In addition, the stopping condition may be determined based on the torque value converted from the design Qu value.

【0018】上記の算式を用いて本発明を具体的に施工
する場合においては、係数及び指数が明らかである必要
がある。これまでに行った施工試験より、以下のように
数値が求められた。 指数 m 鋼管杭径が小径(609.6φ 以下)の場合 2.5〜3 鋼管杭径が大径(609.6φ 以上)の場合 2〜2.5 杭径に応じて変化する特性を持ち(杭径に応じて段階的
に変化する)、管径及び閉塞効果に密接な関係にある。 係数 a 杭の形状や施工パラメータの影響を受ける。発明者らが
行った施工の記録からは以下のようになっている。 支持層到達時 30〜40 支持層へ1Dp 貫入 40〜60 支持層へ2Dp 貫入 60〜80 支持層へ2Dp 貫入以上 80〜100 a は根入れ深さが増加するに従い閉塞効果が発揮さ
れ、底板部より下部の地盤を締め固める効果や、羽根上
面の地盤硬さが相対的に増加する現象が反映される、即
ち根入れ深さに依存する係数である。
When concretely implementing the present invention using the above formula, the coefficients and indices need to be clear. The following numerical values were obtained from the construction tests performed so far. Index m 2.5 to 3 when steel pipe pile diameter is small diameter (609.6φ or less) 2 to 2.5 when steel pipe pile diameter is large diameter (609.6φ or more) It changes stepwise according to the pile diameter), and is closely related to the pipe diameter and the blockage effect. Coefficient a It depends on pile shape and construction parameters. The records of the construction performed by the inventors are as follows. When reaching the support layer 30 to 40 Penetration of 1Dp into the support layer 40 to 60 Penetration of 2Dp to the support layer 60 to 80 Penetration of 2Dp or more to the support layer 80 to 100a exhibits a closing effect as the penetration depth increases and the bottom plate portion It is a coefficient that reflects the effect of compacting the ground below and the phenomenon that the ground hardness of the upper surface of the blades relatively increases, that is, a coefficient that depends on the depth of embedding.

【0019】本発明に係る回転圧入杭1の実際の貫入に
必要な数式計算例を、図1〜図3を参照しながら説明す
る。鋼管杭1杭径Dp 600φ、羽根2の外径Dw =
1.5Dp の回転圧入杭を、N=30、層厚2Dp の中
間層を貫通し、N=50の支持層へ1Dp 根入れする為
の予測トルクは、 600φであるから m = 2.5 中間層を貫通する層厚が2Dp より、a1 = 70 ∴ Tt = a1・N1・Dpm = 70・30・0.62.5 = 586 kN・m 支持層への根入れ深さ1Dp より、a= 52 ∴Tt = a・N・Dpm = 52・50・0.62.5 = 725 kN・m 従って、支持層へ根入れする為の能力に見合う施工機械
を選定すれば、施工ができる。
An example of mathematical calculations required for the actual penetration of the rotary press-fitting pile 1 according to the present invention will be described with reference to FIGS. Steel pipe pile 1 pile diameter Dp 600φ, outer diameter Dw of blade 2 =
The predicted torque for penetrating a 1.5 Dp rotary press-fitting pile through an intermediate layer of N = 30 and a layer thickness of 2 Dp and embedding 1 Dp into a support layer of N = 50 is 600φ, so m = 2.5 intermediate than the thickness passing through the layers 2Dp, than embedment depth 1Dp to a 1 = 70 ∴ Tt = a 1 · N 1 · Dp m = 70 · 30 · 0.6 2.5 = 586 kN · m supporting layer, a = 52 ∴Tt = a · N · Dp m = 52 · 50 · 0.6 2.5 = 725 kN · m Therefore, if selected construction machine to meet the capacity for putting roots to the support layer, it is construction.

【0020】次に、鋼管杭1杭径Dp 600φ、羽根2
の外径Dw1.5Dp の回転圧入杭を、N=50の支持
層に施工する場合を考える。この杭の場合、設計先端支
持力は4505kNと計算される。この杭の施工におい
て、支持層への貫入が 1.5Dp 程度の根入れをした
時に、トルクが800kN・mとなった。すなわち、 a = 57より X=f・X1 =π/4・{1+e(h2−1)}・α1/a =4.46 (載荷試験の結果から、e=0.5,α1=200が導かれている) 従って Qu = X・Dpn・Tt = 4.46・0.62-2.7・800 = 5101 kN 従って、設計支持力を満足している。( 設計支持力が
4240kN、a=57より X=4.46 従って、予
想打止めトルクは Tt = Qu/(X・Dpn)= 4240/(4.46・0.62-2.7) = 664.8 kN・m よって 800kN・m での打止めは適切である )
Next, steel pipe pile 1 pile diameter Dp 600φ, blade 2
Of a rotary press-fitting pile having an outer diameter Dw1.5Dp of N = 50 on a support layer is considered. For this pile, the design tip bearing capacity is calculated to be 4505 kN. In the construction of this pile, the torque became 800 kN · m when the penetration into the support layer was laid about 1.5 Dp. That is, from a = 57, X = f ・ X 1 = π / 4 {{1 + e (h 2 -1)}} α1 / a = 4.46 (From the results of the loading test, e = 0.5, α1 = 200 is 2-2.7 · 800 = 5101 kN thus guided are) thus Qu = X · Dp n · Tt = 4.46 · 0.6, which satisfies the design supporting force. (Design supporting force is 4240kN, X = 4.46 Thus from a = 57, expect Uchidome torque Tt = Qu / (X · Dp n) = 4240 / (4.46 · 0.6 2-2.7) = 664 .8 kN ・ m Therefore, stopping at 800 kN ・ m is appropriate.)

【0021】上記の施工管理方法を採用することによ
り、予め重機の能力を地盤強度N値より選択できる。従
って本発明により、施工能率が良く、高品質で、コスト
パフォーマンスに優れた施工方法をとることが出来る。
また、打止めトルクについても、トルクの変動を見なが
ら全数の杭について打止め可否判断が出来るので、信頼
性の高い杭が造成できる。
By employing the above construction management method, the capacity of the heavy equipment can be selected in advance from the ground strength N value. Therefore, according to the present invention, it is possible to adopt a construction method with good construction efficiency, high quality, and excellent cost performance.
Also, with regard to the driving torque, it is possible to determine whether or not driving can be performed for all the piles while observing the fluctuation of the torque, so that a highly reliable pile can be formed.

【0022】次に回転鋼管杭1の先端部分2の支持層4
への根入れ深さについて、図3(A)(B)を参照しな
がら説明する。従来の回転圧入杭においては、前述のよ
うに、支持層への根入れは1Dw以上(Dw は羽根3の
外径)程度とされていた。これは、杭先端部が支持層へ
確実に根入れされていることを保証する為であり、従来
の羽根付き回転圧入杭では支持力を受ける底面が有効径
と見なされるためである。本発明の回転圧入鋼管杭の場
合、すでに述べたように、重機に作用するトルクによる
支持層管理が極めて容易であり、しかも定量的に判別す
ることが出来る。従って、支持層への根入れを小さくす
ることが可能となる。具体的には、羽根ピッチ程度の根
入れから1Dp程度の根入れとすることができる。
Next, the support layer 4 of the tip portion 2 of the rotating steel pipe pile 1
The depth of embedding in the groove will be described with reference to FIGS. In the conventional rotary press-fitting pile, as described above, the penetration into the support layer is about 1 Dw or more (Dw is the outer diameter of the blade 3). This is to ensure that the tip of the pile is firmly rooted in the support layer, and the bottom face receiving the supporting force is regarded as the effective diameter in the conventional rotary press-fitting pile with blades. In the case of the rotary press-fit steel pipe pile of the present invention, as described above, the management of the support layer by the torque acting on the heavy equipment is extremely easy and can be quantitatively determined. Therefore, it is possible to reduce the penetration into the support layer. Specifically, the depth can be reduced from about the blade pitch to about 1 Dp.

【0023】根入れ長が小さいために、杭内部の閉塞効
果の発現が期待できない場合がある。鋼管杭径が大径の
場合(600φ以上)や、小径でも閉塞効果の評価が難
しい場合に、杭内部の閉塞が得られず支持力の不足が生
じる場合が有るが、支持力の不足分を補う手段として、
図2に示す杭内側に羽根の張り出した羽根付鋼管を用い
ることや、図4〜図7に示す杭内壁1aに、鋼管内に進
入した土砂を閉塞促進させる閉塞効果促進突起を具備し
た羽根付鋼管を用い、杭内部空間8を閉塞させるによっ
て解決される。図2に示す羽根を内部に張り出す羽根付
鋼管杭では、杭内部8の羽根面積の増加により支持力の
加算ができる為、内部の土が閉塞していなくても支持力
が得られる。この場合は、土砂による閉塞効果が問題に
ならず、設計仕様を満たす上で管理が容易となる。実施
例においては、杭鋼管外径の略1.5〜2.0倍の外径
で、杭鋼管内径の0.3〜0.9倍の内径としたドーナ
ツ状鋼板を用いた。設計先端支持力をうるための、羽根
面積による杭内部空間の閉塞程度は、杭径、地盤の状態
等によって予め選択できるので、容易に施工管理でき
る。
[0023] Due to the small rooting length, the effect of closing the pile inside may not be expected. When the diameter of the steel pipe pile is large (600φ or more) or when it is difficult to evaluate the blocking effect even with a small diameter, blockage inside the pile may not be obtained and insufficient supporting force may occur. As a supplement,
A bladed steel pipe with protruding blades is used inside the pile shown in FIG. 2, or a vane provided with a plugging effect promoting projection on the pile inner wall 1 a shown in FIGS. The problem is solved by closing the pile internal space 8 using a steel pipe. In the steel pipe pile with vanes shown in FIG. 2 in which the vanes are extended inside, the supporting force can be added by increasing the blade area of the inside 8 of the pile, so that the supporting force can be obtained even if the internal soil is not closed. In this case, the blockage effect of the earth and sand does not matter, and the management becomes easy to satisfy the design specifications. In the embodiment, a donut-shaped steel plate having an outer diameter approximately 1.5 to 2.0 times the outer diameter of the pile steel pipe and an inner diameter 0.3 to 0.9 times the inner diameter of the pile steel pipe was used. The degree of blockage of the pile internal space due to the blade area for obtaining the design tip supporting force can be selected in advance according to the pile diameter, the state of the ground, and the like, so that the construction can be easily managed.

【0024】図4〜図7に示すように、杭内壁1aに鋼
管内に進入した土砂を閉塞促進させる閉塞効果促進突起
7を具備した羽根付鋼管杭では、実施例としては、鋼管
杭先端から鋼管内径1aの略0.5〜2.0倍の高さの
ところの鋼管杭内壁に、突起7を設けている。設計先端
支持力をうるための、閉塞促進突起による杭内部空間の
閉塞程度は、杭径、地盤の状態等によって予め選択でき
るので、容易に施工管理できる。閉塞促進突起7の形状
は、図4に示す円環状でもよく、又円弧状でもよい。ま
た、図6、図7に示すように、複数個の長方形突起を、
内壁に固着してもよい。先端を開放している為に貫入性
に優れる一方、少ない根入れで先端が閉塞する為、施工
に要するエネルギーを抑えることが出来、支持力上も十
分な耐力を有することが出来る。
As shown in FIGS. 4 to 7, in the case of a steel pipe pile with blades provided with a plugging effect promoting projection 7 on the pile inner wall 1a for promoting the blockage of earth and sand entering the steel pipe, as an embodiment, as shown in FIG. A protrusion 7 is provided on the inner wall of the steel pipe pile at a height of about 0.5 to 2.0 times the inner diameter 1a of the steel pipe. The degree of blockage of the pile internal space by the blockage-promoting projection for obtaining the design tip supporting force can be selected in advance according to the pile diameter, the state of the ground, and the like, so that the construction can be easily managed. The shape of the blockage-promoting protrusion 7 may be an annular shape shown in FIG. 4 or an arc shape. Also, as shown in FIGS. 6 and 7, a plurality of rectangular projections are formed.
It may be fixed to the inner wall. Since the tip is open, the penetration is excellent, while the tip is closed with a small amount of rooting, so that the energy required for construction can be suppressed and the bearing strength can be sufficiently high.

【0025】図8〜図10に示す先端が閉塞した杭を用
いて、支持層への根入れを小さくする手法も有効であ
る。先端が閉塞された杭は、支持層へ大きな根入れをす
る時には1回転当たりの貫入量が小さくなり、支持地盤
を乱してしまうが、本発明のように小さな根入れでは、
杭体積分の土砂の、側方への移動が容易である為、地盤
を押圧する効果が得られると共に、打ち止まった状態で
の支持地盤の状況は健全な状態が保たれる。また、支持
力も十分に保有しており、品質の優れた杭を造成するこ
とが出来る。またこの場合の羽根の形状は、実施例にお
いては、鋼管杭外径の略1.5〜2.0倍の外径を有す
るドーナツ状鋼板を使用している。図8は、ドーナツ状
鋼板の1箇所を切断して螺旋状に鋼管杭の端部側壁に溶
接固定した場合を示している。図9は、同じくドーナツ
状鋼板を2箇所において切断し、鋼管杭端部に1個を、
鋼管杭端部側壁に他の1個を溶接固定した場合を示して
いる。図10は、鋼管杭端部を羽根形状鋼板の形状に沿
う形状に切断し、羽根後端部と同位置に、底板面を設け
て、杭内部を閉塞したものである。このように、羽根の
形状はさまざまであるが、トルク値および先端支持力の
算定式は、共通の式を適用でき、杭先端部の根入れ長さ
を羽根径以下で打ち止めることができる。
It is also effective to use a pile with a closed tip shown in FIGS. 8 to 10 to reduce the depth of the support layer. When the pile with the closed tip is deeply laid into the support layer, the amount of penetration per rotation becomes small and disturbs the support ground, but with a small piercing as in the present invention,
Since the earth and sand corresponding to the pile volume can be easily moved to the side, the effect of pressing the ground can be obtained, and the condition of the supporting ground in the stopped state can be maintained in a healthy state. In addition, the bearing has sufficient bearing capacity, and it is possible to construct a high-quality pile. In this embodiment, the shape of the blade is a donut-shaped steel plate having an outer diameter approximately 1.5 to 2.0 times the outer diameter of the steel pipe pile. FIG. 8 shows a case where one place of a donut-shaped steel plate is cut and spirally welded and fixed to an end side wall of a steel pipe pile. Fig. 9 shows the same donut-shaped steel plate cut at two places, one at the end of the steel pipe pile,
The case where the other one is welded and fixed to the end wall of the steel pipe pile is shown. In FIG. 10, the end of the steel pipe pile is cut into a shape following the shape of the blade-shaped steel plate, a bottom plate surface is provided at the same position as the blade rear end, and the inside of the pile is closed. As described above, although the shapes of the blades are various, a common expression can be applied to the calculation formulas of the torque value and the tip supporting force, and the embedding length of the pile tip can be stopped below the blade diameter.

【0026】以上のように、開端杭、閉端杭を問わず、
羽根の形状は様様であり、杭先端部も種々の形状が存在
する。また、図11、図12は、杭先端部の底面板9
に、底面掘削刃10を取り付けたものである。図11は
1枚の羽根を鋼管杭端部側壁に沿って溶接固定したもの
であって、掘削刃は1個であるが、図12は、2枚の羽
根を鋼管杭端部側壁に沿って溶接固定したものであっ
て、掘削刃は2個設けている。底面掘削刃10の形状お
よび取り付け位置は、図示したもの以外にも、多数存在
する。
As described above, regardless of the open-end pile and the closed-end pile,
The shape of the blade is various, and the pile tip also has various shapes. 11 and 12 show the bottom plate 9 at the tip of the pile.
And a bottom excavation blade 10 attached thereto. Fig. 11 shows one blade fixed by welding along the side wall of the steel pipe pile end, and one excavation blade. However, Fig. 12 shows two blades along the side wall of the steel pipe pile end. It is fixed by welding and has two excavating blades. There are many shapes and mounting positions of the bottom surface excavation blade 10 in addition to those illustrated.

【0027】上記の杭内側に羽根の張り出した羽根付鋼
管を用いた場合や、杭内壁1aに、鋼管内に進入した土
砂を閉塞促進させる突起7を具備した場合の設計先端支
持力の算定式は、羽根の見付面積(設置面の面積)当た
りと、内部に進入した土砂の閉塞を考慮した計算式で計
算する。下式で示す係数は、これまでに行われた載荷試
験の結果から求められたものであり、支持地盤の種別に
より係数が変化することが確認されている。 先端支持力 (kN)= qd・Aw+qdh・Awi qd :100・N〜200・N qdh :60・N・L/Dp 但しL>5Dpの時および閉端杭の時は、L/Dp=5とする L: 支持層への根入長さ(m) N: 先端N値 Aw : 羽根のみの見付面積(m2) Awi : 羽根の見付面積からAwを除いた面積(m2) この式で求められた先端支持力は、本発明の回転圧入鋼
管杭の設計支持力(極限)であり、施工時の打止め時
に、指標となる。施工時には本式で求められた数値を満
足するQu、もしくはトルクが得られればよい。この支
持力算定式により得られる支持力は、支持層のN値によ
って異なるが、おおむね羽根ピッチ程度の貫入(根入
れ)で満たされる。
A formula for calculating the design tip supporting force in the case where the above-mentioned steel pipe with blades overhanging the inside of the pile is used, or in the case where the pile inner wall 1a is provided with the protrusion 7 for promoting the blockage of the earth and sand that has entered the steel pipe. Is calculated using a formula that takes into account the perimeter area of the blade (the area of the installation surface) and the obstruction of earth and sand that has entered the interior. The coefficient shown in the following equation was obtained from the results of the loading tests performed so far, and it has been confirmed that the coefficient changes depending on the type of the supporting ground. Tip support force (kN) = qd Aw + qdh Awi qd: 100 N-200 Nqdh: 60 N L / Dp However, when L> 5 Dp and for a closed end pile, L / Dp = 5 to L: root entry length to the support layer (m) N: tip N value Aw: locate the area (m 2) of the blade only Awi: area excluding the Aw from finding the area of the blade (m 2) this equation Is the design support force (extreme) of the rotary press-fit steel pipe pile of the present invention, and serves as an index at the time of stopping during construction. At the time of construction, it is sufficient that Qu or torque that satisfies the value obtained by this formula is obtained. The support force obtained by this support force calculation formula varies depending on the N value of the support layer, but is generally satisfied by penetration (penetration) of about the blade pitch.

【0028】この設計先端支持力の算式を、施工時の貫
入打ち止め決定に目標値として使用することにより、鋼
管杭先端部2の貫入を小さくして、周辺地盤を乱さない
という効果が得られた。支持層への根入れには、ほぼ1
回転〜2回転程度の貫入で良く、特に羽根ピッチ程度の
貫入であれば、杭が1回転する間に入るため、支持層を
乱す要素を排除できる。また、堅い支持層に貫入して打
止めするのに要するトルクが著しく軽減され、1ランク
小さな施工機械での施工も可能となる。しかも、支持力
は従来通り得られるため、地盤を乱さない効果により、
杭の信頼性が一段と向上する。
By using the formula of the design tip supporting force as a target value in determining the penetration stop at the time of construction, the effect of reducing the penetration of the steel pipe pile tip portion 2 and not disturbing the surrounding ground was obtained. . Almost 1 for embedding in the support layer
Penetration of about 2 to 2 rotations is sufficient, especially if the penetration is about the blade pitch, since the pile enters during one rotation, elements that disturb the support layer can be eliminated. Further, the torque required to penetrate and stop the hard support layer is remarkably reduced, and the construction can be performed with a construction machine one rank smaller. Moreover, because the bearing capacity is obtained as before, the effect of not disturbing the ground,
Pile reliability is further improved.

【0029】[0029]

【発明の効果】本願発明は、施工管理上最も把握しやす
いトルク値と、地盤の強度を表すN値および先端支持力
Quの関係を明らかにするものであり、地盤調査結果か
ら得られた地盤強度(N値)から、予め施工時に、必要
とするトルク値、および先端支持力(Qu)を算定する
ことができるという効果を奏する。従って、地盤状況に
応じた適切な回転圧入鋼管杭用重機を容易に選択するこ
とができる。また施工する全ての杭について、先端支持
力(Qu)を算出することができ、そのQu値に応じて
回転圧入鋼管杭の貫入継続、または貫入完了を制御する
ことができる。従って全ての杭について設計支持力を満
足していることが確認できる為、信頼性に富んだ杭を造
成することが出来る。
The present invention clarifies the relationship between the torque value which is most easily understood in construction management, the N value representing the strength of the ground, and the tip supporting force Qu, and the ground obtained from the ground survey results. From the strength (N value), the required torque value and the tip support force (Qu) can be calculated in advance during construction. Therefore, it is possible to easily select an appropriate rotary press-fit steel pipe pile heavy machine according to the ground condition. In addition, the tip support force (Qu) can be calculated for all the piles to be constructed, and the continuation of penetration or the completion of penetration of the rotary press-fit steel pipe pile can be controlled according to the Qu value. Therefore, it is possible to confirm that all the piles satisfy the design bearing capacity, so that a pile having high reliability can be constructed.

【0030】さらに、設計通りの支持力を得るための、
支持層の把握が可能となり、杭先端部の根入れ深さが施
工管理で明らかに出来るようになった。その杭先端部の
支持層への根入れ長さを、羽根径以下で打ち止めること
を可能としたので、鋼管杭先端部の貫入量が小さくな
り、周辺地盤を乱さないという効果が得られる。地盤を
乱さないので、支持力の信頼性の高い杭が造成できる。
施工面では堅い支持層に貫入して打止めするのに要する
トルクが著しく軽減され、1ランク小さな施工機械での
施工も可能となり、コストダウンが可能であると共に、
選択する重機の能力に余裕があることを確認しながら施
工できるため、施工上安全面の判断ができることにな
る。また小さい根入れで支持力は従来通り得られるた
め、材料と施工の両面でコストダウンが可能となる。従
って本発明により、施工能率が良く、高品質で、コスト
パフォーマンスに優れた施工方法をとることができると
いう効果を奏する。
Further, in order to obtain the designed supporting force,
The support layer can be grasped, and the depth of penetration at the tip of the pile can be clarified by construction management. Since the length of the pile tip embedded in the support layer can be stopped below the blade diameter, the penetration amount of the steel pipe pile tip is reduced, and the effect of not disturbing the surrounding ground can be obtained. Since the ground is not disturbed, a pile having a high bearing capacity can be formed.
In terms of construction, the torque required to penetrate the hard support layer and stop is significantly reduced, construction with one rank smaller construction machine is also possible, and cost reduction is possible,
Since the construction can be performed while confirming that there is enough capacity of the heavy equipment to be selected, it is possible to determine a safety aspect in the construction. In addition, since the supporting force can be obtained as before with a small embedding, the cost can be reduced in both the material and the construction. Therefore, according to the present invention, there is an effect that a construction method having good construction efficiency, high quality, and excellent cost performance can be adopted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明に係る回転圧入鋼管杭の正面
図、(B)は同縦断面図である。
FIG. 1A is a front view of a rotary press-fit steel pipe pile according to the present invention, and FIG. 1B is a longitudinal sectional view of the same.

【図2】回転圧入鋼管杭の下方斜視図である。FIG. 2 is a lower perspective view of a rotary press-fit steel pipe pile.

【図3】(A)は本発明の施工方法における回転圧入杭
の貫入メカニズムと貫入完了状態を示す模式図、(B)
は同じく従来技術の模式図である。
FIG. 3A is a schematic diagram showing a penetration mechanism of a rotary press-fitting pile and a completed penetration state in the construction method of the present invention, and FIG.
FIG. 2 is a schematic view of the related art.

【図4】本発明に係る回転圧入鋼管杭内部に、閉塞効果
促進突起を具備した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a clogging effect promoting projection is provided inside the rotary press-fit steel pipe pile according to the present invention.

【図5】図4におけるA−A断面図である。FIG. 5 is a sectional view taken along line AA in FIG.

【図6】閉塞効果促進突起を具備した回転圧入鋼管杭の
正面図である。
FIG. 6 is a front view of a rotary press-fit steel pipe pile having a closing effect promoting projection.

【図7】同じく平面図である。FIG. 7 is a plan view of the same.

【図8】本発明に係る、先端が閉端の回転圧入鋼管杭の
下方斜視図である。
FIG. 8 is a lower perspective view of a rotary press-fit steel pipe pile having a closed end according to the present invention.

【図9】同じく2枚羽根閉端回転圧入鋼管杭の下方斜視
図である。
FIG. 9 is a lower perspective view of the two-blade closed-end rotary press-fit steel pipe pile.

【図10】同じく閉端回転圧入鋼管杭の下方斜視図であ
る。
FIG. 10 is a lower perspective view of the closed-end rotary press-fit steel pipe pile.

【図11】本発明に係る、閉端回転圧入鋼管杭の掘削刃
の状態を示す下方斜視図である。
FIG. 11 is a lower perspective view showing a state of a cutting edge of the closed-end rotary press-fit steel pipe pile according to the present invention.

【図12】同じく閉端回転圧入鋼管杭の2枚掘削刃の状
態を示す下方斜視図である。
FIG. 12 is a lower perspective view showing the state of two excavating blades of the closed-end rotary press-fit steel pipe pile.

【符号の説明】[Explanation of symbols]

1 鋼管杭 1a 鋼管杭内壁 2 鋼管杭先端部 3 羽根 4 地盤支持層 5 羽根先端 6 羽根掘削刃 7 閉塞効果促進突起 8 杭内部空間 9 底面板 10 底面板掘削刃 REFERENCE SIGNS LIST 1 steel pipe pile 1 a steel pipe pile inner wall 2 steel pipe pile tip 3 blade 4 ground support layer 5 blade tip 6 blade excavation blade 7 blockage effect promoting projection 8 pile internal space 9 bottom plate 10 bottom plate excavation blade

フロントページの続き (72)発明者 竹田 智樹 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (72)発明者 永田 誠 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (56)参考文献 特開 平5−163727(JP,A) 特開 平11−303070(JP,A) (58)調査した分野(Int.Cl.7,DB名) E02D 7/22 E02D 5/28 E02D 5/56 Continuing on the front page (72) Inventor Tomoki Takeda 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation (72) Inventor Makoto Nagata 2-6-3 Otemachi, Chiyoda-ku, Tokyo New Japan (56) References JP-A-5-163727 (JP, A) JP-A-11-303070 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) E02D 7/22 E02D 5/28 E02D 5/56

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 先端に羽根状鋼板を備え、地中に回転圧
入される回転圧入鋼管杭の施工方法において、地盤調査
結果から得られた地盤強度(N値)から、施工時に必要
とするトルク値を次式により算定することを特徴とする
回転圧入鋼管杭の施工方法。 Tt=a・N・Dpm−b・Lt・Dp Tt:トルク(kN・m) Dp:杭径(m) Lt:上載荷重(kN) N :標準貫入試験より得られるN値 a,b,m:係数および指数(但しmは2〜3)
1. A method of constructing a rotary press-fit steel pipe pile having a blade-like steel plate at its tip and being rotationally pressed into the ground, based on a ground strength (N value) obtained from a ground survey result, a torque required at the time of construction. A method for constructing a rotary press-fit steel pipe pile, wherein the value is calculated by the following equation. Tt = a · N · Dp m −b · Lt · Dp Tt: Torque (kN · m) Dp: Pile diameter (m) Lt: Overhead load (kN) N: N value obtained from standard penetration test a, b, m: coefficient and exponent (where m is 2-3)
【請求項2】 次式により、施工に必要なトルクを算出
し、適切な回転圧入鋼管杭用施工機械を選択することを
特徴とする回転圧入鋼管杭の施工方法 Tt=a・N・Dpm Tt:トルク(kN・m) Dp:杭径(m) N :標準貫入試験より得られるN値 a,m:係数および指数(但しmは2〜3)
By wherein the following equation to calculate the torque required to construction, the construction method Tt = a · N · Dp m rotary press fit steel pipe, characterized by selecting an appropriate rotational pressed steel pipe for construction machinery Tt: Torque (kN · m) Dp: Pile diameter (m) N: N value obtained from standard penetration test a, m: Coefficient and index (where m is 2-3)
【請求項3】 施工時に重機に作用するトルク値から、
次式により先端支持力(Qu)を算出し、Qu値に応じ
て回転圧入鋼管杭の貫入継続、または貫入完了を制御す
ることを特徴とする、回転圧入鋼管杭の施工方法。 Qu=X・Dpn・Tt Qu:先端支持力(kN) Tt:トルク(kN・m) Dp:杭径(m) X,n:係数および指数(但しnは2−m)
3. From the torque value acting on the heavy equipment during construction,
A method for constructing a rotary press-fit steel pipe pile, comprising calculating tip support force (Qu) by the following formula, and controlling continuation or completion of penetration of the rotary press-fit steel pipe pile according to the Qu value. Qu = X · Dp n · Tt Qu: tip supporting force (kN) Tt: Torque (kN · m) Dp: pile diameter (m) X, n: coefficient and the exponent (wherein n is 2-m)
【請求項4】 先端に羽根状鋼板を備え、地中に回転圧
入される羽根付き鋼管杭において、請求項1に記載の算
式によりトルク値、および請求項3に記載の算式により
先端支持力(Qu)を算出することにより、杭先端部の
支持層への根入れ長さを、羽根径以下の量で打ち止め可
能としたことを特徴とする、回転圧入鋼管杭の施工方
法。
4. A steel pipe pile with vanes provided with a vane-shaped steel plate at the tip thereof and being rotationally press-fitted into the ground, a torque value according to the formula according to claim 1, and a tip supporting force (according to the formula according to claim 3). A method for constructing a rotary press-fit steel pipe pile, characterized in that by calculating Qu), the length of penetration of the pile tip into the support layer can be stopped by an amount equal to or less than the blade diameter.
【請求項5】 前記回転圧入鋼管杭の設計先端支持力
を、下式により算定し、施工管理目標値とすることを特
徴とする、回転圧入鋼管杭の施工方法。 先端支持力(kN) = qd・Aw+qdh・Awi qd :qd=αd・N qdh :qdh = αh・N・L/Dp 但しL>5Dpの時および閉端杭の時は、L/Dp=5とする αd :羽根部分(Aw部分)の先端支持力係数 αh :閉塞土砂部分(Awi部分)または底板部分(Awi部分)の先 端支持力係数 L:支持層への根入長さ (m) N:先端N値 Aw:外側羽根の見付面積 (m2),Aw=π・(Dw2−Dp2)/4 Awi:底板部見付面積 (m2),Awi=π・Dp2/4 Dw:羽根径 (m) Dp:杭径 (m)
5. A method for constructing a rotary press-fit steel pipe pile, comprising calculating a design tip supporting force of the rotary press-fit steel pipe pile by the following equation and setting the calculated value as a construction management target value. Tip support force (kN) = qd Aw + qdh Awi qd: qd = αd Nqdh: qdh = αh N L / Dp However, when L> 5 Dp and for a closed-end pile, L / Dp = 5 Αd: Tip supporting force coefficient of blade part (Aw part) αh: Tip supporting force coefficient of closed earth and sand part (Awi part) or bottom plate part (Awi part) L: Length of penetration into support layer (m) N : tip N value Aw: locate the area of the outer wing (m 2), Aw = π · (Dw 2 -Dp 2) / 4 Awi: bottom plate find area (m 2), Awi = π · Dp 2/4 Dw: Blade diameter (m) Dp: Pile diameter (m)
JP2000272639A 1999-09-10 2000-09-08 Construction method of rotary press-fit steel pipe pile Expired - Fee Related JP3220444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272639A JP3220444B2 (en) 1999-09-10 2000-09-08 Construction method of rotary press-fit steel pipe pile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25667599 1999-09-10
JP11-256675 1999-09-10
JP2000272639A JP3220444B2 (en) 1999-09-10 2000-09-08 Construction method of rotary press-fit steel pipe pile

Publications (2)

Publication Number Publication Date
JP2001146741A JP2001146741A (en) 2001-05-29
JP3220444B2 true JP3220444B2 (en) 2001-10-22

Family

ID=26542840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272639A Expired - Fee Related JP3220444B2 (en) 1999-09-10 2000-09-08 Construction method of rotary press-fit steel pipe pile

Country Status (1)

Country Link
JP (1) JP3220444B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518050B2 (en) 2009-04-10 2014-06-11 新日鉄住金エンジニアリング株式会社 Steel pipe pile and steel pipe pile construction method
JP2011069073A (en) * 2009-09-24 2011-04-07 Ohbayashi Corp Steel pipe pile and penetration method therefor
JP2019112927A (en) * 2017-12-24 2019-07-11 佐伯 英一郎 Ground anchor and construction evaluation method of the same, and tension method of the same

Also Published As

Publication number Publication date
JP2001146741A (en) 2001-05-29

Similar Documents

Publication Publication Date Title
US6394704B1 (en) Screwed steel pile and method of construction management therefor
US6879947B1 (en) Method for optimizing the bit design for a well bore
JP3220444B2 (en) Construction method of rotary press-fit steel pipe pile
JP3643303B2 (en) Rotary press-fit steel pipe pile
JP3176892B2 (en) Construction management method of rotary press-fitting pile
JP2000080649A (en) Rotary press-in pile and execution control method therefor
JPH07305587A (en) Consolidation type auger screw for drilled earth
JP3905294B2 (en) Rotating penetrating steel pipe pile
JPH11303069A (en) Screwed type steel pipe pile with blade and execution method therefor
JPH11247189A (en) Spliced pile structure made of steel pipe
JP3123472B2 (en) Screw-in type steel pipe pile
JP3586861B2 (en) Rotary penetration steel pipe pile
JPH09100532A (en) Bearing pile and tip member for bearing pile
JP2512503B2 (en) Drill steel pipe pile
JP2004316421A (en) Rotary press-in steel pipe pile
JP2005113612A (en) Method for construction management of rotary press-in steel pipe pile
JPH07311133A (en) Method and instrument for measuring hardness of ground
JP3031247B2 (en) Screw-in type steel pipe pile
JPH11269875A (en) Rotation embedding open end pile
JPH1136295A (en) Screw type steel pipe pile
JP2004278306A (en) Rotary press-in steel pipe pile
JP2003074057A (en) Execution method of steel pipe pile
JP2895677B2 (en) Ground hardness judgment device
JP4408757B2 (en) Embedded pile
JPH01146011A (en) Drill steel pipe pile

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

R151 Written notification of patent or utility model registration

Ref document number: 3220444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees