JP3219558B2 - Density meter for cryogenic fluids - Google Patents

Density meter for cryogenic fluids

Info

Publication number
JP3219558B2
JP3219558B2 JP17666193A JP17666193A JP3219558B2 JP 3219558 B2 JP3219558 B2 JP 3219558B2 JP 17666193 A JP17666193 A JP 17666193A JP 17666193 A JP17666193 A JP 17666193A JP 3219558 B2 JP3219558 B2 JP 3219558B2
Authority
JP
Japan
Prior art keywords
container
electrode
density
hydrogen
slush hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17666193A
Other languages
Japanese (ja)
Other versions
JPH0735670A (en
Inventor
忍 松尾
勝秀 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17666193A priority Critical patent/JP3219558B2/en
Publication of JPH0735670A publication Critical patent/JPH0735670A/en
Application granted granted Critical
Publication of JP3219558B2 publication Critical patent/JP3219558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は密度の不均一な極低温流
体(例えばスラッシュ水素等)貯槽などに設置される極
低温流体用密度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic fluid density meter installed in a storage tank of a cryogenic fluid having a non-uniform density (for example, slush hydrogen).

【0002】[0002]

【従来の技術】密度の不均一な極低温流体として固体水
素と液体水素が混合したスラッシュ水素がある。図4は
従来の密度計を設置したスラッシュ水素製造試験用デュ
ワーの1例である。1はスラッシュ水素容器であり、中
空二重構造となっており、真空断熱層2により周囲から
スラッシュ水素3への侵入熱を低減する。4は液体窒素
容器であり、スラッシュ水素容器1と同様に真空断熱層
5を持つ中空二重構造である。
2. Description of the Related Art As a cryogenic fluid having a non-uniform density, there is slush hydrogen in which solid hydrogen and liquid hydrogen are mixed. FIG. 4 shows an example of a conventional slash hydrogen production test dewar equipped with a density meter. Reference numeral 1 denotes a slush hydrogen container, which has a hollow double structure, and reduces heat entering the slush hydrogen 3 from the surroundings by a vacuum heat insulating layer 2. Reference numeral 4 denotes a liquid nitrogen container, which has a hollow double structure having a vacuum heat insulating layer 5 like the slush hydrogen container 1.

【0003】液体窒素容器4内には液体窒素6が充填さ
れており、周囲常温部からの侵入熱は液体窒素6の蒸発
潜熱として吸収されるため、内部に設置されたスラッシ
ュ水素容器1への侵入熱が低減される。スラッシュ水素
容器1及び液体窒素容器4はスラッシュ水素の製造状況
を観察するため透明なガラス製となっている。また輻射
熱を低減するため外表面には、観察窓となる部分を除い
てアルミ蒸着など輻射率をくする加工が施されてい
る。液体窒素容器4はゴムバンド8により支持台7に固
定されている。また、スラッシュ水素容器1はゴムバン
ド10により上部フランジ9に固定され、上部フランジ
9はロッド11により支持台7に固定されている。
[0003] The liquid nitrogen container 4 is filled with liquid nitrogen 6, and since the heat of invasion from the ambient room temperature is absorbed as latent heat of vaporization of the liquid nitrogen 6, the liquid nitrogen 6 is supplied to the slush hydrogen container 1 installed inside. Intrusion heat is reduced. The slush hydrogen container 1 and the liquid nitrogen container 4 are made of transparent glass for observing the production state of slush hydrogen. Also on the outer surface to reduce radiation heat, the aluminum deposition such emissivity except where the observation window make lower processing is given. The liquid nitrogen container 4 is fixed to the support 7 by a rubber band 8. The slush hydrogen container 1 is fixed to an upper flange 9 by a rubber band 10, and the upper flange 9 is fixed to a support 7 by a rod 11.

【0004】12はシールド板であり、上部フランジ9
からスラッシュ水素容器1への侵入熱を低減する。13
は液体水素供給用の配管、14は真空引き用の配管であ
る。
Reference numeral 12 denotes a shield plate, and the upper flange 9
The heat that enters the slush hydrogen container 1 from the slush hydrogen container 1 is reduced. 13
Is a pipe for supplying liquid hydrogen, and 14 is a pipe for evacuation.

【0005】スラッシュ水素は真空引き用の配管14を
図示しない真空ポンプに接続し、スラッシュ水素容器1
内部を間欠的に減圧、昇圧することにより製造される
(間欠減圧法)。15は攪拌機、16は攪拌機駆動用の
モーターであり、間欠減圧法により生成された固体水素
と液体水素をかき混ぜ、シャーベット状のスラッシュ水
素を製造する。20は静電容量型密度計用電極であり、
支持ロッド23により上部フランジ9から釣り下げら
れ、スラッシュ水素3中に設置される。
[0005] The slush hydrogen vessel 14 is connected to a vacuum pump (not shown) via a vacuum pump 14 and a slush hydrogen container 1 is provided.
It is manufactured by intermittently depressurizing and increasing the pressure inside (intermittent depressurization method). Reference numeral 15 denotes a stirrer, and 16 denotes a motor for driving the stirrer, which stirs solid hydrogen and liquid hydrogen generated by an intermittent depressurization method to produce sherbet-like slush hydrogen. Reference numeral 20 denotes an electrode for a capacitance type density meter,
It is hung from the upper flange 9 by the support rod 23 and installed in the slush hydrogen 3.

【0006】次に、図4に示す従来の密度計としての
電容量型密度計の詳細構造を図基づき説明する
[0006] Next, will be described with reference to FIG. 5 a detailed structure of the electrostatic capacitance type density meter as a conventional densitometer shown in FIG.

【0007】上下に絶縁体製の保持枠21a、21bが
あり、その間に対向する電極20a、20bが鉛直に配
置される。保持枠21a、21bは固定ロッド22a、
22bで電極を挟むように固定される。上部の保持枠2
1aは支持ロッド23にてスラッシュ水素容器1の上部
フランジ9に釣り下げられる。
There are holding frames 21a and 21b made of an insulator on the upper and lower sides, and opposed electrodes 20a and 20b are vertically arranged therebetween. The holding frames 21a, 21b are fixed rods 22a,
It is fixed so as to sandwich the electrode at 22b. Upper holding frame 2
1 a is suspended by the support rod 23 on the upper flange 9 of the slush hydrogen container 1.

【0008】電極20a、20bには図示しないリード
線が接続されており、交流電圧が印加され、発生する交
流電流が測定される。
[0008] Lead wires (not shown) are connected to the electrodes 20a and 20b, and an AC voltage is applied to measure the generated AC current.

【0009】以下密度の計測法について述べる。The method for measuring the density will be described below.

【0010】電極20a、20b間に挟まれたスラッシ
ュ水素3の誘電率をε、静電容量をCとすると次式が成
立する。
When the dielectric constant of the slush hydrogen 3 sandwiched between the electrodes 20a and 20b is ε, and the capacitance is C, the following equation is established.

【0011】C=Coε+Cd (1) ここにCo、Cdは電極形状などによって定まる常数。C = Coε + Cd (1) Here, Co and Cd are constants determined by the electrode shape and the like.

【0012】一方、静電容量Cを持つ電極間に周波数f
の交流電圧Eを印加すると、流れる交流電流Iとの間に
は式(2)が成立する。
On the other hand, the frequency f between electrodes having a capacitance C
When the AC voltage E is applied, Expression (2) is established between the AC voltage E and the flowing AC current I.

【0013】C=I/(2πfE) (2) 従って静電容量Cが求められ、式(1)を変形した ε=(C−Cd)/Co (3) により誘電率εが求められる。C = I / (2πfE) (2) Accordingly, the capacitance C is obtained, and the dielectric constant ε is obtained from ε = (C−Cd) / Co (3) obtained by modifying the equation (1).

【0014】密度ρは、誘電率εと密度ρの関係として
予め求められている物性値表、またはClausius−Mossot
tiの式 ρ=(pε−1)/(ε+2) (4) を用いて求めることができる。なおpは常数であり、お
よそ1となる。
The density ρ is obtained by a physical property table previously obtained as a relationship between the dielectric constant ε and the density ρ, or Clausius-Mossot.
It can be obtained using the equation ti = ρ (pε−1) / (ε + 2) (4) Note that p is a constant and is approximately 1.

【0015】[0015]

【発明が解決しようとする課題】上記従来の装置には次
のような問題点があった。 (1)スラッシュ水素の様な固相と液相の混合物では、
密度の大きい固相は密度の小さい液相より下方へ沈降
し、攪拌機で攪拌しても完全に一様な状態にすることは
困難である。従って密度が不均一となるため、局所的な
密度を計測することになり全体の平均密度を計測するこ
とができない。 (2)周囲からスラッシュ水素等極低温流体への輻射熱
を遮断するため、ガラス製容器の外表面はアルミ蒸着等
により輻射率をくする必要があり、製造コストが高く
なる。
The above-mentioned conventional apparatus has the following problems. (1) For a mixture of solid and liquid phases, such as slush hydrogen,
A solid phase having a high density sediments below a liquid phase having a low density, and it is difficult to obtain a completely uniform state even by stirring with a stirrer. Therefore, since the density becomes non-uniform, the local density is measured, and the average density of the whole cannot be measured. (2) for blocking radiant heat from the ambient to the slush hydrogen and the like cryogenic fluids, the outer surface of the glass container is a radiation rate should make lower by aluminum deposition or the like, the manufacturing cost is high.

【0016】[0016]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0017】すなわち、極低温流体用密度計として、密
度の不均一な極低温流体を入れる容器と、上記容器の内
側面に沿い対向して配置され、外面が輻射率の低い鏡面
状にされるとともに、下辺が上記容器の低面近くに配置
され、上辺が上記容器に入れられた極低温流体の液面下
近くに配置された第1電極および第2電極とを設け、上
記容器内の極低温流体の大部分が上記第1電極と第2電
極との間に存在するようにした。
That is, as a cryogenic fluid density meter, a container for storing a cryogenic fluid having a non-uniform density and a mirror surface having a low emissivity are disposed so as to face each other along the inner surface of the container.
And the lower side is located near the lower surface of the container
Is, the upper side is provided with a first electrode and a second electrode disposed near the subsurface of the cryogenic fluid is placed in the container, most of the cryogenic fluid in the vessel and the first electrode second It was made to exist between two electrodes.

【0018】[0018]

【作用】上記手段において、容器内に入れられた密度の
不均一な極低温流体は、その密度に応じて変る誘電率を
持っている。従って第1電極と第2電極間の静電容量が
計られると、第1電極と第2電極間に存在する流体の平
均誘電率、すなわち平均密度に対応した値が得られる。
つまり流体の平均密度が計測できる。
In the above means, the cryogenic fluid of non-uniform density contained in the container has a dielectric constant which varies according to the density. Therefore, when the capacitance between the first electrode and the second electrode is measured, a value corresponding to the average dielectric constant of the fluid existing between the first electrode and the second electrode, that is, the average density is obtained.
That is, the average density of the fluid can be measured.

【0019】第1電極と第2電極の形状・配置は、それ
らの間に容器内の流体の大部分が存在するようになって
いるため、容器内の流体全体のより正確な平均密度が計
測できる。また、容器の内側面に沿い対向して配置さ
れ、上辺が容器に入れられた極低温流体の液面近くに配
置され、下辺が容器の底面近くに配置された電極の外面
が鏡面上に磨かれたものにされているため、輻射率が低
く外部から極低温流体へ侵入する侵入熱が低減される。
さらには、容器外面にアルミ蒸着を行なうなどして輻射
率を低くするための加工を施す必要がなく、コスト低減
を計ることができる。
The shape and arrangement of the first electrode and the second electrode are such that most of the fluid in the container exists between them, so that a more accurate average density of the entire fluid in the container can be measured. it can. It is also located facing the inside of the container.
And the upper side is placed near the level of the cryogenic fluid in the container.
Outer surface of the electrode, with the lower side placed near the bottom of the container
Has a low emissivity because it is polished to a mirror surface.
In addition, the amount of heat entering the cryogenic fluid from outside can be reduced.
In addition, radiant radiation such as aluminum deposition on the outer surface of the container
No need to perform processing to lower the rate, reducing costs
Can be measured.

【0020】[0020]

【実施例】本発明の一実施例を図1〜図3により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS.

【0021】なお、従来例で説明した部分は、同一の番
号をつけ説明を省略し、この発明に関する部分を主体に
説明する。
The parts described in the prior art will be assigned the same reference numerals and their explanation will be omitted, and the parts related to the present invention will be mainly described.

【0022】図1にて、スラッシュ水素3を入れるスラ
ッシュ水素容器1の底面aと同じ形状の外面を持つ絶縁
体製の下部保持台31が、容器1の下面に接して設けら
れる。その上に電極30が配置される。電極30の上辺
にはリング状の絶縁体製の上部保持枠32が配置され
る。
In FIG. 1, a lower holder 31 made of an insulator having an outer surface having the same shape as the bottom surface a of the slush hydrogen container 1 for storing the slush hydrogen 3 is provided in contact with the lower surface of the container 1. The electrode 30 is disposed thereon. A ring-shaped upper holding frame 32 made of an insulator is arranged on the upper side of the electrode 30.

【0023】電極30部の詳細を図2、図3に示す。第
1電極30a、第2電極30bは、その外側面が、容器
1の内側面に沿う形状に作られる。そしてこれらは対向
するとともに外側面が容器1の内側面に接して配置さ
れ、下部保持台31と上部保持枠32で固定される。
The details of the electrode 30 are shown in FIGS. The outer surfaces of the first electrode 30a and the second electrode 30b are formed along the inner surface of the container 1. These are opposed to each other, and the outer surface thereof is disposed in contact with the inner surface of the container 1, and is fixed by the lower holding table 31 and the upper holding frame 32.

【0024】このとき対向辺間には所定の隙間cがあけ
られている。また電極30a、30bの下辺dはできる
だけ容器1の底面aに近く、上辺eは、容器内のスラッ
シュ水素3の液面bの下面近くにあるよう配置される。
At this time, a predetermined gap c is provided between the opposing sides. The lower sides d of the electrodes 30a and 30b are arranged as close to the bottom surface a of the container 1 as possible, and the upper side e is arranged near the lower surface of the liquid level b of the slush hydrogen 3 in the container.

【0025】また電極30a、30bの外面は鏡面状に
磨かれている。
The outer surfaces of the electrodes 30a and 30b are mirror-polished.

【0026】さらに第1電極30aと第2電極30bは
図示しない静電容量計につながれる。
Further, the first electrode 30a and the second electrode 30b are connected to a capacitance meter (not shown).

【0027】以上において、第1電極30aと第2電極
30bの静電容量が計られると、第1電極30aと第2
電極30b間に存在するスラッシュ水素3の平均誘電率
ε、すなわち平均密度に対応した値が得られる。つまり
スラッシュ水素3の平均密度が測定できる。
In the above, when the capacitance of the first electrode 30a and the second electrode 30b is measured, the first electrode 30a and the second
An average dielectric constant ε of the slush hydrogen 3 existing between the electrodes 30b, that is, a value corresponding to the average density is obtained. That is, the average density of the slush hydrogen 3 can be measured.

【0028】第1電極30aと第2電極30bの形状・
配置は、それらの間に容器1内の流体の大部分が存在す
るようになっているため、混合状態が悪くても、容器1
内のスラッシュ水素3のより正確な平均密度が測定でき
る。
The shape of the first electrode 30a and the second electrode 30b
The arrangement is such that the majority of the fluid in the container 1 is present between them, so that even if the mixing is poor, the container 1
More accurate average density of the slush hydrogen 3 in the inside can be measured.

【0029】また電極30a、30b間には隙間cをあ
けているため、外部から内部のスラッシュ水素3を観察
できる。さらに電極30a、30bの外面が鏡面状にな
っているため、輻射率がく外部からの侵入熱が低減さ
れる。また別途アルミ蒸着などする必要がなく、コスト
低減が計れる。
Since a gap c is provided between the electrodes 30a and 30b, the inside slush hydrogen 3 can be observed from the outside. Further electrodes 30a, the outer surface of the 30b because that is a mirror-like, heat entering from outside emissivity rather low is reduced. In addition, there is no need to separately deposit aluminum or the like, so that cost can be reduced.

【0030】[0030]

【発明の効果】以上に説明したように、本発明によれ
ば、容器内の密度の不均一な極低温流体全体の平均密度
をよりよく測定することができ、しかも、容器外面の輻
射率を低くする加工が不要になり、精度く安価な
度計を提供することができる。
As described above, according to the present invention, the average density of the entire cryogenic fluid having a non-uniform density in the container can be better measured, and the radiation of the outer surface of the container can be improved.
Processing to lower the Iritsu becomes unnecessary, it is possible to provide an inexpensive dense <br/> meter accuracy rather high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の全体構成断面図である。FIG. 1 is a cross-sectional view of the overall configuration of an embodiment of the present invention.

【図2】同実施例の電極部の分解図である。FIG. 2 is an exploded view of the electrode unit of the embodiment.

【図3】同実施例の電極部の斜視図である。FIG. 3 is a perspective view of an electrode unit of the embodiment.

【図4】従来例の全体構成断面図である。FIG. 4 is a sectional view of the entire configuration of a conventional example.

【図5】同従来例の電極部の詳細図である。FIG. 5 is a detailed view of an electrode section of the conventional example.

【符号の説明】[Explanation of symbols]

1 スラッシュ水素容器 2,5 真空断熱層 3 スラッシュ水素 4 液体窒素容器 6 液体窒素 7 支持台 8,10 ゴムバンド 9 上部フランジ 11 上部フランジ支持ロッド 12 シールド板 13 液体水素供給配管 14 真空引き口 15 攪拌機 16 モーター 20,20a,20b 密度計用電極 21a,21b 保持枠 22a,22b 固定ロッド 23 密度計支持ロッド 30,30a,30b 密度計用電極 31 下部保持台 32 上部保持枠 DESCRIPTION OF SYMBOLS 1 Slash hydrogen container 2,5 Vacuum insulation layer 3 Slash hydrogen 4 Liquid nitrogen container 6 Liquid nitrogen 7 Support stand 8,10 Rubber band 9 Upper flange 11 Upper flange support rod 12 Shield plate 13 Liquid hydrogen supply pipe 14 Vacuum inlet 15 Stirrer DESCRIPTION OF SYMBOLS 16 Motor 20, 20a, 20b Density meter electrode 21a, 21b Holding frame 22a, 22b Fixed rod 23 Density meter support rod 30, 30a, 30b Density meter electrode 31 Lower holding table 32 Upper holding frame

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 9/00 - 9/36 G01N 27/22 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 9/00-9/36 G01N 27/22 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密度の不均一な極低温流体を入れる容器
と、上記容器の内側面に沿い対向して配置され、外面が
鏡面状にされるともに、下辺が上記容器の低面近くに
置され、上辺が上記極低温流体の液面下近くに配置され
第1電極および第2電極とを備え、上記容器内の極低
温流体の大部分が上記第1電極と第2電極との間に存在
するように構成されてなることを特徴とする極低温流体
用密度計。
1. A and container holding a density uneven cryogenic fluids, are disposed opposite along the inner surface of the container, the outer surface is
Both are in mirror-like, the lower side arrangement near the low surface of the container
The upper side is located near the liquid level of the cryogenic fluid.
A first electrode and a second electrode, wherein the majority of the cryogenic fluid in the container is present between the first electrode and the second electrode. Density meter for fluids.
JP17666193A 1993-07-16 1993-07-16 Density meter for cryogenic fluids Expired - Fee Related JP3219558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17666193A JP3219558B2 (en) 1993-07-16 1993-07-16 Density meter for cryogenic fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17666193A JP3219558B2 (en) 1993-07-16 1993-07-16 Density meter for cryogenic fluids

Publications (2)

Publication Number Publication Date
JPH0735670A JPH0735670A (en) 1995-02-07
JP3219558B2 true JP3219558B2 (en) 2001-10-15

Family

ID=16017495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17666193A Expired - Fee Related JP3219558B2 (en) 1993-07-16 1993-07-16 Density meter for cryogenic fluids

Country Status (1)

Country Link
JP (1) JP3219558B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123238B1 (en) * 2011-08-26 2012-03-21 한국지질자원연구원 Apparatus for measuring the amount of snow cover and snowfall using electrical conduction
JP7489490B2 (en) * 2020-12-09 2024-05-23 京セラ株式会社 Air bubble rate sensor, flow meter using same, and cryogenic liquid transfer pipe
WO2022124375A1 (en) * 2020-12-09 2022-06-16 京セラ株式会社 Bubble fraction sensor, flowmeter using same, and cryogenic liquid transfer pipe

Also Published As

Publication number Publication date
JPH0735670A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
Delenclos et al. Assessment of calibration procedures for accurate determination of thermal parameters of liquids and their temperature dependence using the photopyroelectric method
Parsons Hydrogen evolution on platinum electrodes. The heats of activation for the component reactions
EP0634649A2 (en) Method and apparatus for thermal conductivity measurements
Lyon et al. Tunneling models and the experimental thermal expansivities of fused silica and poly (methylmethacrylate)(PMMA) below 4 K
JP3219558B2 (en) Density meter for cryogenic fluids
Tu et al. Dynamics of Pyrrolidinium-Based Ionic Liquids under Confinement. I. Analysis of Dielectric Permittivity
Ema et al. Some aspects of recent improvements of temperature-modulated calorimeter
Menon Dynamic specific heat of a supercooled liquid
Eckardt et al. Surface tension and surface entropy of superfluid He 4
Gokhshtein The estance method
Scales Specific Heat of LiF and KI at Low Temperatures
Thijsse The dielectric constant of SF6 near the critical point
Fisch et al. Absolute measurement of the critical behavior of the smectic elastic constant of bilayer and monolayer smectic-A liquid crystals on approaching the transition to the nematic phase
Cehelnik et al. Time dependent fluorescence polarization studies using isotropic and liquid crystal media
Blažková et al. On cavitation in liquid helium in a flow due to a vibrating quartz fork
CN2314365Y (en) Vacuum low temperature making apparatus for optic measure of semiconductor
Nakamura et al. Solubility of 4He in liquid 3He at very low temperatures
Yano et al. Vortex-dynamics study of the frequency dependence of the superfluid onset temperature
Rhodes et al. Impedance measurements using ionic contacts on purified and doped silver bromide crystals
Swayne et al. Surface conductivity and disjoining pressure of common black films stabilized with sodium dodecyl sulfate
Niklasson et al. Li diffusion in Ti oxyfluoride films: Thermal activation energy and jump length derived from impedance spectroscopy
JPH02226044A (en) Specimen cell
Volz et al. Plastic third sound resonator and low‐temperature pressure gauge
Szekely et al. The effect of temperature on capacitance changes in an oscillating model membrane
Webster et al. Adsorbed films of 3 He-4 He mixtures: A systematic experimental study

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710

LAPS Cancellation because of no payment of annual fees