JP3218262U - Heating medium heating device - Google Patents

Heating medium heating device Download PDF

Info

Publication number
JP3218262U
JP3218262U JP2018002856U JP2018002856U JP3218262U JP 3218262 U JP3218262 U JP 3218262U JP 2018002856 U JP2018002856 U JP 2018002856U JP 2018002856 U JP2018002856 U JP 2018002856U JP 3218262 U JP3218262 U JP 3218262U
Authority
JP
Japan
Prior art keywords
air
heat medium
mixture
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018002856U
Other languages
Japanese (ja)
Inventor
信義 三島
信義 三島
Original Assignee
信義 三島
信義 三島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信義 三島, 信義 三島 filed Critical 信義 三島
Priority to JP2018002856U priority Critical patent/JP3218262U/en
Application granted granted Critical
Publication of JP3218262U publication Critical patent/JP3218262U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

【課題】太陽熱エネルギを熱媒体を介して高温空気エネルギに変換する熱媒体加熱装置及び空気タービン発電機を回し電気エネルギに変換する太陽熱発電装置を提供する。
【解決手段】内部に熱媒体となるセラミック粒子、金属酸化物または耐熱金属の固体粒子と、窒素ガスまたは空気との混合物を通過させ太陽熱によって上記混合物を加熱する熱媒体加熱管集合体3と、熱媒体加熱管集合体3に連なり加熱された上記混合物を蓄える貯蔵タンクと、上記貯蔵タンクに連なり上記貯蔵タンクから供給される加熱された上記混合物にて空気圧縮機31または空気送風機から供給される空気を加熱する空気加熱器21とを有する。上記混合物を上記貯蔵タンクから空気加熱器21へ送出させるのを停止するとともに熱媒体加熱管集合体3へ切り替えて送出させるダンパー機構を有する。
【選択図】図1
A heat medium heating device that converts solar heat energy into high-temperature air energy through a heat medium and a solar power generation device that turns an air turbine generator to convert into electric energy are provided.
A heat medium heating tube assembly 3 that passes a mixture of ceramic particles, metal oxides or refractory metal solid particles serving as a heat medium, and nitrogen gas or air inside and heats the mixture by solar heat; Supplyed from the air compressor 31 or the air blower in the storage tank that stores the heated mixture connected to the heating medium heating tube assembly 3 and the heated mixture supplied from the storage tank connected to the storage tank. And an air heater 21 for heating air. It has a damper mechanism for stopping the delivery of the mixture from the storage tank to the air heater 21 and switching to the heat medium heating tube assembly 3 for delivery.
[Selection] Figure 1

Description

本考案は、太陽熱エネルギを熱媒体を介して高温空気エネルギに変換する熱媒体加熱装置に関する。または、空気タービン発電機を回し電気エネルギに変換する太陽熱発電装置に関する。  The present invention relates to a heating medium heating device that converts solar thermal energy into high-temperature air energy through a heating medium. Or it is related with the solar thermal power generation device which turns an air turbine generator and converts it into an electrical energy.

小粒体の固体と気体を混合した混相熱媒体を用いて太陽熱エネルギを電気エネルギに変換する装置について、先行例、特開2011−214425号では、小粒の固体と気体を混ぜ合わせた混相熱媒体供給装置と太陽熱受熱装置を使った太陽熱発電装置が説明されている。さらに該混相熱媒体を使ってボイラ発生蒸気を過熱する蒸気過熱熱交換器が記載されている。  Regarding a device for converting solar thermal energy into electric energy using a mixed phase heat medium in which small solids and gas are mixed, in the previous example, Japanese Patent Application Laid-Open No. 2011-214425, mixed phase heat medium supply in which small solids and gas are mixed A solar thermal power generation apparatus using the apparatus and a solar heat receiving apparatus is described. Furthermore, a steam superheat heat exchanger for superheating boiler generated steam using the mixed phase heat medium is described.

さらに別の太陽光集光型太陽熱発電装置の先行例(実用新案登録第3170751号参照)では、高温熱媒体を得るために高い鉄塔等に多数の太陽熱受熱器を設け、そこに多量の圧力液体の熱媒体、例えば液体空気や液体窒素を移送する事が開示されている。液体空気や液体窒素の熱媒体は他種類の熱媒体よりも高価である。また、この種の熱媒体の低温温度と高圧圧力を常に管理する必要があり運用性が複雑化する。  In a preceding example of another solar concentrating solar power generator (see Utility Model Registration No. 3170751), a large number of solar heat receivers are provided on a high steel tower or the like to obtain a high-temperature heat medium, and a large amount of pressure liquid is provided there. It is disclosed that a heat medium such as liquid air or liquid nitrogen is transferred. Liquid air and liquid nitrogen heat media are more expensive than other types of heat media. Moreover, it is necessary to always manage the low temperature and high pressure of this type of heat medium, which complicates operability.

また、発電機を駆動するタービンとして従来の蒸気タービンを用いず、空気タービンを使用した太陽熱発電装置を開示した先行例としては特許6320228号がある。  Japanese Patent No. 6320228 discloses a solar power generation apparatus that uses an air turbine without using a conventional steam turbine as a turbine for driving a generator.

特開2011−214425号 公報JP 2011-214425 A 実用新案登録第3170751号 公報Utility Model Registration No. 3170751 特許6320228号 公報Japanese Patent No. 6320228

先行例(特許文献1)で示された混相熱媒体を用いた太陽熱発電装置では、気体として窒素ガスまたは空気が紹介されている。固気比率(固体粒子/輸送用気体の重量比)が5倍から100倍の個体粒子として、セラミック粒子や金属粒子を使うことが開示されているが太陽熱をいかに多く効率的に受熱させるかという具体的な太陽熱加熱装置の説明がなされていない。また、この固体粒子を使ってボイラ発生蒸気をいかに過熱して加熱蒸気を作り、蒸気タービン発電機を駆動して発電するのか具体的な実施例が示されていない。さらに、太陽熱を蓄熱する装置についての記載がなく、急に太陽熱が雲に遮断された場合や、早朝や夕暮れ時に太陽の直達日射強度が低下した場合の太陽熱集熱装置の対応手段が説明されていない。  In the solar thermal power generation apparatus using the mixed phase heat medium shown in the preceding example (Patent Document 1), nitrogen gas or air is introduced as the gas. It is disclosed that ceramic particles and metal particles are used as solid particles having a solid-gas ratio (solid particle / transport gas weight ratio) of 5 to 100 times, but how much solar heat is received efficiently. No specific solar heating device is described. Further, there is no specific example of how to use the solid particles to superheat boiler-generated steam to produce heated steam and drive a steam turbine generator to generate electricity. Furthermore, there is no description about a device for storing solar heat, and there are explanations of measures to be taken by solar heat collectors when solar heat is suddenly interrupted by clouds or when the direct solar radiation intensity decreases early in the morning or at dusk. Absent.

また、太陽熱熱媒体用として広く採用されている硝酸ナトリウム60%重量比と硝酸カリウム40%重量比からなる溶融塩は、熱媒油に比較して安価である。しかし、その凝固温度が約240℃程度と常温大気温度15℃よりもはるかに高い温度であるため、発電の有無にかかわらず常に溶融塩と接する機器、溶融塩貯蔵タンクや付属溶融塩配管や付属溶融塩移送ポンプ、等の接触液面温度を常に約250℃以上に保つ必要がある。よって、溶融塩加熱装置と溶融塩貯蔵装置と移送装置の温度管理設備費用の増加や本設備の運転費用の増加をもたらす。  Moreover, the molten salt which consists of 60% weight ratio of sodium nitrate and 40% weight ratio of potassium nitrate, which is widely adopted for solar heat heating medium, is less expensive than heat medium oil. However, since its solidification temperature is about 240 ° C, which is much higher than the ambient temperature of 15 ° C, it is always in contact with molten salt regardless of whether or not power is generated, molten salt storage tank, attached molten salt piping and accessories. It is necessary to always maintain the contact liquid surface temperature of a molten salt transfer pump or the like at about 250 ° C. or higher. Therefore, the temperature management equipment cost of the molten salt heating device, the molten salt storage device, and the transfer device is increased, and the operation cost of the equipment is increased.

さらに、硝酸ナトリウム系溶融塩を流通させる装置や系統の保温装置が万一故障した場合、凝固した該溶融塩を除去する緊急対応費用が膨大となるリスクがある。  Furthermore, in the unlikely event that a device for circulating sodium nitrate-based molten salt or a system heat retention device fails, there is a risk that the emergency response cost for removing the solidified molten salt becomes enormous.

本考案では上記課題を解決するために熱媒体として、従来の液相の合成油や溶融塩に代えて、小粒形状の固相の金属酸化物と気相の気体を混ぜた混合物流体を混相熱媒体として活用する。例えば、砂の主成分である二酸化ケイ素またはステンレス鋼球のような小粒な混合物と空気とを混合した混合熱媒体を太陽熱で加熱する熱媒体加熱管集合体を考案した。  In the present invention, in order to solve the above-mentioned problems, a mixed fluid obtained by mixing a small-sized solid-phase metal oxide and a gas-phase gas is used as a heat medium instead of a conventional liquid-phase synthetic oil or molten salt. Use as a medium. For example, a heat medium heating tube assembly has been devised in which a mixed heat medium in which a small mixture such as silicon dioxide or a stainless steel ball, which is the main component of sand, is mixed with air is heated by solar heat.

また、この混合物を蓄熱材として使用して従来の溶融塩熱媒体に比較して、安価で実用的な蓄熱発電ができる太陽熱発電装置を考案した。  In addition, a solar thermal power generation device has been devised that can use this mixture as a heat storage material and can perform heat storage power generation at low cost and practically compared to a conventional molten salt heat medium.

さらに、この混相熱媒体を太陽熱で加熱する際の熱媒体移動速度と移動量を調整する機能を有する熱媒体加熱管を考案した。さらに高温に加熱された混相熱媒体で空気を加熱する空気加熱装置を考案した。  Furthermore, a heat medium heating tube having a function of adjusting the heat medium moving speed and the moving amount when the mixed phase heat medium is heated by solar heat has been devised. Furthermore, an air heating apparatus was devised that heats air with a mixed phase heat medium heated to a high temperature.

さらに、発電機を駆動するタービン装置として水蒸気を熱サイクル物質として活用する一般的な蒸気タービン発電装置でなく、この高温熱媒体から中温中圧に加熱加圧された空気を使って空気タービン発電機を駆動して発電する太陽熱発電装置を考案した。  Furthermore, it is not a general steam turbine power generator that uses steam as a heat cycle material as a turbine device for driving a generator, but an air turbine generator that uses air heated and pressurized from this high-temperature heat medium to an intermediate temperature and medium pressure. Devised a solar thermal power generation device that generates electricity by driving.

本考案において空気タービンに導入する適切な空気タービン入口空気圧力と空気温度は、約絶対圧力6kg/cmと約600℃が一例である。この圧力と温度の空気を得るための空気加熱装置と太陽熱から高温熱媒体を生み出す熱媒体加熱装置の圧力と温度は、この発電用空気タービンの入口空気圧力と温度によって決まる。すなわち、各種配管や各機器の圧力損失や温度損失を考慮して各関連機器の仕様点の圧力と温度が従属的に決定される。Examples of suitable air turbine inlet air pressure and air temperature to be introduced into the air turbine in the present invention are an absolute pressure of about 6 kg / cm 2 and about 600 ° C. The pressure and temperature of the air heating device for obtaining the air of this pressure and temperature and the heat medium heating device for producing a high-temperature heat medium from solar heat are determined by the inlet air pressure and temperature of the power generation air turbine. In other words, the pressure and temperature at the specification points of each related device are subordinately determined in consideration of pressure loss and temperature loss of various pipes and devices.

本考察によれば高効率で経済的な太陽熱発電が可能となる。熱媒体として上述した混相熱媒体を採用し経済性を達成する。さらに、空気タービン発電熱サイクルを太陽熱発電装置に適用して、その汎用性を向上させる。  According to this consideration, high-efficiency and economical solar power generation becomes possible. The above-described mixed phase heat medium is adopted as the heat medium to achieve economic efficiency. Furthermore, the versatility is improved by applying an air turbine power generation thermal cycle to a solar thermal power generation apparatus.

また、適切な空気タービン入口圧力と温度を選定し、実用的かつ経済的な熱サイクルを選定した。砂の主成分である二酸化ケイ素の融点は約1000℃程度と高く、その温度は常温15℃から600℃の高温に変化してもこの熱媒体が溶解し凝固する心配はない。よって熱媒体の凝固対策が不要となり太陽熱発電装置の信頼性が増加する。  In addition, an appropriate air turbine inlet pressure and temperature were selected, and a practical and economical thermal cycle was selected. The melting point of silicon dioxide, which is the main component of sand, is as high as about 1000 ° C., and even if the temperature is changed from room temperature 15 ° C. to 600 ° C., there is no concern that the heat medium dissolves and solidifies. This eliminates the need for measures against solidification of the heat medium and increases the reliability of the solar thermal power generation apparatus.

さらに、本考案は蒸気タービン発電方式でなく空気タービン発電方式なので、蒸気タービン復水器用の多量の冷却水が必要なくなり、冷却水確保が難しい砂漠地域でも太陽熱発電装置の設置が可能となる。  Furthermore, since the present invention is an air turbine power generation system rather than a steam turbine power generation system, a large amount of cooling water for the steam turbine condenser is not required, and a solar thermal power generation apparatus can be installed even in a desert area where it is difficult to secure cooling water.

本考案の実施形態である太陽熱発電装置全体を示す概略図である。It is the schematic which shows the whole solar thermal power generation device which is embodiment of this invention. 一般的な空気温度−エントロピ線図に本考案に係る空気タービンの熱サイクル(圧縮→加熱→膨張→冷却:▲1▼→▲2▼、▲2▼→▲3▼、▲3▼→▲4▼、▲4▼→▲1▼)を示す図であるThe general air temperature-entropy diagram shows the thermal cycle of the air turbine according to the present invention (compression → heating → expansion → cooling: (1) → (2), (2) → (3), (3) → (4) ▼, ▲ 4 ▼ → ▲ 1 ▼) 本考案の実施形態の熱媒体加熱装置全体を示す概略図である。It is the schematic which shows the whole heat-medium heating apparatus of embodiment of this invention. 本考案の実施形態の空気加熱器全体を示す概略図である。It is the schematic which shows the whole air heater of embodiment of this invention. 本考案の混相熱媒体加熱管内部に設けた板状抵抗体を構成する仕切板支持管と仕切板を示す概略図である。It is the schematic which shows the partition plate support tube and partition plate which comprise the plate-shaped resistor provided in the mixed phase heat-medium heating tube of this invention. 本考案の混相熱媒体加熱管内部に設けた棒状抵抗体と熱媒体加熱管を示す概略図である。It is the schematic which shows the rod-shaped resistor provided in the inside of the mixed phase heat-medium heating tube of this invention, and a heat-medium heating tube.

この考案の太陽熱発電装置の実施形態を説明する。図1は太陽熱発電装置全体構成を示す概略図である。  An embodiment of the solar thermal power generation apparatus of this device will be described. FIG. 1 is a schematic diagram showing the overall configuration of the solar thermal power generation apparatus.

本実施形態では太陽熱媒体として砂の主成分である二酸化ケイ素等の小粒な低温熱媒体23を移送して、これらの小粒な低温熱媒体23を熱媒体加熱管集合体3にて加熱する。熱媒体加熱管集合体3は、外形が約20mm〜50mm程度の加熱管が数十本から数百本並べたボイラ火炉の伝熱管壁のような構造である。後で述べる熱媒体加熱管は直立または傾斜勾配を持たせてもよい。本集合体は太陽光を太陽光反射鏡2により本集合体の外面に照射して内部を通過する低温熱媒体23を加熱する、伝熱管からなる受熱壁である。熱媒体加熱管の材質は、一般的に使用されている、ボイラ・熱交換器用合金鋼管と同等である。使用温度により加熱管の材質が決まる。  In the present embodiment, a small low-temperature heat medium 23 such as silicon dioxide, which is the main component of sand, is transferred as the solar heat medium, and the small low-temperature heat medium 23 is heated by the heat medium heating tube assembly 3. The heat medium heating tube assembly 3 has a structure like a heat transfer tube wall of a boiler furnace in which dozens to hundreds of heating tubes having an outer shape of about 20 mm to 50 mm are arranged. The heat medium heating tube described later may have an upright or inclined gradient. This assembly is a heat receiving wall made of a heat transfer tube that heats the low-temperature heat medium 23 that passes through the interior of the assembly by irradiating sunlight onto the outer surface of the assembly with the solar reflector 2. The material of the heat medium heating tube is the same as that of a generally used alloy steel tube for a boiler / heat exchanger. The material of the heating tube is determined by the operating temperature.

太陽1の太陽光を太陽光反射鏡2にて反射して、熱媒体加熱管集合体3内を流下する低温熱媒体23を太陽熱で加熱する。加熱された高温熱媒体29を作り出し、この高温熱媒体29を空気加熱器21に導入して、空気加熱管27を介して空気を加熱し、約600℃に加熱された加熱空気を発生させる。この空気を空気タービン34に送り、空気タービン34を駆動して空気タービン発電機36を回転して発電する。  The sunlight of the sun 1 is reflected by the sunlight reflecting mirror 2, and the low-temperature heat medium 23 flowing down in the heat medium heating tube assembly 3 is heated by solar heat. A heated high-temperature heat medium 29 is created, the high-temperature heat medium 29 is introduced into the air heater 21, and the air is heated through the air heating tube 27 to generate heated air heated to about 600 ° C. This air is sent to the air turbine 34, and the air turbine 34 is driven to rotate the air turbine generator 36 to generate electricity.

熱媒体低温下部タンク14に貯まった低温熱媒体23は、第1熱媒体移送装置13によって駆動される第2熱媒体移送通路26を通過した後、第2熱媒体移送装置9よって駆動される第3熱媒体移送通路12にて第1熱媒体加熱管上部連絡通路10まで持ち上げられる。  The low temperature heat medium 23 stored in the heat medium low temperature lower tank 14 passes through the second heat medium transfer passage 26 driven by the first heat medium transfer device 13 and then is driven by the second heat medium transfer device 9. The third heat medium transfer passage 12 is lifted up to the first heat medium heating pipe upper communication passage 10.

この低温熱媒体23は第1熱媒体加熱管上部連絡通路10と第2熱媒体加熱管上部連絡通路11を通過して太陽熱加熱管上部管寄8に分配される。低温熱媒体23は熱媒体加熱管集合体3内を落下して太陽熱加熱管下部管寄4に至る。太陽1の太陽光は太陽光反射鏡2にて熱媒体加熱管集合体3に向けられており、低温熱媒体23は落下しながら加熱され高温熱媒体29に加温される。この低温熱媒体23の落下速度は熱媒体の形状や大きさや重量と加熱管内部に設置された各種抵抗体の形状によって決められる。この高温熱媒体29は下部連絡胴5を経由して熱媒体高温下部タンク6へ導かれ貯蔵される。蓄熱する時間に対応して熱媒体高温下部タンク6の容量が決まる。  The low-temperature heat medium 23 passes through the first heat medium heating pipe upper communication passage 10 and the second heat medium heating pipe upper communication passage 11 and is distributed to the solar heat heating pipe upper header 8. The low-temperature heat medium 23 falls in the heat medium heating tube assembly 3 and reaches the solar heating tube lower pipe 4. Sunlight of the sun 1 is directed to the heat medium heating tube assembly 3 by the solar reflector 2, and the low temperature heat medium 23 is heated while being dropped and heated to the high temperature heat medium 29. The falling speed of the low-temperature heat medium 23 is determined by the shape, size, and weight of the heat medium and the shapes of various resistors installed inside the heating tube. The high temperature heat medium 29 is guided to the heat medium high temperature lower tank 6 via the lower connecting cylinder 5 and stored. The capacity of the heat medium high temperature lower tank 6 is determined in accordance with the heat storage time.

この高温熱媒体29は第4熱媒体移送装置16と第4熱媒体移送通路18により、熱媒体高温下部タンク6を出て、さらに第5熱媒体移送通路19に達する。この後、高温熱媒体29は、第5熱媒体移送装置25によって駆動される第5熱媒体移送通路19を経て第6熱媒体移送通路20に持ち上げられ、空気加熱器上部室17に移送される。固体熱媒体を垂直に持ち上げる機構としてはバケット式ベルトコンベア等が適している。  The high temperature heat medium 29 leaves the heat medium high temperature lower tank 6 and reaches the fifth heat medium transfer path 19 by the fourth heat medium transfer device 16 and the fourth heat medium transfer path 18. Thereafter, the high-temperature heat medium 29 is lifted to the sixth heat medium transfer path 20 through the fifth heat medium transfer path 19 driven by the fifth heat medium transfer device 25 and transferred to the air heater upper chamber 17. . A bucket type belt conveyor or the like is suitable as a mechanism for lifting the solid heat medium vertically.

空気加熱器上部室17に貯まった約600℃の高温熱媒体29は斜めに勾配をもった空気加熱管27内を滑りながら移動し、熱交換を行い、空気を加熱する。  The high-temperature heat medium 29 having a temperature of about 600 ° C. stored in the upper chamber 17 of the air heater moves while sliding in the air heating pipe 27 having an oblique gradient, exchanges heat, and heats the air.

空気加熱器21内に設けられた空気加熱管27は後述する熱媒体加熱管内に設置した仕切版22や仕切棒63のような抵抗体を設けず、固体熱媒体の移動速度を空気加熱管27の勾配を設定してすべり移動速度を調整する。固体熱媒体の大きさや材質によって空気加熱管27の外径寸法は決まるが、約20mm〜約50mm程度である。熱媒体から円形管状の空気加熱管27の伝熱管を通じて高温熱媒体29の熱エネルギが空気に伝えられる。空気加熱管27の必要本数は定格伝熱量に対応して約数十本から数百本程度必要になる。  The air heating tube 27 provided in the air heater 21 is not provided with a resistor such as the partition plate 22 and the partition rod 63 installed in the heat medium heating tube described later, and the moving speed of the solid heat medium is set to the air heating tube 27. Set the slope of and adjust the sliding speed. The outer diameter of the air heating tube 27 is determined by the size and material of the solid heat medium, but is about 20 mm to about 50 mm. The heat energy of the high-temperature heat medium 29 is transferred from the heat medium to the air through the heat transfer tube of the circular tubular air heating tube 27. The required number of air heating tubes 27 is about several tens to several hundreds corresponding to the rated heat transfer amount.

空気加熱管27を出た冷却された低温熱媒体23は空気加熱器下部室28に集められ、空気加熱器下部室出口通路15を通過して空気加熱器下部低温タンク14に貯められる。  The cooled low temperature heat medium 23 exiting the air heating pipe 27 is collected in the air heater lower chamber 28, passes through the air heater lower chamber outlet passage 15, and is stored in the air heater lower temperature tank 14.

貯められた低温熱媒体23は第6熱媒体移送通路26を通過して第1熱媒体移送装置13にて第3熱媒体移送通路12に送られ再度太陽1の太陽光を集熱して加熱される。  The stored low-temperature heat medium 23 passes through the sixth heat medium transfer passage 26, is sent to the third heat medium transfer passage 12 by the first heat medium transfer device 13, and is again heated by collecting sunlight from the sun 1. The

空気圧縮機31により、吸い込み大気を圧縮比6程度に圧縮して、その温度が約245℃程度に昇温した空気をさらに加熱し、約600℃の高温空気に加熱する。約600℃に加熱された高温空気は空気タービン入口管33を通過して空気タービン34に送られ空気タービン34を駆動し空気タービン発電機36を回して発電する。空気タービン34の排気空気は空気タービン排気ダクト35を通過して大気に戻る。  The air compressed by the air compressor 31 is compressed to a compression ratio of about 6, and the air whose temperature is raised to about 245 ° C. is further heated to high temperature air of about 600 ° C. The hot air heated to about 600 ° C. passes through the air turbine inlet pipe 33 and is sent to the air turbine 34 to drive the air turbine 34 and rotate the air turbine generator 36 to generate electricity. Exhaust air from the air turbine 34 passes through the air turbine exhaust duct 35 and returns to the atmosphere.

日中雲で太陽の陰りが生じた場合、太陽からの直達日射強度が低下する。そのような場合、高温熱媒体温度検出器68から高温熱媒体29の温度が熱媒体移送装置駆動制御装置69に伝わり、高温熱媒体29の温度が設定値以下に低下したことを同上制御装置が検知する。その時、高温熱媒体ダンパー70を閉めて再循環ダンパー71を開ける。高温熱媒体29の経路を、第4熱媒体移送通路18から第7熱媒体移送通路61に切り替え操作を行い、空気加熱器21側から熱媒体加熱管集合体3側へ高温熱媒体29の流れ方向を切り替えて、熱媒体加熱管集合体3と、熱媒体加熱管下部管寄4と、下部連絡胴5と熱媒体高温下部タンク6等の高温部分の温度低下を防止する。  When the sun is shaded by daytime clouds, the direct solar radiation intensity from the sun decreases. In such a case, the temperature of the high-temperature heat medium 29 is transmitted from the high-temperature heat medium temperature detector 68 to the heat medium transfer device drive control device 69, and the controller as described above indicates that the temperature of the high-temperature heat medium 29 has decreased below the set value. Detect. At that time, the high-temperature heat medium damper 70 is closed and the recirculation damper 71 is opened. The path of the high temperature heat medium 29 is switched from the fourth heat medium transfer passage 18 to the seventh heat medium transfer passage 61, and the flow of the high temperature heat medium 29 from the air heater 21 side to the heat medium heating tube assembly 3 side. The direction is switched to prevent a temperature drop in high temperature portions such as the heat medium heating tube assembly 3, the heat medium heating tube lower header 4, the lower connecting cylinder 5, the heat medium high temperature lower tank 6, and the like.

同様に急な降雨などにより太陽熱が遮断された場合は、発電機36を系統から分離するとともに、高温熱媒体29の経路を、第4熱媒体移送通路18から第7熱媒体移送通路61に切り替え高温熱媒体の循環移動操作を行う。このような操作により、高温熱媒体29の熱を、自然冷却を始めた熱媒体集合体3へ送り熱媒体集合体3を暖気して、次回の再起動に備えた循環待機運用が可能となる。  Similarly, when the solar heat is cut off due to sudden rain or the like, the generator 36 is separated from the system, and the path of the high-temperature heat medium 29 is switched from the fourth heat medium transfer path 18 to the seventh heat medium transfer path 61. Perform circulating movement of high-temperature heat medium. By such an operation, the heat of the high-temperature heat medium 29 is sent to the heat medium assembly 3 that has started natural cooling, and the heat medium assembly 3 is warmed to enable a circulation standby operation in preparation for the next restart. .

固体熱媒体が一部熱媒体タンク内で集合して固定された場合等、熱媒体循環移動量が減少して循環量が不足してきた場合は、固体粒子タンク64に貯蔵された小粒の固体熱媒体を、固体粒子ロータリバルブ65により払い出す。そして、固体粒子移送通路66を経由して熱媒体低温下部タンク14に個体熱媒体が補給される。また固体熱媒体の経年劣化により、低温熱媒体23が系外ブロー系統(特に図示せず)により系外排出された場合は、小粒の固体熱媒体の補給系統から補給される。  When the amount of circulation of the heat medium decreases due to a decrease in the amount of circulation of the heat medium, such as when some of the solid heat medium is gathered and fixed in the heat medium tank, the small solid heat stored in the solid particle tank 64 The medium is dispensed by a solid particle rotary valve 65. Then, the solid heat medium is supplied to the heat medium low temperature lower tank 14 via the solid particle transfer passage 66. Further, when the low-temperature heat medium 23 is discharged outside the system by an outside system (not shown) due to aging deterioration of the solid heat medium, it is replenished from the supply system for small solid heat medium.

本考案によれば、空気圧縮機31の代わりに一般的な空気送風機(特に図示せず)を用いて発電用でなく一般産業用に熱媒体加熱器7と空気加熱器21を用いて高温空気を供給できる。このとき、一般的に、汎用されている送風機出口圧力は約ゲージ圧力1kg/cm以下、温度は約60℃以下である。この空気を空気加熱器21の圧縮機出口管32に送れば、空気加熱器21の入口空気管側に送られるので、最大600℃程度の高温空気が得られる。使用先の温度と圧力条件に合わせて熱媒体加熱器7と空気加熱器21の容量を決める。このように、使用先の必要空気温度に対応して約100℃以上600℃程度の高温空気が太陽熱から得られる。According to the present invention, instead of the air compressor 31, a general air blower (not shown) is used to generate high temperature air using the heat medium heater 7 and the air heater 21 for general industries, not for power generation. Can supply. At this time, generally, the blower outlet pressure, which is generally used, is about 1 kg / cm 2 or less, and the temperature is about 60 ° C. or less. If this air is sent to the compressor outlet pipe 32 of the air heater 21, it is sent to the inlet air pipe side of the air heater 21, so that high-temperature air of about 600 ° C. at maximum is obtained. The capacities of the heat medium heater 7 and the air heater 21 are determined according to the temperature and pressure conditions of the use destination. Thus, high-temperature air of about 100 ° C. or more and about 600 ° C. is obtained from solar heat corresponding to the required air temperature at the use destination.

図2は空気の温度(単位は絶対温度K)とエントロピ(kJ/(kg・K))線図上に本考案の空気タービンの空気熱サイクルを記載した図である。標準的な大気圧力と温度は約0.1MPa絶対圧力、288K(=15℃)であるので、圧縮機31の入口空気状態は図2の▲1▼点で示される。適切な圧縮比を約6とすると圧縮後の圧縮温度は約245℃(約518K)の▲2▼点で示される。同様に、この圧縮空気を太陽熱で加熱後は約600℃(=875K)に上昇して▲3▼点で示される。  FIG. 2 is a diagram showing the air heat cycle of the air turbine of the present invention on the air temperature (unit: absolute temperature K) and entropy (kJ / (kg · K)) diagram. Since the standard atmospheric pressure and temperature are about 0.1 MPa absolute pressure and 288 K (= 15 ° C.), the inlet air state of the compressor 31 is indicated by point (1) in FIG. When an appropriate compression ratio is about 6, the compression temperature after compression is indicated by point (2) of about 245 ° C. (about 518 K). Similarly, after this compressed air is heated by solar heat, it rises to about 600 ° C. (= 875 K) and is indicated by point (3).

加熱空気は空気タービン34内を通過して仕事をし、大気圧まで膨張した状態は▲4▼点で示される。この4点で囲まれた面積は仕事エネルギとして取り出し可能なエネルギ量を示しており化石燃料を燃焼して高温ガスを作らなくても、圧力が約絶対圧力6kg/cm、温度約600℃程度の空気熱サイクルで発電動力エネルギを太陽熱エネルギから取り出せる事を示している。また、圧縮比を6とし圧縮機31の効率を約82%程度とした場合、圧縮機出口空気温度と圧力は約518K(=245℃)、絶対圧力0.6MPa程度である。同様に膨張空気タービン34の効率を約88%程度とすると、膨張後の空気タービン排気温度と圧力は約560K(=287℃)、絶対圧力0.01MPa程度である。The state in which the heated air passes through the air turbine 34 to work and is expanded to atmospheric pressure is indicated by a point (4). The area surrounded by these four points indicates the amount of energy that can be extracted as work energy. Even if fossil fuel is not burned to produce high-temperature gas, the pressure is about 6 kg / cm 2 and the temperature is about 600 ° C. It is shown that the power generation energy can be extracted from the solar thermal energy in the air thermal cycle. When the compression ratio is 6 and the efficiency of the compressor 31 is about 82%, the compressor outlet air temperature and pressure are about 518 K (= 245 ° C.) and the absolute pressure is about 0.6 MPa. Similarly, when the efficiency of the expanded air turbine 34 is about 88%, the air turbine exhaust temperature and pressure after expansion are about 560 K (= 287 ° C.) and the absolute pressure is about 0.01 MPa.

図3において(a)は熱媒体加熱装置の全体概略図、(b)は熱媒体加熱装置の周囲に設置された多数の太陽光反射板2と熱媒体加熱装置との平面配置例を示す。熱媒体は熱媒体加熱管上部管寄8に集められ、熱媒体加熱管集合体3内部を落下しながら集光した太陽熱にて加熱される。  3A is an overall schematic diagram of the heat medium heating device, and FIG. 3B is a plan arrangement example of a large number of solar reflectors 2 and the heat medium heating device installed around the heat medium heating device. The heat medium is collected in the upper portion 8 of the heat medium heating tube, and is heated by the collected solar heat while falling inside the heat medium heating tube assembly 3.

熱媒体の落下速度や落下方向は図5に示す熱媒体加熱管7内部に設けた仕切版22の構造と寸法と段数により制御される。これらは低温熱媒体23の形状や固体重量や材質により決まる。すなわち、仕切板のモデル実験等により仕切板の仕様を選定できる。  The falling speed and direction of the heat medium are controlled by the structure, dimensions, and number of steps of the partition plate 22 provided in the heat medium heating pipe 7 shown in FIG. These are determined by the shape, solid weight, and material of the low-temperature heat medium 23. That is, the specification of the partition plate can be selected by a model experiment of the partition plate.

熱媒体加熱管下部管寄4に集合した高温熱媒体29は下部連絡胴5を通過して熱媒体高温下部タンク6に一旦貯められる。貯める量は蓄熱量に対応して選定する。高温熱媒体29は第4熱媒体移送通路18内を通過して、空気加熱器21に移送される。熱媒体加熱装置基礎40の高さは、第4熱媒体移送通路18内を高温熱媒体29が重力勾配と第4熱媒体移送装置16からの移送動力を考慮して決定される。  The high temperature heat medium 29 gathered in the heat medium heating pipe lower pipe 4 passes through the lower connecting cylinder 5 and is temporarily stored in the heat medium high temperature lower tank 6. The amount to be stored is selected according to the amount of heat stored. The high temperature heat medium 29 passes through the fourth heat medium transfer passage 18 and is transferred to the air heater 21. The height of the heat medium heating device base 40 is determined in consideration of the gravity gradient of the high temperature heat medium 29 in the fourth heat medium transfer passage 18 and the transfer power from the fourth heat medium transfer device 16.

図5において(a)は仕切板22、(b)は仕切板支持管60、(c)は小粒の低温熱媒体23の落下速度と方向を変える為に熱媒体加熱管7の内部に仕切板支持管60とそれにより支持された仕切板22を4枚として3段に設置した例を示す。混相熱媒体中の固体粒子の形状や大きさや重量により、仕切板22の枚数と段数が選定される。一例として、固気比が高い重いステンレス鋼球を固相熱媒体とした場合は、熱媒体加熱管7内を落下する速度が速くなるので、仕切板22の枚数を増加する。一方、固気比が低い二酸化ケイ素を主成分とする砂のような小粒な固体の場合は仕切板22の枚数または段数を減らすほうが良い。  In FIG. 5, (a) is the partition plate 22, (b) is the partition plate support tube 60, (c) is the partition plate inside the heat medium heating tube 7 in order to change the falling speed and direction of the small-sized low-temperature heat medium 23. An example is shown in which the support pipe 60 and the partition plates 22 supported by the support pipe 60 are arranged in three stages as four sheets. The number of plates 22 and the number of steps are selected according to the shape, size, and weight of the solid particles in the mixed phase heat medium. As an example, when a heavy stainless steel ball having a high solid-gas ratio is used as the solid phase heat medium, the speed of dropping in the heat medium heating tube 7 is increased, and therefore the number of partition plates 22 is increased. On the other hand, in the case of a small solid such as sand whose main component is silicon dioxide having a low solid-gas ratio, it is better to reduce the number of plates 22 or the number of steps.

図6は熱媒体加熱管7の上部入口から低温熱媒体23を導入し小粒の低温熱媒体23の落下速度と方向を変化させる為に熱媒体加熱管7の内部に仕切棒63を6段に設置した例を示す。仕切棒63の本数と段数は加熱管の大きさと、混相熱媒体の形状と大きさにより選定される。一例として、固気比が高い重いステンレス鋼球を固相熱媒体とした場合は、熱媒体加熱管7内を落下する速度が速くなるので、仕切棒63の段数を増加する。一方、固気比が低い二酸化ケイ素を主成分とする砂のような小粒な固体の場合は仕切棒63の段数を減らすほうが良い。  FIG. 6 shows that the low temperature heat medium 23 is introduced from the upper inlet of the heat medium heating pipe 7 and the partition rod 63 is arranged in six stages inside the heat medium heating pipe 7 in order to change the falling speed and direction of the small-sized low temperature heat medium 23. An example of installation is shown. The number and the number of the partition bars 63 are selected according to the size of the heating tube and the shape and size of the mixed phase heat medium. As an example, when a heavy stainless steel ball having a high solid-gas ratio is used as the solid phase heat medium, the speed of dropping in the heat medium heating tube 7 is increased, and thus the number of stages of the partition rod 63 is increased. On the other hand, in the case of a small solid such as sand mainly composed of silicon dioxide having a low solid-gas ratio, it is better to reduce the number of steps of the partition bar 63.

固体熱媒体の形状は球体が基本であるが四角形や三角形の形状も可能である。また、その寸法は約1mm、約5mm、約10mm程度の寸法である。寸法約1mm未満の固体熱媒体は、小さすぎて、直立した熱媒体加熱管7が詰まる恐れがあり適さない。また、約10mmを超える大きな熱媒体は直立した熱媒体加熱管7と仕切板22または仕切棒63との隙間に詰まり、熱媒体加熱管7が詰まり管が冷却されず過熱され噴破する恐れがあり適さない。  The shape of the solid heat medium is basically a sphere, but may be a quadrilateral or triangular shape. The dimensions are about 1 mm, about 5 mm, and about 10 mm. A solid heat medium having a dimension of less than about 1 mm is not suitable because it is too small and the upright heat medium heating tube 7 may be clogged. In addition, a large heat medium exceeding about 10 mm is clogged in the gap between the upright heat medium heating tube 7 and the partition plate 22 or the partition rod 63, and the heat medium heating tube 7 is clogged, and the tube may be overheated and blown out without being cooled. Not suitable.

固体熱媒体の選別条件として、経済性が重要な選定基準となる。熱媒体加熱管7の内径はせいぜい約15mm〜約50mm程度であり、適合するセラミック系または金属系の固体粒子が大量に安価に製造する点から好ましい。  As a selection condition for the solid heat medium, economy is an important selection criterion. The inner diameter of the heat medium heating tube 7 is at most about 15 mm to about 50 mm, which is preferable from the viewpoint of producing a large amount of suitable ceramic or metal solid particles at a low cost.

熱媒体加熱管7の寸法と固体熱媒体の寸法によっては、加熱管として直立以外の、例えば傾斜加熱管も適用できる。さらに、セラミック系の二酸化ケイ素に代表される固体粒子とステンレス鋼に代表される耐熱金属系の固体粒子を混合した固体熱媒体も適用可能である  Depending on the size of the heat medium heating tube 7 and the size of the solid heat medium, for example, an inclined heating tube other than upright can be applied as the heating tube. Furthermore, a solid heat medium in which solid particles typified by ceramic silicon dioxide and refractory metal solid particles typified by stainless steel are mixed is also applicable.

図4は空気加熱器21の全体概略図を示す。第6熱媒体移送通路20を通過してきた高温熱媒体29は空気加熱器上部室17に流入し、空気加熱管27内を通過しながら、圧縮機出口管32から送られた圧縮空気を加熱する。高温熱媒体29の外形は球形が基本形状である。これが、空気加熱管27内を流下して空気を加熱する。流下速度は空気加熱管27の外形と勾配と高温熱媒体29の外形寸法により決められる。加熱された高温空気は空気タービン入口管33を通過して空気タービン34へ送られる。  FIG. 4 shows an overall schematic diagram of the air heater 21. The high-temperature heat medium 29 that has passed through the sixth heat medium transfer passage 20 flows into the air heater upper chamber 17 and heats the compressed air sent from the compressor outlet pipe 32 while passing through the air heating pipe 27. . The outer shape of the high-temperature heat medium 29 is basically a spherical shape. This flows down in the air heating pipe 27 and heats the air. The flow-down speed is determined by the outer shape and gradient of the air heating tube 27 and the outer size of the high-temperature heat medium 29. The heated hot air passes through the air turbine inlet pipe 33 and is sent to the air turbine 34.

空気を加熱して温度が低下した低温熱媒体23は空気加熱器下部室28に集まり空気加熱器下部室出口通路15を経て熱媒体低温下部タンク14に蓄えられる。  The low temperature heat medium 23 whose temperature has been lowered by heating the air gathers in the air heater lower chamber 28 and is stored in the heat medium low temperature lower tank 14 through the air heater lower chamber outlet passage 15.

以上説明したように、本考案によれば太陽熱エネルギを経済的に、かつ実用的に空気エネルギに変換する熱媒体加熱装置が得られる。さらに、この空気エネルギで空気タービン発電機を回して発電する太陽熱発電装置が得られる。従来の化石燃料を燃焼して蒸気を発生させ蒸気タービン発電機を駆動して発電する火力発電装置でなく、化石燃料を焚かず、太陽熱エネルギを電気エネルギに変換する装置として利用可能である。  As described above, according to the present invention, a heat medium heating device that converts solar thermal energy into air energy economically and practically can be obtained. In addition, a solar thermal power generation apparatus that generates power by rotating the air turbine generator with this air energy is obtained. It can be used as a device that converts solar thermal energy into electric energy without burning fossil fuel, rather than a thermal power generation device that generates steam by burning fossil fuel and driving a steam turbine generator.

1 太陽
2 太陽光反射鏡
3 熱媒体加熱管集合体
4 熱媒体加熱管下部管寄
5 下部連絡胴
6 熱媒体高温下部タンク
7 熱媒体加熱管
8 熱媒体加熱管上部管寄
9 第2熱媒体移送装置
10 第1熱媒体加熱管上部連絡通路
11 第2熱媒体加熱管上部連絡通路
12 第3熱媒体移送通路
13 第1熱媒体移送装置
14 熱媒体低温下部タンク
15 空気加熱器下部室出口通路
16 第4熱媒体移送装置
17 空気加熱器上部室
18 第4熱媒体移送通路
19 第5熱媒体移送通路
20 第6熱媒体移送通路
21 空気加熱器
22 仕切板
23 低温熱媒体
25 第5熱媒体移送装置
26 第6熱媒体移送通路
27 空気加熱管
28 空気加熱器下部室
29 高温熱媒体
30 圧縮機入口ダクト
31 空気圧縮機
32 圧縮機出口管
33 空気タービン入口管
34 空気タービン
35 空気タービン排気ダクト
40 熱媒体加熱装置基礎
60 仕切版支持管
61 第7熱媒体移送通路
62 第5熱媒体移送装置
65 仕切棒
64 固体粒子タンク
65 固体粒子ロータリバルブ
66 固体粒子移送通路
67 低温熱媒体温度検出器
68 高温熱媒体温度検出器
69 熱媒体移送装置駆動制御装置
70 高温熱媒体ダンパー
71 再循環ダンパー
DESCRIPTION OF SYMBOLS 1 Sun 2 Sunlight reflector 3 Heat-medium heating pipe assembly 4 Heat-medium heating pipe lower pipe 5 Lower connection cylinder 6 Heat-medium high temperature lower tank 7 Heat-medium heating pipe 8 Heat-medium heating pipe upper pipe 9 Second heat medium Transfer device 10 First heat medium heating pipe upper communication passage 11 Second heat medium heating pipe upper communication passage 12 Third heat medium transfer passage 13 First heat medium transfer device 14 Heat medium low temperature lower tank 15 Air heater lower chamber outlet passage 16 Fourth heat medium transfer device 17 Air heater upper chamber 18 Fourth heat medium transfer passage 19 Fifth heat medium transfer passage 20 Sixth heat medium transfer passage 21 Air heater 22 Partition plate 23 Low temperature heat medium 25 Fifth heat medium Transfer device 26 Sixth heat medium transfer passage 27 Air heating pipe 28 Air heater lower chamber 29 High temperature heat medium 30 Compressor inlet duct 31 Air compressor 32 Compressor outlet pipe 33 Air turbine inlet pipe 34 Air turbine 35 Empty Air turbine exhaust duct 40 Heat medium heating device base 60 Partition plate support pipe 61 Seventh heat medium transfer passage 62 Fifth heat medium transfer device 65 Partition rod 64 Solid particle tank 65 Solid particle rotary valve 66 Solid particle transfer passage 67 Low temperature heat medium Temperature detector 68 High temperature heat medium temperature detector 69 Heat medium transfer device drive control device 70 High temperature heat medium damper 71 Recirculation damper

Claims (4)

内部に熱媒体となるセラミック粒子、金属酸化物または耐熱金属の固体粒子と、窒素ガスまたは空気との混合物を通過させ太陽熱によって上記混合物を加熱する熱媒体加熱管の集合体と、上記加熱管の集合体に連なり加熱された上記混合物を蓄える貯蔵タンクと、上記貯蔵タンクに連なり上記貯蔵タンクから供給される加熱された上記混合物にて空気圧縮機または空気送風機から供給される空気を加熱する空気加熱器とを有することを特徴とする熱媒体加熱装置。  An assembly of heat medium heating tubes that pass a mixture of ceramic particles, metal oxides or refractory metal solid particles serving as a heat medium, and nitrogen gas or air and heat the mixture by solar heat; and A storage tank that stores the mixture that is heated by being connected to the assembly, and an air heater that heats the air that is supplied from the air compressor or the air blower by the heated mixture that is connected to the storage tank and is supplied from the storage tank. And a heating medium heating device. 上記混合物を上記貯蔵タンクから上記空気加熱器へ送出させるのを停止するとともに上記加熱管集合体へ切り替えて送出させるダンパー機構を有することを特徴とする請求項1記載の熱媒体加熱装置。  2. The heating medium heating device according to claim 1, further comprising a damper mechanism that stops sending the mixture from the storage tank to the air heater and switches the mixture to the heating tube assembly. 上記加熱管は内部に仕切板または仕切棒を有し、加熱管内を落下する上記混合物が落下しながら上記仕切板または仕切棒によりその速度と方向が変化されることによって、上記混合物の温度上昇量を調整するものであることを特徴とする請求項1または請求項2記載の熱媒体加熱装置。  The heating tube has a partition plate or a partition bar inside, and the temperature and amount of the mixture are increased by the speed and direction of the mixture being changed by the partition plate or the partition rod while the mixture falling in the heating tube is dropped. The heating medium heating device according to claim 1 or 2, wherein the heating medium heating device is adjusted. 内部に熱媒体となるセラミック粒子または金属酸化物の固体粒子と窒素ガスまたは空気との混合物を通過させ太陽熱によって上記混合物を加熱する熱媒体加熱管の集合体と、上記加熱管の集合体に連なり加熱された上記混合物を蓄える貯蔵タンクと、空気を所定の圧縮率となるよう圧縮する空気圧縮機と、上記貯蔵タンクに連なり上記貯蔵タンクから供給される加熱された上記混合物にて上記空気圧縮機から供給される圧縮空気を加熱する空気加熱器と、上記空気加熱器から供給される加熱された空気にて駆動される空気タービン発電機とを有することを特徴とする太陽熱発電装置。  An assembly of heating medium heating tubes in which a mixture of ceramic particles or metal oxide solid particles serving as a heating medium and nitrogen gas or air is passed inside and the mixture is heated by solar heat, and the heating tube assembly. A storage tank that stores the heated mixture, an air compressor that compresses air to a predetermined compression ratio, and the air compressor that is connected to the storage tank and supplied from the storage tank. A solar thermal power generation apparatus comprising: an air heater that heats compressed air supplied from an air heater; and an air turbine generator that is driven by the heated air supplied from the air heater.
JP2018002856U 2018-07-05 2018-07-05 Heating medium heating device Expired - Fee Related JP3218262U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002856U JP3218262U (en) 2018-07-05 2018-07-05 Heating medium heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002856U JP3218262U (en) 2018-07-05 2018-07-05 Heating medium heating device

Publications (1)

Publication Number Publication Date
JP3218262U true JP3218262U (en) 2018-10-04

Family

ID=63708537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002856U Expired - Fee Related JP3218262U (en) 2018-07-05 2018-07-05 Heating medium heating device

Country Status (1)

Country Link
JP (1) JP3218262U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986389A (en) * 2019-11-28 2020-04-10 中国科学院电工研究所 Quartz glass tube solar heat absorber with insert
KR20220090238A (en) * 2020-12-22 2022-06-29 주식회사 빛고운 Solar heat storage system and power generation system adopting the storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110986389A (en) * 2019-11-28 2020-04-10 中国科学院电工研究所 Quartz glass tube solar heat absorber with insert
KR20220090238A (en) * 2020-12-22 2022-06-29 주식회사 빛고운 Solar heat storage system and power generation system adopting the storage system

Similar Documents

Publication Publication Date Title
US8707947B2 (en) Solar collector
US11808523B2 (en) Particle-based thermal energy storage systems
US20040244376A1 (en) Systems and methods for generating electrical power from solar energy
US10012216B2 (en) Heater of heat storage agent and brayton solar thermal power unit with heat storage
Flamant et al. Opportunities and challenges in using particle circulation loops for concentrated solar power applications
KR101895563B1 (en) Device for converting heat energy into mechanical energy
JP3218262U (en) Heating medium heating device
EP3245388B1 (en) System for storing thermal energy and method of operating a system for storing thermal energy
CN111075668A (en) Utilize electricity storage system of solid particle heat-retaining
JP2014001641A (en) Solar heat gas turbine power generation system
CN104896764A (en) Solar thermal power generation method and device
CA2814228A1 (en) Device, plant and method with high level of energy efficiency for storing and use of thermal energy of solar origin
CN109959290A (en) Solid heat storage energy-storage system and energy-accumulating power station comprising it
CN107401488A (en) All-weather solar electricity-generating method and system based on whole operation with pressure
JP2016217223A (en) Solar thermal gas turbine power generation system
AU2011384554A1 (en) Solar thermal electric power generation system
CN109883230A (en) Fused salt thermal storage and energy accumulation electricity generation system and energy-accumulating power station comprising it
CN116557244A (en) Photo-thermal energy storage power generation system
CN106499601B (en) Closed helium turbine tower type solar thermal power generation system with heat storage function
WO2017221197A2 (en) A solar energy capture, energy conversion and energy storage system
CN204693854U (en) A kind of solar energy thermal-power-generating device
WO2019011309A1 (en) Heat-transfer and heat-storage separation method and system for solar photothermal utilization
Haunstetter et al. Slag as an inventory material for heat storage in a concentrated solar tower power plant: Experimental studies on design and performance of the thermal energy storage
CN102245978B (en) Heat collecting method and heat collecting device for solar heat
EP3308089A1 (en) Heat exchange system with main heat exchange chamber and subsidiary heat exchange chamber and method for exchanging heat by using the heat exchange system

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3218262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees