JP3217535B2 - Low oxygen steel smelting method - Google Patents

Low oxygen steel smelting method

Info

Publication number
JP3217535B2
JP3217535B2 JP09492093A JP9492093A JP3217535B2 JP 3217535 B2 JP3217535 B2 JP 3217535B2 JP 09492093 A JP09492093 A JP 09492093A JP 9492093 A JP9492093 A JP 9492093A JP 3217535 B2 JP3217535 B2 JP 3217535B2
Authority
JP
Japan
Prior art keywords
steel
slag
mass
less
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09492093A
Other languages
Japanese (ja)
Other versions
JPH06287625A (en
Inventor
裕規 後藤
憲一 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09492093A priority Critical patent/JP3217535B2/en
Publication of JPH06287625A publication Critical patent/JPH06287625A/en
Application granted granted Critical
Publication of JP3217535B2 publication Critical patent/JP3217535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、脱酸剤としてAl合金
をほとんど用いず、Si含有量が限定されたTi添加の
低炭素鋼であり、主たる用途は厚板またはパイプであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a Ti-added low carbon steel having a limited Si content and using almost no Al alloy as a deoxidizing agent, and is mainly used for thick plates or pipes.

【0002】[0002]

【従来の技術】近年、海洋構造物、船舶、ラインパイプ
等の高級鋼に要求される材質特性はますます厳しくなっ
ている。特に溶接部における低温靱性の抜本的改善が望
まれる。これに対してTiを主成分とした主に5μm以
下の微小な酸化物を鋼材中に均一に分散させることによ
り、溶接後の冷却過程においてこれらを核にオーステナ
イト粒内に数多くの微小なフェライトを生成させ、溶接
熱影響部の結晶粒を実効的に微細化することにより優れ
た靱性を得る鋼材の溶製方法が特開昭60−7015号
公報に示されている。
2. Description of the Related Art In recent years, material properties required for high-grade steels such as marine structures, ships, and line pipes have become increasingly severe. In particular, drastic improvement of low-temperature toughness in a weld is desired. On the other hand, by dispersing fine oxides mainly composed of Ti and mainly 5 μm or less uniformly in the steel material, many fine ferrites are formed in the austenite grains using these as nuclei in the cooling process after welding. Japanese Patent Application Laid-Open No. Sho 60-7015 discloses a method for producing a steel material which can be formed to obtain excellent toughness by effectively refining the crystal grains of the weld heat affected zone.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Si含
有量が0.10mass%より高くなると溶接時に島状
マルテンサイトが生成しやすくなる。応力下、寒冷地域
の低温下等の厳しい環境で使用する鋼材ではこの島状マ
ルテンサイトが問題となるために、Si含有量を0.1
0mass%より低くすることが必要となる。また、こ
の鋼材では粒内フェライトの生成からTi含有量の下限
値とAl含有量の上限値が、また硬質のTi炭化物の析
出の抑制の観点からTi含有量の上限値が規定され、各
々Ti:0.005〜0.020mass%とAl:
0.003mass%以下の成分範囲が必要となる。
However, when the Si content is higher than 0.10 mass%, island-like martensite tends to be generated during welding. In steel materials used in harsh environments such as under stress and low temperatures in cold regions, this island-like martensite becomes a problem.
It is necessary to make it lower than 0 mass%. In addition, in this steel material, the lower limit of the Ti content and the upper limit of the Al content are determined from the formation of intragranular ferrite, and the upper limit of the Ti content is specified from the viewpoint of suppressing precipitation of hard Ti carbide. : 0.005 to 0.020 mass% and Al:
A component range of 0.003 mass% or less is required.

【0004】この鋼材を溶製するにあたり脱酸元素であ
るAl、Si、Tiの含有量が低いため酸素が上昇する
傾向となる。転炉スラグは酸化成分の(%FeO)を含
有し、通常転炉吹錬後の出鋼時に取鍋内へ不可避的に混
入する。脱酸元素の含有量が少ない低Al、低Si含有
の溶鋼では流出した転炉スラグのFeOの還元が不十分
で、取鍋スラグの(%FeO)が高く、溶鋼の酸素が高
くなる。鋼材の酸素が上昇すると割れ発生の起点となる
10μmより大きい酸化物の量が増加し、靱性が悪化
し、特に酸素が0.0025mass%を超えると材質
の低下が顕著となる。したがって、これらの鋼材では酸
素含有量を低下する必要があり、具体的には酸素を0.
0025mass%以下にする必要がある。
When the steel material is melted, oxygen tends to increase due to low contents of Al, Si and Ti which are deoxidizing elements. The converter slag contains an oxidizing component (% FeO), and is usually inevitably mixed into a ladle during tapping after converter blowing. In molten steel containing low Al and low Si containing a small amount of deoxidizing elements, the reduction of FeO in the converter slag flowing out is insufficient, the (% FeO) of the ladle slag is high, and the oxygen of the molten steel is high. When the oxygen of the steel material increases, the amount of oxide larger than 10 μm, which is the starting point of crack generation, increases, and the toughness deteriorates. In particular, when the oxygen content exceeds 0.0025 mass%, the deterioration of the material becomes remarkable. Therefore, in these steel materials, it is necessary to reduce the oxygen content.
It needs to be 0025 mass% or less.

【0005】本発明の目的は低Al、低Si、Ti添加
鋼(Al:0.003mass%以下、Si:0.10
mass%以下、Ti:0.005〜0.020mas
s%)でスラグからの再酸化を抑制し、酸素含有量を
0.0025mass%以下にすることである。なお、
本発明ではC含有量が高くなると靱性が低下するために
Cは0.20mass%以下の鋼材を対象とした。
An object of the present invention is to provide a low-Al, low-Si, Ti-added steel (Al: 0.003 mass% or less, Si: 0.10%).
mass% or less, Ti: 0.005 to 0.020mas
s%) to suppress re-oxidation from the slag and reduce the oxygen content to 0.0025 mass% or less. In addition,
In the present invention, since the toughness decreases as the C content increases, C is targeted at a steel material of 0.20 mass% or less.

【0006】[0006]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、C:0.20mass%以下、A
l:0.003mass%以下、Si:0.10mas
s%以下、Ti:0.005〜0.020mass%の
鋼材を製造する方法において、転炉出鋼中で受鋼量が目
標受鋼量の70%を超えてから受鋼完了までの間に、石
灰とともに溶鋼1トン当り0.15〜0.50kgのA
lをスラグ層に添加し、取鍋溶鋼上のスラグのFeOを
還元し、鋼材の酸素を0.0025mass%以下とす
ることを特徴とする低酸素鋼溶製方法である。
The present invention has been made to solve the above-mentioned problems, and has a C: 0.20% by mass or less;
l: 0.003 mass% or less, Si: 0.10 mass
s% or less, Ti: 0.005 to 0.020 mass% in a method for producing a steel material, in which the steel receiving amount exceeds 70% of the target steel receiving amount until the completion of the steel receiving in the converter tapping. 0.15 to 0.50 kg of A per ton of molten steel with lime
1 is added to a slag layer to reduce FeO of the slag on the molten steel in the ladle and reduce the oxygen of the steel material to 0.0025 mass% or less.

【0007】[0007]

【作用】以下に、低Al、低Si、Ti添加鋼(Al:
0.003mass%以下、Si:0.10mass%
以下、Ti:0.005〜0.020mass%)の溶
鋼でスラグからの再酸化を抑制し、酸素含有量を0.0
025mass%以下にする方法を説明する。
In the following, low Al, low Si, Ti added steel (Al:
0.003 mass% or less, Si: 0.10 mass%
Hereinafter, reoxidation from slag is suppressed by molten steel of Ti: 0.005 to 0.020 mass%), and the oxygen content is reduced to 0.0
A method for reducing the content to 025 mass% or less will be described.

【0008】転炉吹錬後、出鋼時に転炉スラグの流出を
極力抑制するが不可避的にスラグは流出し、このスラグ
による再酸化が生じる。したがって、スラグの組成を制
御することによって溶鋼の再酸化を低減することが必要
である。この取鍋スラグの成分は下記の溶鋼のSi量に
大きく支配される。 Si + 2FeO → SiO2 + 2Fe
After blowing the converter, the outflow of converter slag is suppressed as much as possible at the time of tapping, but the slag inevitably flows out, and the slag causes reoxidation. Therefore, it is necessary to reduce the reoxidation of molten steel by controlling the composition of the slag. The composition of the ladle slag is largely controlled by the following Si content of the molten steel. Si + 2FeO → SiO 2 + 2Fe

【0009】すなわち、図1に示すように溶鋼Siの低
下に伴い、酸化源であるスラグ中のFeOの還元が不十
分でスラグの(%FeO)が上昇する。また、(%Fe
O)の上昇によって、図2のように鋳片(鋼材)中の
[O]が増加する。したがって、スラグ中の酸化度であ
る(%FeO)を低減する必要がある。
That is, as shown in FIG. 1, as the molten steel Si decreases, the reduction of FeO in the slag, which is the oxidizing source, is insufficient and the (% FeO) of the slag increases. Also, (% Fe
Due to the rise of O), [O] in the slab (steel material) increases as shown in FIG. Therefore, it is necessary to reduce the degree of oxidation (% FeO) in the slag.

【0010】本発明においてはスラグにAlを添加して
スラグ中のFeOと反応させてFeOを低減するととも
に生成したAl23 はスラグ中に吸収させ溶鋼内への
浸入を極力低減させることによって溶鋼中のAl濃度の
上昇を抑制する。本鋼材ではAlの含有量が0.003
mass%以下であり、溶鋼中のAlの低減は必要であ
る。スラグ中の(%FeO)を低減するために溶鋼への
Alの供給を極力抑制してスラグへAlを供給しスラグ
と反応させることが必要である。
In the present invention, Al is added to the slag to react with FeO in the slag to reduce FeO, and the generated Al 2 O 3 is absorbed in the slag to minimize the penetration into the molten steel. Suppresses the increase in Al concentration in molten steel. In this steel material, the content of Al is 0.003.
mass% or less, and it is necessary to reduce Al in the molten steel. In order to reduce (% FeO) in the slag, it is necessary to suppress the supply of Al to the molten steel as much as possible and supply the Al to the slag to react with the slag.

【0011】転炉出鋼時のスラグの流出は出鋼時の後
半、特に取鍋の受鋼量が目標受鋼量の70%を超えた時
期から完了までの間が顕著である。出鋼時にMn合金を
主に一部Si合金を添加するが、この脱酸生成物と転炉
流出スラグが反応、混在したものが取鍋スラグとなる。
Alの添加はスラグとの反応を優先させるためにスラグ
の流出が顕著となる時期、すなわち取鍋の受鋼量が目標
受鋼量の70%を超えた時期から完了までの間が望まし
い。
The outflow of slag at the time of tapping the converter is remarkable in the latter half of tapping, particularly during the period from when the ladle receiving amount exceeds 70% of the target receiving amount to completion. At the time of tapping, a part of the Mn alloy is mainly added to the Si alloy. The deoxidized product reacts with the slag flowing out of the converter, and the mixed slag becomes ladle slag.
The addition of Al is desirably at a time when the outflow of the slag becomes remarkable in order to give priority to the reaction with the slag, that is, during a period from when the steel receiving amount of the ladle exceeds 70% of the target steel receiving amount to completion.

【0012】Alの添加量は低すぎるとスラグの還元が
不十分であり、多すぎると溶鋼中に多量のアルミナ系介
在物を生成し鋼の清浄性を悪化させ、さらにAl含有量
の増加に伴い溶鋼の溶存酸素が低下し、5μm以下の微
小な酸化物中のTi23 濃度が低下し粒内フェライト
が生成しにくくなる。今回一連の試験でAlの添加量は
0.15〜0.50kg/t−溶鋼が適当であることが
わかった。
If the addition amount of Al is too low, the reduction of slag is insufficient, and if it is too large, a large amount of alumina-based inclusions is formed in the molten steel, deteriorating the cleanliness of the steel, and further increasing the Al content. As a result, the dissolved oxygen in the molten steel decreases, and the concentration of Ti 2 O 3 in minute oxides of 5 μm or less decreases, and it becomes difficult to generate intragranular ferrite. In a series of tests this time, it was found that the addition amount of Al was 0.15 to 0.50 kg / t-molten steel.

【0013】石灰は生成したアルミナの吸収と、スラグ
量の増加に伴うFeO成分の希釈と、スラグ塩基度(=
(%CaO)/(%SiO2 ))の増加に伴うFeOの
活量の低下に伴う酸化度低減のために添加する。石灰の
添加量が少なすぎると生成アルミナの吸収が不足し、石
灰量が増加するとスラグの溶融温度が高くなり吸収能が
低下するため、今回一連の試験で石灰量は1〜3kg/
t−溶鋼が適当であることがわかった。
The lime absorbs the produced alumina, dilutes the FeO component with an increase in the amount of slag, and converts the slag basicity (=
(% CaO) / (% SiO 2 )) is added to reduce the degree of oxidation as the activity of FeO decreases with an increase in (Fe). If the added amount of lime is too small, the absorption of the formed alumina will be insufficient, and if the amount of lime increases, the melting temperature of the slag will increase and the absorption capacity will decrease.
T-molten steel has been found to be suitable.

【0014】[0014]

【実施例】以下実施例を示す。図3は転炉出鋼時のAl
添加量に伴うスラグ中のFeOの変化と鋳造後の鋳片の
酸素とAlの分析値を示す。投入Al量が0.15kg
/t−溶鋼以上となるとスラグのFeOの還元が進行し
ほぼ2mass%以下となり、これに伴い酸素含有量が
25ppm以下を達成できる。しかし、Al添加量が
0.5kg/t−溶鋼を超えると鋼材中のAlが0.0
03mass%を超え、粒内フェライトの生成が悪化し
溶接時の靱性が低下する。
Examples are shown below. Fig. 3 shows Al during tapping
The change of FeO in slag with the addition amount and the analysis values of oxygen and Al of the cast slab are shown. The input Al amount is 0.15kg
When it exceeds / t- molten steel, the reduction of FeO in the slag progresses to approximately 2 mass% or less, and accordingly, the oxygen content can be reduced to 25 ppm or less. However, when the amount of Al added exceeds 0.5 kg / t-molten steel, the Al in the steel material becomes 0.0
When the content exceeds 03 mass%, the formation of intragranular ferrite is deteriorated, and the toughness during welding is reduced.

【0015】図4にAlの添加時期別の取鍋スラグのF
eOを示す。本発明のA法では転炉出鋼中の受鋼量が目
標受鋼量の70%を超え受鋼完了までの間にAlを添加
するとFeOは2mass%以下に低減でき、酸素量2
5ppm以下の鋼材が製造できた。一方、比較法である
B法は転炉出鋼開始から受鋼量が目標受鋼量の70%ま
での間にAlを添加する方法、C法は転炉出鋼開始から
受鋼完了までの間にほぼ均等にAlを添加する方法で、
いずれもFeOは1〜5mass%とスラグのFeOの
還元が不十分であり、結果として酸素が安定して25p
pm以下を達成することはできなかった。Alの添加時
期は、転炉出鋼中、受鋼量が目標受鋼量の70%を超え
受鋼完了までの間が最適であることがわかる。
FIG. 4 shows the F of the ladle slag according to the addition time of Al.
Indicates eO. According to the method A of the present invention, if Al is added during the time when the steel receiving amount during the converter tapping exceeds 70% of the target steel receiving amount and the steel receiving is completed, the FeO can be reduced to 2 mass% or less and the oxygen amount 2
A steel material of 5 ppm or less could be produced. On the other hand, method B, which is a comparative method, is a method in which Al is added during the period from the start of converter tapping until the steel receiving amount reaches 70% of the target steel receiving amount. Al is added almost evenly between them,
In any case, FeO is 1 to 5 mass%, and the reduction of FeO in slag is insufficient.
pm or less could not be achieved. It can be seen that the addition time of Al is optimum during the output of the converter when the steel receiving amount exceeds 70% of the target steel receiving amount and until the steel receiving is completed.

【0016】[0016]

【発明の効果】本発明においては転炉出鋼中の受鋼量が
目標受鋼量の70%を超え受鋼完了までの間に、石灰と
ともに0.15〜0.50kg/t−溶鋼のAlをスラ
グ層に添加し、取鍋溶鋼上のスラグのFeOを還元する
ことにより脱酸元素含有量の低い鋼材でも安定して0.
0025mass%以下の酸素量にすることができた。
According to the present invention, between 0.15 and 0.50 kg / t-molten steel is added together with lime until the steel receiving amount during the tapping of the converter exceeds 70% of the target steel receiving amount and the steel receiving is completed. Al is added to the slag layer to reduce FeO in the slag on the ladle molten steel, so that even steel materials having a low content of deoxidizing elements can be stably added.
The oxygen amount could be reduced to 0025 mass% or less.

【0017】また添加合金として、Alの他にCa−A
l合金あるいはZr合金も考えられるが図5からもわか
るようにAlが最もコストが安く、本発明法によれば低
酸素鋼を低コストで製造することができる。
As an additive alloy, in addition to Al, Ca-A
Although an 1 alloy or a Zr alloy is also conceivable, as can be seen from FIG. 5, Al is the cheapest, and according to the method of the present invention, low-oxygen steel can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】転炉出鋼後の溶鋼Siと取鍋スラグ中の(%F
eO)の関係を示すグラフ
FIG. 1 (% F in molten steel Si and ladle slag after tapping from converter
graph showing the relationship of eO)

【図2】取鍋スラグ中の(%FeO)と鋳片の酸素の関
係を示すグラフ
FIG. 2 is a graph showing the relationship between (% FeO) in ladle slag and oxygen in a slab.

【図3】Al添加量と取鍋スラグ中の(%FeO)、鋳
片の酸素、Al濃度の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the amount of Al added and (% FeO) in ladle slag, oxygen in a slab, and Al concentration.

【図4】Al添加時期と取鍋スラグ中の(%FeO)の
関係を示すグラフ
FIG. 4 is a graph showing the relationship between the time of Al addition and (% FeO) in ladle slag.

【図5】各添加合金のコストを比較したグラフFIG. 5 is a graph comparing the cost of each additive alloy.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.20mass%以下、Al:
0.003mass%以下、Si:0.10mass%
以下、Ti:0.005〜0.020mass%の鋼材
を製造する方法において、転炉出鋼中で受鋼量が目標受
鋼量の70%を超えてから受鋼完了までの間に、石灰と
ともに溶鋼1トン当り0.15〜0.50kgのAlを
スラグ層に添加し、取鍋溶鋼上のスラグのFeOを還元
し、鋼材の酸素を0.0025mass%以下とするこ
とを特徴とする低酸素鋼溶製方法。
1. C: 0.20 mass% or less, Al:
0.003 mass% or less, Si: 0.10 mass%
Hereinafter, in a method of manufacturing a steel material having a Ti content of 0.005 to 0.020 mass%, the lime is supplied from the time when the steel receiving amount exceeds 70% of the target steel receiving amount to the completion of the steel receiving in the converter tapping. And 0.15 to 0.50 kg of Al per ton of molten steel is added to the slag layer to reduce FeO of the slag on the ladle molten steel and reduce the oxygen of the steel material to 0.0025 mass% or less. Oxygen steel smelting method.
JP09492093A 1993-03-31 1993-03-31 Low oxygen steel smelting method Expired - Fee Related JP3217535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09492093A JP3217535B2 (en) 1993-03-31 1993-03-31 Low oxygen steel smelting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09492093A JP3217535B2 (en) 1993-03-31 1993-03-31 Low oxygen steel smelting method

Publications (2)

Publication Number Publication Date
JPH06287625A JPH06287625A (en) 1994-10-11
JP3217535B2 true JP3217535B2 (en) 2001-10-09

Family

ID=14123427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09492093A Expired - Fee Related JP3217535B2 (en) 1993-03-31 1993-03-31 Low oxygen steel smelting method

Country Status (1)

Country Link
JP (1) JP3217535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100860656B1 (en) * 2007-05-28 2008-09-26 현대제철 주식회사 Refining method of molten steel and method of producting extra-low-carbon steel using thereof

Also Published As

Publication number Publication date
JPH06287625A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
KR101574446B1 (en) Boron-containing stainless steel having excellent hot workability and excellent surface properties
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
US3791819A (en) Production of stainless steels
JP3217535B2 (en) Low oxygen steel smelting method
JP2008101259A (en) METHOD FOR PRODUCING MOLTEN STEEL CONTAINING Zr IN ADDITION TO Cr, AND METHOD FOR INHIBITING CLOGGING OF IMMERSED NOZZLE
JP4311097B2 (en) Method for preventing slag flow in converter
JP3230112B2 (en) Low oxygen steel smelting method
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP4544126B2 (en) Manufacturing method of low carbon sulfur free cutting steel
CA1230974A (en) Process for refining of chromium-containing molten steel
JPH06287626A (en) Method for melting low oxygen steel
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JP3158912B2 (en) Stainless steel refining method
RU2201968C2 (en) Method of conversion of vanadium iron
JP3221812B2 (en) Low oxygen steel smelting method
JPH06287627A (en) Method for melting low oxygen steel
JP4082064B2 (en) Method for melting titanium-containing steel
JPH07166227A (en) Method of melting low oxygen steel
JPS62139814A (en) Method for straight forward rolling of hot steel slab
JPH06330146A (en) Method fro reforming slag
JPH07166226A (en) Method of smelting low oxygen steel
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JPH07173515A (en) Decarburization refining method of stainless steel
JPH06128620A (en) Method for adding ca

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees