JP3216651B2 - Distance measuring device - Google Patents

Distance measuring device

Info

Publication number
JP3216651B2
JP3216651B2 JP9564391A JP9564391A JP3216651B2 JP 3216651 B2 JP3216651 B2 JP 3216651B2 JP 9564391 A JP9564391 A JP 9564391A JP 9564391 A JP9564391 A JP 9564391A JP 3216651 B2 JP3216651 B2 JP 3216651B2
Authority
JP
Japan
Prior art keywords
light
distance
light receiving
lens
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9564391A
Other languages
Japanese (ja)
Other versions
JPH04324808A (en
Inventor
修 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP9564391A priority Critical patent/JP3216651B2/en
Publication of JPH04324808A publication Critical patent/JPH04324808A/en
Application granted granted Critical
Publication of JP3216651B2 publication Critical patent/JP3216651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、距離測定装置、詳し
くは、通常のカメラやビデオカメラ等における広視野の
被写体距離を測定する距離測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device and, more particularly, to a distance measuring device for measuring a wide-field subject distance in an ordinary camera, video camera, or the like.

【0002】[0002]

【従来の技術】近年、カメラの自動化が進む中でピント
合わせの技術も、測距(距離測定)しにくい被写体を克
服する方向で発達して来ているが、未だ満足するには至
っておらず、次のようなケースに対する対応が迫られて
いる。即ち、◎ (1)被写体に対して測距用光を投射し、その反射光の
受光信号により測距を行う、いわゆるアクティブ式のオ
ートフォーカス(以下、AFという)で遠距離の被写体
を測距すること◎ (2)撮影画面の中央部以外に存在する被写体を測距す
ること、つまり中抜け防止の測距をすること◎ である。
2. Description of the Related Art In recent years, as camera automation has progressed, focusing techniques have also been developed to overcome subjects that are difficult to measure (distance measurement), but have not yet been satisfied. However, the following cases must be addressed. That is, (1) Distance measurement is performed on a subject at a long distance by so-called active auto focus (hereinafter, referred to as AF) in which distance measurement light is projected on the subject and the distance is measured based on a light receiving signal of the reflected light. (2) To measure the distance of a subject existing outside the central part of the shooting screen, that is, to measure the distance to prevent hollowing out.

【0003】このような要求に対して本出願人も、既に
画面内の複数のポイントに対して測距用光を投射し、測
距を行う際に、受光手段を共用化する技術(マルチA
F)を提案(特開平2ー186313号公報参照)して
いる。
In response to such a demand, the present applicant has already applied a technique (multi-A) in which light for distance measurement is projected to a plurality of points on the screen and distance measurement is performed.
F) (see Japanese Patent Application Laid-Open No. 2-186313).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の技
術には、次のような問題点がある。まず、撮影画面内を
くまなく測距しようとすると、測距用光の投光手段の数
が多くなり、スペースをとるためにカメラのコンパクト
な設計ができなくなり、かつコスト高を招く結果にな
る。また、ズームレンズ付のカメラのように画角が変化
するカメラでは投射する測距用光の数を増加してもカバ
ーすることができなくなる領域が出てくる。そして、こ
れに伴い受光手段もコスト高になる等の問題がある。
However, the above-mentioned prior art has the following problems. First, when trying to measure the distance across the shooting screen, the number of light emitting means of the distance measuring light increases, so that it becomes impossible to make a compact design of the camera because of taking up space, and the cost is increased. . Further, in a camera having a variable angle of view, such as a camera with a zoom lens, an area may not be able to be covered even when the number of projected distance measuring lights is increased. Accordingly, there is a problem that the cost of the light receiving means is increased.

【0005】次に、上記ズームレンズ付カメラにおける
問題を、少し詳しく、図10、11を用いて説明する
と、例えば、図10(A),(B)に示すように、画面
33内の3点を測距する場合、図11に示す如く、投光
レンズ32を介して3つのビーム31a〜31cを被写
体に向けて投光するが、そのビームとビームの間は測距
できない。また、図10(A)に示すように撮影レンズ
のテレ端において適切な間隔でビーム31a〜31cを
投光したとすると、図10(B)に示す如くワイド端に
おいてはビーム位置は中央に集中してしまう結果となっ
てしまう。この問題点を解決しょうとすると、画面内に
たくさんの測距用光を投射する等の手段が考えられる
が、投受光素子の面積や個数の増加を伴い、上述のよう
にコスト高になってしまうことになる。
Next, the problem of the camera with a zoom lens will be described in some detail with reference to FIGS. 10 and 11. For example, as shown in FIGS. When the distance is measured, as shown in FIG. 11, three beams 31a to 31c are projected toward the subject via the light projecting lens 32, but the distance cannot be measured between the beams. If the beams 31a to 31c are projected at appropriate intervals at the telephoto end of the taking lens as shown in FIG. 10A, the beam positions are concentrated at the center at the wide end as shown in FIG. The result. In order to solve this problem, means such as projecting a large amount of distance measuring light into the screen can be considered, but as the area and the number of light emitting and receiving elements increase, the cost increases as described above. Will be lost.

【0006】そこで、特公平1−5971号公報に開示
の測距装置は、測距部を主被写体の近傍で回動走査し、
測距部から得られる最短距離情報に基づいてピント調整
を行うようにして上記の問題を解決したものであった。
Therefore, the distance measuring device disclosed in Japanese Patent Publication No. 1-5971 rotates and scans the distance measuring unit near the main subject.
The above problem has been solved by performing focus adjustment based on the shortest distance information obtained from the distance measuring unit.

【0007】しかし、このような回動部を用いる場合、
余り大型化すると駆動が困難になり、カメラへの組み込
みにも制約が生じる。そこで、その回動部を小型化する
必要があるが、小型化するには投受光レンズも小さくす
る必要があり、また、投受光部の間隔、即ち、基線長も
短くする必要がある。従って、距離検出の範囲が狭くな
ってしまう。この理由を更に詳しく説明すると以下のよ
うになる。図12は、投受光部を有する三角測距方式の
光路図であって、本図に示すように発光体であるIRE
D(赤外発光ダイオード)35から射出された測距用赤
外光は投光レンズ34を介して距離Lにある被写体38
aに投射される。その反射光は受光レンズ36を介して
PSD(半導体位置検出素子)37の上に結像する。受
光レンズ36の光軸位置を基準としたPSD37上の反
射光による入射位置xは、その焦点距離をf、また、投
受光レンズ34、36間の基線長をsとしたとき、 x=s・f/L ………………………………(1) の関係式を満たす。つまり、xによって被写体距離Lが
求められる。
However, when using such a rotating part,
If the size is too large, driving becomes difficult, and there is a restriction in assembling into a camera. Therefore, it is necessary to reduce the size of the rotating portion, but in order to reduce the size, it is necessary to reduce the size of the light emitting and receiving lens, and it is necessary to reduce the interval between the light emitting and receiving portions, that is, the base line length. Therefore, the range of the distance detection becomes narrow. The reason will be described in more detail below. FIG. 12 is a light path diagram of a triangular distance measuring method having a light emitting and receiving unit, and as shown in FIG.
The infrared light for distance measurement emitted from a D (infrared light emitting diode) 35 passes through a light projecting lens 34 to a subject 38 at a distance L.
projected on a. The reflected light forms an image on a PSD (semiconductor position detecting element) 37 via a light receiving lens 36. The incident position x of the reflected light on the PSD 37 with reference to the optical axis position of the light receiving lens 36 is given by: f = the focal length, and s the base line length between the light emitting / receiving lenses 34 and 36; f / L Satisfies the relational expression of (1). That is, the subject distance L is obtained from x.

【0008】また、PSD37の出力光電流I1 、I2
は、 I1 ={(a+x)/t)}・i0 ………………(2) I2 ={{t−(a+x)}/t}・i0 ………………(3) となる。但し、aはPSD37端部から受光レンズ36
の光軸位置までの長さ、tはPSD37の全長、i0 は
総信号光電流をそれぞれ示す。
The output photocurrents I1 and I2 of the PSD 37 are
Is as follows: I1 = {(a + x) / t)}. I0 (2) I2 = {t- (a + x)} / t} .i0 ... (3) However, a is the light receiving lens 36 from the end of the PSD 37.
, T indicates the total length of the PSD 37, and i0 indicates the total signal light current.

【0009】従って、次式が成立し、 {I1 /(I1 +I2 )}=(a+x)/t =a/t+{(s・f)/t}/L……(4) このより関係からIRED35のパワ−や被写体の反射
率に依存するi0 を含まぬ形で距離の逆数1/Lの値を
求めることができる。即ち、(4)式より、 1/L={t/(s・f)}・{I1 /(I1 +I2 )−a/t}…(5) また、(4)式で1/Lが微小に変化した場合を考える
と、s・fが大きく、tが小さいほど、I1 /(I1 +
I2 )の変化が大きく、距離分解能の良いAF装置を提
供できることが解る。
Accordingly, the following equation is established: {I1 / (I1 + I2)} = (a + x) / t = a / t + {(sf) / t} / L (4) The value of the reciprocal 1 / L of the distance can be obtained without including the power i.sub.0 and i.sub.0 depending on the reflectance of the object. That is, from equation (4), 1 / L = {t / (s.f)}. {I1 / (I1 + I2) -a / t} (5) Also, 1 / L is minute in equation (4). When s · f is large and t is small, I1 / (I1 +
It can be seen that an AF device having a large change in I2) and a good distance resolution can be provided.

【0010】一方、被写体が図12の38bの位置にあ
った場合、反射信号光は同図に示されるようにPSD3
7から外れてしまい測距ができなくなってしまう。つま
り、PSD37で検出できる最至近距離Lmin は、投受
光スポットが点であると考えた場合、(1)式より、 Lmin =s・f/(t−a) …………………………(6) 従って、s・fが小さく、tが大きいほど、近くの被写
体までの測距が可能となる。
On the other hand, when the subject is located at the position 38b in FIG.
7 and the distance cannot be measured. That is, the closest distance Lmin that can be detected by the PSD 37 is, assuming that the light emitting and receiving spot is a point, from the equation (1), Lmin = s · f / (ta) …………………. (6) Accordingly, as s · f is smaller and t is larger, distance measurement to a nearby subject becomes possible.

【0011】以上述べたように、s・fを小さくするこ
とは近距離には有効であるが距離分解能の劣化をきた
し、特に、反射信号光が微弱となる遠距離の被写体に対
しては十分な性能が得られない虞があった。
As described above, reducing s · f is effective at short distances, but degrades the distance resolution. In particular, it is sufficient for distant subjects where reflected signal light is weak. Performance may not be obtained.

【0012】本発明の目的は、上記従来技術の問題点を
解決し、コンパクト、且つ、広い距離レンジに亘って高
精度の測距ができ、中抜け防止機能をも有する距離測定
装置を提供することである。
An object of the present invention is to provide a distance measuring apparatus which solves the above-mentioned problems of the prior art, is compact, can measure distances with high accuracy over a wide range of distances, and has a function of preventing hollow holes. That is.

【0013】[0013]

【課題を解決するための手段】本発明による第1の距離
測定装置は、測定画面内を走査するように回動して測距
用光を投光する投光手段と、上記投光手段と一体的に回
動して、被写体距離に関連する光信号を受光する第1の
受光レンズ及び第1のセンサからなる近距離測定用の第
1受光手段と、上記第1の受光手段とは別体に設けら
れ、測定画面内の中央部近傍の被写体距離に関連する光
信号を受光する第2の受光レンズ及び第2のセンサから
なる遠距離測定用の第2受光手段と、上記投光手段の投
光方向を検出し、所定方向への投光時に上記第2の受光
手段を作動させる制御手段と、上記第1、第2の受光手
段の出力に基づいて、確定距離値を決定する演算手段
と、を具備しており、上記投光手段と上記第1受光手段
との基線長をS1、上記投光手段と上記第2受光手段と
の基線長をS2、上記第1の受光レンズの焦点距離をf
1、上記第2の受光レンズの焦点距離をf2とした場合
に、S1・f1<S2・f2の条件を満たすことによっ
て上記第1受光手段に比べて上記第2受光手段の遠距離
側の距離分解能を高くしたことを特徴とする。また、本
発明による第2の距離測定装置は、投光レンズを介して
被写体に測距用光を投射する投光手段と、上記投光レン
ズから第1の基線長S1だけ離間した位置に配置され、
第1の焦点距離f1を有する第1の受光レンズ、及び上
記第1の受光レンズを介して上記測距用光の上記被写体
からの反射光を受光するための全長t1を有する第1の
受光センサを含む第1の受光手段と、上記投光手段と上
記第1の受光手段を一体的に回動させる回動手段と、上
記投光レンズから第2の基線長S2だけ離間した位置に
配置され、第2の焦点距離f2を有する第2の受光レン
ズ、及び上記投光手段が撮影光軸に一致する方向に上記
測距用光を投射したときに上記第2の受光レンズを介し
て上記測距用光の上記被写体からの反射光を受光する
めの全長t2を有する第2の受光センサを含む第2の受
光手段と、上記第1と第2の受光手段の出力に基づい
て、確定距離値を決定する演算手段と、を具備してお
り、上記S1、S2、f1、f2、t1、t2は、S1
・f1/t1<S2・f2/t2の条件を満たしている
ことを特徴とする。また、本発明による第3の距離測定
装置は、第1の基線長S1だけ離間した位置に配置され
た第1、及び、第2のレンズと、上記第1のレンズを介
して測距用光を投射する投光手段と、上記第2のレンズ
を介して上記測距用光の被写体からの反射光を受光する
第1の受光センサとを含む第1の測距手段と、上記第1
の測距手段を回動させる回動手段と、上記第1のレンズ
から第2の基線長S2だけ離間した位置に固定された第
3のレンズと、該第3のレンズを介して上記測距用光の
画面内の特定ポイントからの反射光を受光する第2の受
光センサとを含む第2の測距手段と、上記第1と第2の
測距手段の出力に基づいて、確定距離値を決定する演算
手段と、を具備しており、上記第2のレンズの焦点距離
をf1、上記第3のレンズの焦点距離をf2とした場合
に、S1・f1<S2・f2の条件を満たしていること
を特徴とする。また、本発明による第4の距離測定装置
は、測定画面内を走査するように測距用光を投射可能な
投光手段と、上記投光手段の走査位置を検出する検出手
段と、画面内の複数の測定ポイントにおける上記測距用
光の反射光を受光するために上記投光手段とともに回動
、複数の距離関連信号を出力する第1の受光手段と、
上記検出手段の検出結果に応じて実行可能状態を検出し
たら、画面内の特定ポイントからの上記測距用光の反射
光を受光し、距離関連信号を出力する第2の受光手段
と、上記第1と第2の受光手段の出力に基づいて、確定
距離値を決定する演算手段と、を具備し、上記第2の受
光手段は上記第1の受光手段よりも遠距離側の測距分解
能が高く設定されており、上記演算手段は上記第1の受
光手段の各距離出力が所定の遠距離判別距離値よりも遠
距離である場合に、上記第2の受光手段の距離出力を上
記確定距離値として決定することを特徴とする
SUMMARY OF THE INVENTION A first distance measuring device according to the present invention rotates and scans a measurement screen to measure a distance.
Light projecting means for projecting light for use, and a light
A first light receiving unit for measuring a short distance, comprising a first light receiving lens and a first sensor for moving and receiving an optical signal related to the subject distance; and the first light receiving unit is provided separately. a second light receiving means for long range measurements made of the second light-receiving lens and a second sensor for receiving the light signal associated with the subject distance of the central portion near the inside measurement screen, projecting the light projecting means
Detecting the light direction, and projecting the light in the predetermined direction.
Control means for operating the means, and arithmetic means for determining a definite distance value based on the outputs of the first and second light receiving means, wherein the light projecting means and the first light receiving means are provided.
The base line length of S1, the light projecting means and the second light receiving means
Is S2, and the focal length of the first light receiving lens is f.
1. When the focal length of the second light receiving lens is f2
By satisfying the condition of S1 · f1 <S2 · f2,
Distance of the second light receiving means as compared with the first light receiving means.
Characterized in that the distance resolution on the side is increased . Further, the second distance measuring device according to the present invention is provided with a light projecting means for projecting distance measuring light to a subject via a light projecting lens, and at a position separated from the light projecting lens by a first base line length S1. And
A first light receiving lens having a first focal length f1, and a first light receiving sensor having a total length t1 for receiving reflected light of the distance measuring light from the subject via the first light receiving lens. A light receiving means, a rotating means for integrally rotating the light projecting means and the first light receiving means, and a second light emitting element. A second light receiving lens having a second focal length f2, and the light measuring means via the second light receiving lens when the light projecting means projects the distance measuring light in a direction coinciding with the photographing optical axis. Receives the reflected light of the distance light from the subject .
A second light receiving means including a second light receiving sensor having an overall length t2, and a calculating means for determining a fixed distance value based on the outputs of the first and second light receiving means. , S1, S2, f1, f2 , t1, and t2 are equal to S1
It satisfies the condition of f1 / t1 <S2 / f2 / t2 . The third of the distance measuring apparatus according to the present invention, the first placed at a position spaced apart by a first baseline length S1, and, through a second lens, the first lens
Light projecting means for projecting light for distance measurement, and the second lens
Receives the reflected light from the subject of the distance measuring light via the
First distance measuring means including a first light receiving sensor;
Rotating means for rotating the distance measuring means, a third lens fixed at a position separated from the first lens by a second base line length S2, and the distance measuring means via the third lens. For light
A second receiver for receiving reflected light from a specific point in the screen
A second distance measuring means including an optical sensor; and a calculating means for determining a fixed distance value based on an output of the first and second distance measuring means, wherein the second lens Focal length
Is f1 and the focal length of the third lens is f2
In addition, the condition that S1 · f1 <S2 · f2 is satisfied . Further, a fourth distance measuring device according to the present invention comprises: a light projecting means capable of projecting light for distance measurement so as to scan the inside of a measurement screen; a detecting means for detecting a scanning position of the light projecting means; Rotates together with the light emitting means to receive the reflected light of the distance measuring light at a plurality of measurement points
A first light receiving unit that outputs a plurality of distance-related signals;
A second light receiving means for receiving reflected light of the distance measuring light from a specific point on the screen and outputting a distance-related signal when detecting an executable state in accordance with a detection result of the detecting means; 1 and on the basis of the output of the second light receiving means, comprising a calculating means for determining a definite distance values, and the second receiving
The light means is a distance measuring and dissolving part on the far side than the first light receiving means.
Function is set to be high, and the calculating means
Each distance output of the light means is longer than a predetermined long distance determination distance value.
If it is a distance, the distance output of the second light receiving means is increased.
It is characterized in that it is determined as the fixed distance value .

【0014】[0014]

【作用】第1と第2の受光手段の出力により算出された
被写体距離に基づいて、上記演算手段により被写体距離
を決定する。
The object distance is calculated by the calculating means based on the object distance calculated by the outputs of the first and second light receiving means.
To determine.

【0015】[0015]

【実施例】以下、図示の実施例によって本発明を説明す
る。図1、2は、本発明の第1実施例を示す距離測定装
置を内蔵したカメラの外観図であり、本図に示すよう
に、その光軸がO1である撮影レンズ17を有するカメ
ラ本体16の前面上方部には、ファインダ18を挟んで
本距離測定装置の検出部である投受光レンズ1、2を持
つ回動可能な保持枠6と受光レンズ3とが左右に配設さ
れている。また、図3、4は、上記距離測定装置の検出
部の構成、および、その動作状態を示す図である。上記
検出部は、回動部と、固定部、および、位置検出部材で
ある基準位置検出スイッチ8で構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. 1 and 2 are external views of a camera having a built-in distance measuring device according to a first embodiment of the present invention. As shown in the drawing, a camera body 16 having a photographing lens 17 whose optical axis is O1 is shown in FIG. A rotatable holding frame 6 having light emitting and receiving lenses 1 and 2, which are detection units of the distance measuring device, and a light receiving lens 3 are disposed on the left and right sides of a front view of the finder 18. FIGS. 3 and 4 are diagrams showing a configuration of the detection unit of the distance measuring device and an operation state thereof. The detection unit includes a rotation unit, a fixed unit, and a reference position detection switch 8 as a position detection member.

【0016】回動部は、カメラ本体16に水平方向(図
4のθ方向)回動自在に支持される回動部材の上記回動
保持枠6と、該保持枠6に保持される投光手段の上記投
光レンズ1とIRED4と、その投光手段に併設される
第1の受光手段の受光レンズ2とPSD5とで構成され
ている。この走査測距光学系による測距値は、比較的に
近距離の測定値に適用される。一方、固定部は、回動部
に対して所定の間隔をもって配設され、第2の受光手段
であって、その光軸が撮影レンズ17の光軸O1と平行
である上記受光レンズ3と、その受光レンズ3に対向し
て配設されされるPSD7とで構成されており、この第
2の受光手段による測距値は、比較的に遠距離の測定値
に適用される。なお、投光レンズ1およびIRED4と
受光レンズ2およびPSD5との間隔である基線長s1
よりも、投光レンズ1およびIRED4と受光レンズ3
およびPSD7との間隔である基線長s2 の方が長く設
定されている。また、受光レンズ2、3の焦点距離はそ
れぞれf1 、f2 であり、PSD5、7の全長はそれぞ
れt1 、t2 とする。
The turning portion is a turning holding frame 6 of a turning member which is rotatably supported by the camera body 16 in a horizontal direction (θ direction in FIG. 4), and a light projection held by the holding frame 6. The light emitting lens 1 and the IRED 4 are provided as means, and the light receiving lens 2 and the PSD 5 of the first light receiving means provided in parallel with the light emitting means. The distance measurement value by the scanning distance measurement optical system is applied to a relatively short distance measurement value. On the other hand, the fixed portion is disposed at a predetermined interval with respect to the rotating portion, is a second light receiving means, the light receiving lens 3 whose optical axis is parallel to the optical axis O1 of the taking lens 17, And a PSD 7 disposed opposite to the light receiving lens 3. The distance measurement value by the second light receiving means is applied to a relatively long distance measurement value. Note that a base line length s1 which is an interval between the light projecting lens 1 and the IRED 4 and the light receiving lens 2 and the PSD 5
Than the light projecting lens 1 and the IRED 4 and the light receiving lens 3
And the base line length s2, which is the distance from the PSD 7, is set longer. The focal lengths of the light receiving lenses 2 and 3 are f1 and f2, respectively, and the total lengths of the PSDs 5 and 7 are t1 and t2, respectively.

【0017】上記の検出部において、IRED4からの
測距用投射光は被写体9aで反射されPSD5または7
で受光するようになっている。また、保持枠6が回動す
ると投受光レンズ1、2と、IRED4、および、PS
D5は相対的位置関係を固定したままの状態で上記投射
光が撮影画面内の被写体を水平方向に走査し、その反射
光が上記PSD5に入射する。従って、PSD5からの
出力は、投光レンズ1から被写体9a、9bまでの距離
が同じであれば、その回動位置、即ち、IRED4から
の測距用投射光の投光方向に関わらず変化しない。な
お、上記図3は、保持枠6の回動状態において、投光レ
ンズ2の光軸O2と撮影レンズ21の光軸O1(図2参
照)とが略一致しているときの動作状態であって、保持
枠6がこの位置にあるときは、上記基準位置検出スイッ
チ8がオンになり、上記遠距離測距が実行可能状態にな
る。なお、この状態では、投光レンズ1と受光レンズ3
の光軸は略平行となる。また、図4は、保持枠6が回動
し、上記検出スイッチ8がオフになった状態を示し、比
較的近距離の測距時に投受光を走査して測距情報を得る
ときの状態である。
In the above-mentioned detecting section, the projection light for distance measurement from the IRED 4 is reflected by the subject 9a, and is reflected by the PSD 5 or 7.
To receive light. When the holding frame 6 rotates, the light emitting and receiving lenses 1 and 2, the IRED 4 and the PS
At D5, the projected light scans the subject in the shooting screen in the horizontal direction while the relative positional relationship is fixed, and the reflected light is incident on the PSD5. Therefore, if the distance from the light projecting lens 1 to the objects 9a and 9b is the same, the output from the PSD 5 does not change irrespective of its rotational position, that is, the projection direction of the distance measuring projection light from the IRED 4. . FIG. 3 shows an operation state when the optical axis O2 of the light projecting lens 2 and the optical axis O1 (see FIG. 2) of the photographing lens 21 substantially coincide with each other when the holding frame 6 is rotated. When the holding frame 6 is at this position, the reference position detection switch 8 is turned on, and the long distance measurement can be executed. In this state, the light projecting lens 1 and the light receiving lens 3
Are substantially parallel. FIG. 4 shows a state in which the holding frame 6 is rotated and the detection switch 8 is turned off, and a state in which the distance measurement information is obtained by scanning the light emitting and receiving at the time of relatively short distance measurement. is there.

【0018】図5は、本距離測定装置の電気制御回路の
主要ブロック構成図であり、本図に示すように上記制御
回路において、CPU10は、アクチュエ−タ15を介
して保持枠6を各回動位置まで駆動する。この回動角θ
は検出スイッチ8を含む位置検出回路8Aで検出され
る。また、各回動角θにおいて、ドライバ12を介して
IRED4を断続的にパルス状で点灯させる。その点灯
に対応して、PSD5からは前記(2)、(3)式に基
づいた光電流I1 、I2 が第1比演算回路11に入力さ
れ、前記(4)式に基づいた演算が行われる。その第1
比演算回路11の演算結果は、CPU10に入力され、
第1の演算手段により前記(5)式に基づいて各走査ポ
イントの被写体距離が演算される。そして、CPU10
のメモリ部に該被写体距離が記憶される。
FIG. 5 is a main block diagram of an electric control circuit of the distance measuring apparatus. As shown in FIG. 5, in the above control circuit, the CPU 10 rotates the holding frame 6 via the actuator 15 for each rotation. Drive to position. This rotation angle θ
Is detected by a position detection circuit 8A including the detection switch 8. At each rotation angle θ, the IRED 4 is intermittently turned on in a pulse form via the driver 12. In response to the lighting, the photocurrents I1 and I2 based on the expressions (2) and (3) are input from the PSD 5 to the first ratio calculation circuit 11, and the calculation based on the expression (4) is performed. . The first
The calculation result of the ratio calculation circuit 11 is input to the CPU 10,
The first calculating means calculates the subject distance at each scanning point based on the above equation (5). And the CPU 10
The subject distance is stored in the memory unit.

【0019】また、基準位置検出スイッチ8がオンとな
る上記図3の保持枠6の状態では、上記PSD5による
測距動作と同時にIRED4の点灯に対応して、PSD
7からの前記(2)、(3)式に基づいた光電流I1 、
I2 が第2比演算回路13に入力され、同様に(4)式
に基づいた演算が行われる。その第2比演算回路13の
演算結果は、CPU10に入力され、第2の演算手段に
より前記(5)式に基づいて中央部の被写体距離が演算
される。そして、CPU10のメモリ部に該被写体距離
が記憶される。
In the state of the holding frame 6 shown in FIG. 3 in which the reference position detection switch 8 is turned on, the PSD 5 corresponds to the lighting of the IRED 4 at the same time as the distance measurement operation by the PSD 5.
7, the photocurrent I1, based on the equations (2) and (3),
I2 is input to the second ratio calculation circuit 13, and a calculation based on equation (4) is similarly performed. The calculation result of the second ratio calculation circuit 13 is input to the CPU 10, and the second calculation means calculates the subject distance at the center based on the above equation (5). Then, the subject distance is stored in the memory unit of the CPU 10.

【0020】また、CPU10には、第1の演算手段に
よる各距離のいずれかが所定の後述する遠近判別距離L
0 よりも近い値を示す場合、該第1の演算手段で演算さ
れた最至近の被写体距離を確定値として採用し、第1の
演算手段による各距離のいずれもが所定の遠近判別距離
L0 よりも遠い場合、上記第2の演算手段で演算された
被写体距離を確定値として採用して出力する確定値の選
択を行う判別手段が内蔵されている。なお、上記CPU
10に内蔵される第1、2の演算手段は部分的には同じ
処理部で処理されてもよい。また、前記(2)、
(3)、(4)、(5)式に用いられる定数の焦点距離
f、基準長s、PSD端部から受光レンズの光軸位置ま
での長さa、PSDの全長tは、それぞれ、PSD5に
対しては定数f1 、s1 、a1 、t1 、および、PSD
7に対しては定数f2 、s2 、a2 、t2にそれぞれ置
き替わる。
Further, the CPU 10 determines whether any one of the distances obtained by the first calculating means is a predetermined distance discrimination distance L described later.
When the value indicates a value closer to 0, the closest object distance calculated by the first calculating means is adopted as a definite value, and each of the distances by the first calculating means is larger than a predetermined distance determination distance L0. If the distance is too far, a decision means for selecting a decided value to be output by adopting the subject distance computed by the second computing means as the decided value is incorporated. The above CPU
The first and second calculation means incorporated in 10 may be partially processed by the same processing unit. In addition, (2),
The constant focal length f, the reference length s, the length a from the end of the PSD to the optical axis position of the light receiving lens, and the total length t of the PSD used in the equations (3), (4), and (5) are PSD5, respectively. For the constants f1, s1, a1, t1, and PSD
7 are replaced by constants f2, s2, a2, and t2, respectively.

【0021】以上のように構成された本実施例の距離測
定装置の測距動作を図6のタイムチャ−トによって説明
する。なお、ここでは保持枠6の回動による画面内測距
ポイントは5点とする。まず、保持枠6を図2の回動角
θ1 の位置までアクチュエ−タ14により回動し、IR
ED4を発光させ、続いて、回動角θ2 、θ3 、θ4 、
θ5 と順次回動し、同様にIRED4を発光させる。そ
れらの発光に基づいたPSD5の出力が第1比演算回路
11を介してCPU10に取り込まれ、第1の演算手段
で各被写体走査ポイントの測距値が演算されメモリに取
り込まれる。また、上記保持枠6の回動角θ3 の位置で
は、検出スイッチ8のオンとなり位置検出回路8Aによ
り保持枠6が遠距離測距可能位置になったことが検出さ
れる。そして、IRED4の測距用光による画面中央の
被写体反射光がPSD7に入射し、その出力が第2比演
算回路13を介してCPU10に取り込まれ、第2の演
算手段で中央被写体の測距値が演算されメモリに取り込
まれる。
The distance measuring operation of the distance measuring apparatus of the present embodiment constructed as described above will be described with reference to a time chart of FIG. In this case, the number of distance measurement points in the screen due to the rotation of the holding frame 6 is five. First, the holding frame 6 is rotated by the actuator 14 to the position of the rotation angle θ1 in FIG.
The ED 4 is caused to emit light, followed by the rotation angles θ2, θ3, θ4,
Rotates sequentially with θ5, causing the IRED 4 to emit light in the same manner. The output of the PSD 5 based on the light emission is taken into the CPU 10 via the first ratio calculating circuit 11, and the first calculating means calculates the distance measurement value at each subject scanning point and takes it into the memory. In addition, at the position of the rotation angle .theta.3 of the holding frame 6, the detection switch 8 is turned on, and the position detection circuit 8A detects that the holding frame 6 has reached the position where long distance measurement is possible. Then, the subject reflected light at the center of the screen by the distance measuring light of the IRED 4 enters the PSD 7, and its output is taken into the CPU 10 via the second ratio calculation circuit 13, and the distance measurement value of the center subject is calculated by the second calculation means Is calculated and taken into the memory.

【0022】続いて、CPU10の判別手段により、上
記回動角θ1 〜θ5 の各ポイントの第1の受光手段の検
出部のPSD5による第1の演算手段で演算された各測
距データを所定の遠近判別距離L0 、例えば、5.3m
と比較して近距離の値を示すものがあれば、PSD5に
よる測距データのうち最至近の値を確定距離値として出
力させる。一方、上記回動角θ1 〜θ5 の各ポイントの
PSD5による測距データがいずれも上記所定の遠近判
別距離L0 と比較して遠距離を示していれば第2の受光
手段の測距系であるPSD7による第2の演算手段で演
算された測距データを確定距離値として出力させる。
Subsequently, the distance measuring data calculated by the first calculating means by the PSD 5 of the detecting unit of the first light receiving means at each point of the above-mentioned rotation angles θ 1 to θ 5 is determined by the determining means of the CPU 10 in a predetermined manner. Perspective determination distance L0, for example, 5.3 m
If there is a data indicating a value of the short distance as compared with the distance data, the closest value among the distance measurement data by the PSD 5 is output as the determined distance value. On the other hand, if any of the distance measurement data by the PSD 5 at each point of the rotation angles θ1 to θ5 indicates a long distance as compared with the predetermined distance determination distance L0, it is the distance measurement system of the second light receiving means. The distance measurement data calculated by the second calculation means by the PSD 7 is output as a fixed distance value.

【0023】ここで、上記2つの受光手段の検出部によ
る測距可能範囲と測距精度の関係につき、カメラとして
可能な寸法を具体的に考慮して説明する。即ち、上記第
1の受光手段の検出部である回動部(受光レンズ2とP
SD5)に対して合焦検出の最至近距離をLmin を30
cm、投受光レンズ1、2の間隔である基線長s1 を1
0mm、および、受光レンズ2の焦点距離f1 を10m
mとすると、(6)式により t1 −a1 =0.33mm が求められる。但し、(6)式のPSD端部から受光レ
ンズの光軸位置までの長さa、PSDの全長tは、それ
ぞれPSD5に対する値a1 、t1 に置換して求めたも
のである。受光スポットの「ぼけ」等を考慮するとPS
D5の全長t1 は1mm程度になる。
Here, the relationship between the range that can be measured by the detectors of the above two light receiving means and the accuracy of distance measurement will be described by specifically considering the dimensions that can be used as a camera. That is, the rotating part (the light receiving lens 2 and P
For SD5), the closest distance for focus detection is Lmin = 30.
cm, the base line length s1, which is the distance between the light emitting and receiving lenses 1 and 2, is 1
0 mm and the focal length f1 of the light receiving lens 2 is 10 m
Assuming that m, t1−a1 = 0.33 mm is obtained from equation (6). However, the length a from the end of the PSD to the optical axis position of the light receiving lens and the total length t of the PSD in Equation (6) are obtained by substituting the values a1 and t1 for PSD5, respectively. Considering "blurring" of the light receiving spot, PS
The total length t1 of D5 is about 1 mm.

【0024】一方、カメラの一般的な仕様として遠距離
側の測距範囲としては10m程度が要求される。この場
合、前記(4)式のs1 ・f1 /t1 の値は測定の精度
上、通常350mm程度必要とされている。しかしなが
ら回動部の保持枠6をコンパクトにまとめる必要があ
り、上記のように基線長s1 を10mm、受光レンズ2
の焦点距離f1 を10mm、PSDの全長tを1mmと
した場合では、 s1 ・f1 /t1 =100mm に過ぎず、一般的なPSDによる測距に対しては精度が
1/3.5に低下する。そこで、本実施例のものでは所
定の距離L0 以遠の被写体に対応する測距は第2の受光
手段の検出部である受光レンズ3とPSD7を用い、投
光レンズ1に対して基準長s2 が50mm離間した位置に
上記PSD7を配設する。そして、PSD7に対する受
光レンズ3の焦点距離f2 を14mm、PSD7の全長
t2 を2mmとすれば、上記の精度を示すs1 ・f1 /
t1 の値に対応するs2 ・f2 /t2 の値が次のように
なり、 s2 ・f2 /t2 =50・14/2=350mm 所定の分解能を満足させることができる。
On the other hand, as a general specification of a camera, a distance measurement range on the long distance side is required to be about 10 m. In this case, the value of s 1 · f 1 / t 1 in the above equation (4) is usually required to be about 350 mm in terms of measurement accuracy. However, it is necessary to compactly hold the holding frame 6 of the rotating portion, and as described above, the base line length s1 is 10 mm,
In the case where the focal length f1 is 10 mm and the total length t of the PSD is 1 mm, it is only s1 · f1 / t1 = 100 mm, and the accuracy is reduced to 1 / 3.5 with respect to distance measurement using a general PSD. . Therefore, in the present embodiment, the distance measurement corresponding to the object longer than the predetermined distance L0 uses the light receiving lens 3 and the PSD 7, which are the detecting units of the second light receiving means, and the reference length s2 is set to be longer than the light projecting lens 1. The PSD 7 is provided at a position 50 mm apart. Assuming that the focal length f2 of the light receiving lens 3 with respect to the PSD 7 is 14 mm and the total length t2 of the PSD 7 is 2 mm, s1 · f1 /
The value of s2.f2 / t2 corresponding to the value of t1 is as follows, and s2.f2 / t2 = 50.14 / 2 = 350 mm. A predetermined resolution can be satisfied.

【0025】更に、本測定装置として近距離の測定は第
1の受光手段の検出部であるPSD5で行い、遠距離の
測定は第2の受光手段の検出部であるPSD7で行うも
のであるから、第2の受光手段の合焦検出の最至近距離
Lmin はある程度大きくても良い。 そこで、最至近距
離Lmin を多少大きくして、より分解能を上げるために
PSD7の全長をt2 =1mmに採ると、上記s1 ・f
1 /t1 =350mmの場合の2倍の分解能が得られ
る。なお、このときの最至近距離Lmin は(6)式から
2.1mが得られる。
Further, the present measuring apparatus is designed to measure the short distance with the PSD5 which is the detecting section of the first light receiving means and measure the long distance with the PSD7 which is the detecting section of the second light receiving means. The closest distance Lmin for focus detection by the second light receiving means may be large to some extent. Therefore, if the total distance of the PSD 7 is set to t2 = 1 mm in order to further increase the resolving power by slightly increasing the shortest distance Lmin, the above s1 · f
The resolution twice as high as when 1 / t1 = 350 mm is obtained. In this case, the closest distance Lmin is 2.1 m from the equation (6).

【0026】一方、第1の受光手段の検出部である回動
部の測距光学系は、上述のように1/3.5になるこ
と、および、光量と精度が比例関係にあるを考慮して、
そのS/N比が、s1 ・f1 /t1 =100mmとした
場合の測距光学系と s2 ・f2 /t2 =350mmと
した場合の測距光学系と同程度の精度をもって測距でき
るようにするため、前記遠近判別距離L0 を求めると、
上記第2の受光手段のs2 ・f2 /t2 値 を350m
mとしたとき測距最遠方距離を10mとすると、 L0 =10m・(1/3.5)1/2=5.3m となる。つまり、第1の受光手段の測距系で5.3mま
では同程度の精度で測距可能となり、30cm〜5.3
mの範囲では被写体が画面内のどの位置にあっても中抜
け現象が生じることなく写真撮影が可能となる。また、
上記以遠の距離においては、前記図10(B)に示され
るような構図の写真撮影の頻度は統計的にみて少ないと
みることができ、第2の受光手段の検出部測距系による
中央部のみの測距で十分対応することができる。
On the other hand, the distance measuring optical system of the rotating portion, which is the detecting portion of the first light receiving means, is reduced to 1 / 3.5 as described above, and the light amount and the accuracy are in a proportional relationship. do it,
The distance measurement can be performed with approximately the same accuracy as the distance measurement optical system when the S / N ratio is s1 · f1 / t1 = 100 mm and the distance measurement optical system when s2 / f2 / t2 = 350 mm. Therefore, when the distance L0 is determined,
The value of s2 / f2 / t2 of the second light receiving means is 350 m
Assuming that the longest distance for distance measurement is 10 m when m is set, L0 = 10 m · (1 / 3.5) 1/2 = 5.3 m. That is, the distance measurement system of the first light receiving means can measure the distance with the same level of accuracy up to 5.3 m.
In the range of m, photographing can be performed without the occurrence of a hollowing-out phenomenon, regardless of the position of the subject in the screen. Also,
At a distance farther than the above, the frequency of photography of the composition as shown in FIG. 10B can be considered to be statistically low, and the center of the second light receiving means is detected by the distance measuring system. Only the distance measurement can sufficiently cope.

【0027】なお、本実施例のものでは、保持枠の回動
による画面内スキャンは常に一定の連続したポイント数
で行わせているが、これはズームレンズ付きカメラの場
合、望遠側では3ポイント、また、広角側では9ポイン
トというように焦点距離に応じてポイント数を切り換え
てもよい。また、スキャン範囲を撮影レンズの焦点距離
に合わせて変化させてもよい。
In this embodiment, the in-screen scanning by the rotation of the holding frame is always performed at a fixed number of continuous points. However, in the case of a camera with a zoom lens, this is three points on the telephoto side. Alternatively, the number of points may be switched according to the focal length, such as 9 points on the wide-angle side. Further, the scan range may be changed according to the focal length of the taking lens.

【0028】次に、本発明の第2実施例を示す距離測定
装置を図7、8により説明する。本実施例は、前記第1
実施例のものに対して図7に示すように投光手段、およ
び、第1受光手段を内蔵し、その正面部に投光窓20a
と受光窓20bを持つ可動の球形保持枠20が水平方向
(θ)の回動のみならず上下方向(ψ)へも回動可能と
するものである。このように保持枠20を人の眼のよう
に回動させることにより、図9の撮影画面51に示すよ
うに水平方向の測距ポイント52のみならず上下方向の
測距ポイント53、更に、水平方向と上下方向に、同時
に、回動することによって斜め方向の測距ポイント5
4、55の測距を行うことができる。なお、本実施例の
ものの第2受光手段は図示しないが、上記球形保持枠2
0が正面を向いた状態の側方の所定の間隔だけ離間した
位置に配設されており、第1実施例のものと同様に遠距
離の測定を実行するものとする。
Next, a distance measuring apparatus according to a second embodiment of the present invention will be described with reference to FIGS. In this embodiment, the first
As shown in FIG. 7, a light projecting means and a first light receiving means are built in as shown in FIG.
And the movable spherical holding frame 20 having the light receiving window 20b can be rotated not only in the horizontal direction (θ) but also in the vertical direction (ψ). By rotating the holding frame 20 like a human eye, not only the horizontal distance measuring points 52 but also the vertical distance measuring points 53 as shown in the photographing screen 51 of FIG. The distance measuring point 5 in the diagonal direction is simultaneously rotated in the vertical and vertical directions.
4, 55 distance measurements can be performed. Although the second light receiving means of this embodiment is not shown, the spherical holding frame 2 is not shown.
0 is disposed at a position separated by a predetermined interval on the side facing the front, and it is assumed that a long distance measurement is performed as in the first embodiment.

【0029】図8は、本実施例の距離測定装置の球形保
持枠20の駆動機構の一例を示すもので、上記球形保持
枠20の外形球面は、球面摺動保持部材21a、21
b、21c、21dで保持される。この保持枠20を上
記のようにあらゆる方向に回動させるには、保持枠20
に固着される支持突起20bを支持するユニバーサルジ
ョイント部27を左右(x)、上下(y)に移動するこ
とによって行う。
FIG. 8 shows an example of a driving mechanism of the spherical holding frame 20 of the distance measuring apparatus of the present embodiment. The outer spherical surface of the spherical holding frame 20 has spherical sliding holding members 21a, 21a.
b, 21c and 21d. To rotate the holding frame 20 in all directions as described above, the holding frame 20
This is performed by moving the universal joint 27 supporting the support projection 20b fixed to the left and right (x) and up and down (y).

【0030】その駆動は、まず、図8に示すようにカメ
ラ本体(図示せず)に固定されるx駆動モータ22の出
力軸に結合された送りネジ23の回転駆動により、送り
ネジ23に螺合する駆動台24がx方向に移動する。駆
動台24にはy駆動モータ25が取り付けられており、
更に、このy駆動モータ25の出力軸に結合された送り
ネジ26の回転駆動により、その送りネジ26に螺合す
るユニバーサルジョイント部27が、相対的に上下に移
動し、結果的にカメラ本体に対してx、y方向に移動す
ることになる。上記x、y駆動モータ22、25は、C
PU(図示せず)により制御され、周知の視線追尾手段
により撮影者の視線と測距ポイントを連動させると更に
効果的となる。
First, as shown in FIG. 8, the feed screw 23 is rotated by a feed screw 23 coupled to an output shaft of an x drive motor 22 fixed to a camera body (not shown). The corresponding drive base 24 moves in the x direction. A y-drive motor 25 is attached to the drive stand 24,
Further, the rotation of the feed screw 26 coupled to the output shaft of the y drive motor 25 causes the universal joint 27 screwed to the feed screw 26 to move relatively up and down, and as a result, to the camera body. On the other hand, it moves in the x and y directions. The x, y drive motors 22, 25 are C
It is controlled by a PU (not shown), and it becomes more effective if the line of sight of the photographer and the distance measurement point are linked by known line-of-sight tracking means.

【0031】[0031]

【発明の効果】以上説明したように、本発明の距離測定
装置は、近距離測定用の第1受光手段と遠距離測定用の
第2受光手段とを設け、これら両者の出力に基づいて被
写体距離を決定するようにしたので、画面内の広範囲に
わたる測距が行え、中抜け防止効果が高く、遠距離の測
距も高精度で行うことができ、しかも、構成が簡単であ
るなど数多くの顕著な効果を奏する。
As described above, the distance measuring apparatus according to the present invention comprises the first light receiving means for measuring a short distance and the first light receiving means for measuring a long distance.
A second light receiving means is provided, and a light receiving means is provided based on the outputs of the two.
Since the object distance is determined, the
Performs ranging over a long distance, has a high effect of preventing hollow holes, and measures distances.
The distance can be adjusted with high accuracy, and the configuration is simple.
It has many remarkable effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す距離測定装置を内蔵
するカメラの正面図。
FIG. 1 is a front view of a camera having a built-in distance measuring device according to a first embodiment of the present invention.

【図2】上記図1のカメラの平面図。FIG. 2 is a plan view of the camera of FIG. 1;

【図3】上記図1の距離測定装置の光学系の主要構成
図。
FIG. 3 is a main configuration diagram of an optical system of the distance measuring device of FIG. 1;

【図4】上記図1の距離測定装置の光学系の保持枠回動
状態を示す図。
FIG. 4 is a diagram showing a holding frame rotating state of the optical system of the distance measuring device of FIG. 1;

【図5】上記図1の距離測定装置の電気制御回路の主要
ブロック構成図。
FIG. 5 is a main block configuration diagram of an electric control circuit of the distance measuring device of FIG. 1;

【図6】上記図1の距離測定装置の測距動作のタイムチ
ャート。
FIG. 6 is a time chart of a distance measuring operation of the distance measuring device of FIG. 1;

【図7】本発明の第2実施例を示す距離測定装置の球形
保持枠の斜視図。
FIG. 7 is a perspective view of a spherical holding frame of the distance measuring device according to the second embodiment of the present invention.

【図8】上記図7の距離測定装置の球形保持枠の回動機
構を示す図。
FIG. 8 is a view showing a rotating mechanism of a spherical holding frame of the distance measuring device shown in FIG. 7;

【図9】上記図7の距離測定装置の画面内の各測距ポイ
ントを示す図。
FIG. 9 is a view showing each distance measuring point in the screen of the distance measuring device in FIG. 7;

【図10】従来の距離測定装置の画面内各測距ポイント
を示す図。
FIG. 10 is a diagram showing each ranging point in a screen of a conventional distance measuring device.

【図11】図10の従来の距離測定装置の測距ビームを
示す図。
FIG. 11 is a diagram showing a distance measuring beam of the conventional distance measuring device of FIG.

【図12】上記図10の従来の距離測定装置の三点測距
方式光学系の光路図。
FIG. 12 is an optical path diagram of a three-point distance measuring optical system of the conventional distance measuring device of FIG. 10;

【符号の説明】[Explanation of symbols]

1………………投光レンズ(投光手段) 2………………受光レンズ(第1の受光手段) 3………………受光レンズ(第2の受光手段) 4………………IRED(投光手段) 5………………PSD(第1の受光手段) 6………………回動保持枠(回動部材) 7………………PSD(第2の受光手段) 8………………位置検出スイッチ(位置検出部材) 14………………CPU(第1演算手段、第2演算手
段、判別回路) 20………………球形保持枠(回動部材)
1 ... Projecting lens (projecting unit) 2 ... Receiving lens (first receiving unit) 3 ... Receiving lens (second receiving unit) 4 ... ... IRED (light emitting means) 5 PSD (first light receiving means) 6... Rotating holding frame (rotating member) 7... PSD ( (Second light receiving means) 8 position detecting switch (position detecting member) 14 CPU (first calculating means, second calculating means, discriminating circuit) 20... Spherical holding frame (rotating member)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定画面内を走査するように回動して測
距用光を投光する投光手段と、 上記投光手段と一体的に回動して、 被写体距離に関連す
る光信号を受光する第1の受光レンズ及び第1のセンサ
からなる近距離測定用の第1受光手段と、 上記第1の受光手段とは別体に設けられ、測定画面内の
中央部近傍の被写体距離に関連する光信号を受光する第
2の受光レンズ及び第2のセンサからなる遠距離測定用
の第2受光手段と、上記投光手段の投光方向を検出し、所定方向への投光時
に上記第2の受光手段を作動させる制御手段と、 上記第1、第2の受光手段の出力に基づいて、確定距離
値を決定する演算手段と、 を具備しており、上記投光手段と上記第1受光手段との
基線長をS1、上記投光手段と上記第2受光手段との基
線長をS2、上記第1の受光レンズの焦点距離をf1、
上記第2の受光レンズの焦点距離をf2とした場合に、 S1・f1<S2・f2 の条件を満たすことによって上記第1受光手段に比べて
上記第2受光手段の遠距離側の距離分解能を高くした
とを特徴とする距離測定装置。
1. A measurement screen which is rotated to scan a measurement screen.
A short-distance measurement comprising a light projecting means for projecting the distance light, a first light receiving lens for rotating the light projecting means integrally with the light projecting means and receiving an optical signal related to the subject distance, and a first sensor. First light receiving means, and a second light receiving lens and a second sensor which are provided separately from the first light receiving means and receive an optical signal related to a subject distance near a central portion in the measurement screen. A second light-receiving means for measuring a long distance, and a light-emitting direction of the light-emitting means are detected, and light is emitted in a predetermined direction.
And control means for operating the second light receiving means, the first, on the basis of the output of the second light receiving means, and calculating means for determining a definite distance value, which comprises a, and the light emitting means The first light receiving means
The base length is S1, and the base length between the light projecting means and the second light receiving means is S1.
The line length is S2, the focal length of the first light receiving lens is f1,
When the focal length of the second light receiving lens is f2, by satisfying the condition of S1 · f1 <S2 · f2 , compared with the first light receiving unit.
A distance measuring device wherein the distance resolution of the second light receiving means on the long distance side is increased .
【請求項2】 投光レンズを介して被写体に測距用光を
投射する投光手段と、 上記投光レンズから第1の基線長S1だけ離間した位置
に配置され、第1の焦点距離f1を有する第1の受光レ
ンズ、及び上記第1の受光レンズを介して上記測距用光
の上記被写体からの反射光を受光するための全長t1を
有する第1の受光センサを含む第1の受光手段と、上記
投光手段と上記第1の受光手段を一体的に回動させる回
動手段と、 上記投光レンズから第2の基線長S2だけ離間した位置
に配置され、第2の焦点距離f2を有する第2の受光レ
ンズ、及び上記投光手段が撮影光軸に一致する方向に上
記測距用光を投射したときに上記第2の受光レンズを介
して上記測距用光の上記被写体からの反射光を受光する
ための全長t2を有する第2の受光センサを含む第2の
受光手段と、 上記第1と第2の受光手段の出力に基づいて、確定距離
値を決定する演算手段と、 を具備しており、上記S1、S2、f1、f2、t1、
t2は、 S1・f1/t1<S2・f2/t2 の条件を満たしていることを特徴とする距離測定装置。
2. A light projecting means for projecting distance measuring light to a subject via a light projecting lens, and a first focal length f1 disposed at a position separated from the light projecting lens by a first base line length S1. And a total length t1 for receiving reflected light of the distance measuring light from the subject via the first light receiving lens having the following formula.
A first light receiving unit including a first light receiving sensor, a rotating unit for integrally rotating the light projecting unit and the first light receiving unit, and a second base line length S2 from the light projecting lens. A second light receiving lens which is disposed at a distance and has a second focal length f2, and the second light receiving when the light projecting means projects the distance measuring light in a direction coinciding with a photographing optical axis. Receives the reflected light of the distance measurement light from the subject through a lens
A second light receiving means including a second light receiving sensor having an overall length t2, and a calculating means for determining a fixed distance value based on the outputs of the first and second light receiving means. , S1, S2, f1, f2 , t1,
t2 is a distance measuring device, characterized in that the condition is satisfied in S1 · f1 / t1 <S2 · f2 / t2.
【請求項3】 第1の基線長S1だけ離間した位置に配
置された第1、及び、第2のレンズと、上記第1のレン
ズを介して測距用光を投射する投光手段と、上記第2の
レンズを介して上記測距用光の被写体からの反射光を受
光する第1の受光センサとを含む第1の測距手段と、 上記第1の測距手段を回動させる回動手段と、 上記第1のレンズから第2の基線長S2だけ離間した位
置に固定された第3のレンズと、該第3のレンズを介し
て上記測距用光の画面内の特定ポイントからの反射光を
受光する第2の受光センサとを含む第2の測距手段と、 上記第1と第2の測距手段の出力に基づいて、確定距離
値を決定する演算手段と、 を具備しており、上記第2のレンズの焦点距離をf1、
上記第3のレンズの焦点距離をf2とした場合に、 S1・f1<S2・f2 の条件を満たしている ことを特徴とする距離測定装置。
3. A first and a second lens, the first lens disposed at a position separated by a first baseline length S1
A light projecting means for projecting distance measuring light through the
Receives the reflected light from the subject of the distance measurement light via the lens.
First distance measuring means including a first light receiving sensor that emits light; rotating means for rotating the first distance measuring means; and a position separated from the first lens by a second base line length S2. And a third lens fixed to the
The reflected light from a specific point in the screen
A second distance measuring means including a second light receiving sensor for receiving light; and a calculating means for determining a fixed distance value based on outputs of the first and second distance measuring means, The focal length of the second lens is f1,
A distance measuring apparatus characterized by satisfying a condition of S1 · f1 <S2 · f2 when a focal length of the third lens is f2 .
【請求項4】 測定画面内を走査するように測距用光を
投射可能な投光手段と、 上記投光手段の走査位置を検出する検出手段と、 画面内の複数の測定ポイントにおける上記測距用光の反
射光を受光するために上記投光手段とともに回動し、複
数の距離関連信号を出力する第1の受光手段と、 上記検出手段の検出結果に応じて実行可能状態を検出し
たら、画面内の特定ポイントからの上記測距用光の反射
光を受光し、距離関連信号を出力する第2の受光手段
と、 上記第1と第2の受光手段の出力に基づいて、確定距離
値を決定する演算手段と、 を具備し、上記第2の受光手段は上記第1の受光手段よ
りも遠距離側の測距分解能が高く設定されており、上記
演算手段は上記第1の受光手段の各距離出力が所定の遠
距離判別距離値よりも遠距離である場合に、上記第2の
受光手段の距離出力を上記確定距離値として決定するこ
とを特徴とする距離測定装置。
4. A light projecting means capable of projecting distance measuring light so as to scan the inside of a measuring screen, a detecting means detecting a scanning position of the light projecting means, and the measuring means at a plurality of measuring points on the screen. A first light receiving unit that rotates together with the light emitting unit to receive the reflected light of the distance light and outputs a plurality of distance-related signals, and an executable state is detected according to a detection result of the detecting unit. A second light-receiving means for receiving reflected light of the distance-measuring light from a specific point on the screen and outputting a distance-related signal; and a fixed distance based on outputs of the first and second light-receiving means. Calculating means for determining a value, wherein the second light receiving means is more than the first light receiving means.
Distance resolution on the far side is set high,
The calculating means determines that each distance output of the first light receiving means is a predetermined distance.
When the distance is longer than the distance determination distance value, the second
The distance output of the light receiving means should be determined as the final distance value.
And a distance measuring device.
JP9564391A 1991-04-25 1991-04-25 Distance measuring device Expired - Fee Related JP3216651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9564391A JP3216651B2 (en) 1991-04-25 1991-04-25 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9564391A JP3216651B2 (en) 1991-04-25 1991-04-25 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH04324808A JPH04324808A (en) 1992-11-13
JP3216651B2 true JP3216651B2 (en) 2001-10-09

Family

ID=14143194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9564391A Expired - Fee Related JP3216651B2 (en) 1991-04-25 1991-04-25 Distance measuring device

Country Status (1)

Country Link
JP (1) JP3216651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340910A (en) * 1991-05-17 1992-11-27 Sharp Corp Automatic focusing device

Also Published As

Publication number Publication date
JPH04324808A (en) 1992-11-13

Similar Documents

Publication Publication Date Title
US5677760A (en) Rangefinding device for use in a camera
US6765653B2 (en) Electronic distance meter
US6600878B2 (en) Autofocus sensor
US4922281A (en) Distance measuring device for automatic focusing camera
JP3216651B2 (en) Distance measuring device
US5680648A (en) Light projection type distance measuring device for auto-focusing in camera
JPH06317741A (en) Range finder
JPH1096851A (en) Range finder for camera
JP3639585B2 (en) Ranging device
JP3504698B2 (en) Distance measuring device
JP2969536B2 (en) Distance measuring device
JPH04324807A (en) Distance measuring device
US5999747A (en) Camera with device to prevent image blurs
JPH10339907A (en) Image pickup device
JP2758625B2 (en) camera
JP3335424B2 (en) Distance measuring device
JPS63235907A (en) Focus detector
JP3362910B2 (en) Camera ranging device
JP3035370B2 (en) Distance measuring device
JPH07306358A (en) Range finder of camera
JPS63235908A (en) Focus detector
JPS6123986A (en) Body detecting device
JP3244348B2 (en) Distance measuring device
JPH04225308A (en) Moving body range finder
JP2001027725A (en) Range finder for camera

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees