JP3216448B2 - Amplifying element - Google Patents

Amplifying element

Info

Publication number
JP3216448B2
JP3216448B2 JP27757494A JP27757494A JP3216448B2 JP 3216448 B2 JP3216448 B2 JP 3216448B2 JP 27757494 A JP27757494 A JP 27757494A JP 27757494 A JP27757494 A JP 27757494A JP 3216448 B2 JP3216448 B2 JP 3216448B2
Authority
JP
Japan
Prior art keywords
film
magnetic
artificial lattice
metal film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27757494A
Other languages
Japanese (ja)
Other versions
JPH08139387A (en
Inventor
博 榊間
庸介 入江
三男 里見
康博 川分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27757494A priority Critical patent/JP3216448B2/en
Publication of JPH08139387A publication Critical patent/JPH08139387A/en
Application granted granted Critical
Publication of JP3216448B2 publication Critical patent/JP3216448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果を利用した
メモリー素子及び増幅果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a memory element and an amplification element utilizing a magnetoresistance effect.

【0002】[0002]

【従来の技術】近年Cr,Ru等の金属非磁性薄膜を介して
反強磁性的結合をしている[Fe/Cr],[Co/Ru]人工格子膜
が強磁場(1〜10 kOe)で巨大磁気抵抗効果を示す発見
された(フィシ゛カル レウ゛ュー レター 61 第2472項 (1988年);
同 64 第2304項 (1990) (PhysicalReview Letter Vol.
61, p2472, 1988; 同 Vol.64, p2304,1990))。又金属
非磁性薄膜Cuで分離され磁気的結合をしていない保磁力
の異なる磁性薄膜Ni-FeとCoを用いた[Ni-Fe/Cu/Co]人工
格子膜でも巨大磁気抵抗効果が発見され、室温印加磁界
0.5kOeでMR比が約8%のものが得られている(シ゛ャーナル
オフ゛ フィシ゛カル ソサイアティーオフ゛ シ゛ャハ゜ン 59 第3061頁 (1990年)
(Journal of Physical Society of Japan Vol.59, p306
1, 1990))。
2. Description of the Related Art In recent years, [Fe / Cr] and [Co / Ru] artificial lattice films, which are antiferromagnetically coupled via a non-magnetic thin film of metal such as Cr or Ru, have a strong magnetic field (1 to 10 kOe). In Giant Magnetoresistance (Physical Review Letter 61, Section 2472 (1988);
Id.64 Section 2304 (1990) (Physical Review Letter Vol.
61, p2472, 1988; Vol. 64, p2304, 1990)). A giant magnetoresistance effect was also found in a [Ni-Fe / Cu / Co] artificial lattice film using magnetic thin films Ni-Fe and Co separated by a non-magnetic metal thin film Cu and having no magnetic coupling but different coercive forces. , Room temperature applied magnetic field
An MR ratio of about 8% was obtained at 0.5 kOe (see Journal
Off Physical Society Off Shah 59 59 Page 3061 (1990)
(Journal of Physical Society of Japan Vol.59, p306
1, 1990)).

【0003】これらの人工格子磁気抵抗効果膜を用いた
図5に示すようなメモリー素子が提案されている(日本
特許出願H5-28748)。このメモリー素子は人工格子磁気
抵抗効果膜より成る情報読み出し部Sと、硬質磁性膜よ
り成る情報保持部M、及び磁界印加用電流線R,R'より
成る情報記録部から構成され、素子作製の工程が多い欠
点がある。
A memory device using such an artificial lattice magnetoresistive film as shown in FIG. 5 has been proposed (Japanese Patent Application H5-28748). This memory element is composed of an information reading section S composed of an artificial lattice magnetoresistive film, an information holding section M composed of a hard magnetic film, and an information recording section composed of magnetic field applying current lines R and R '. There is a disadvantage that there are many steps.

【0004】[0004]

【発明が解決しようとする課題】本発明は人工格子磁気
抵抗効果膜が情報保持部と情報読み出し部を兼ねる構成
となっており、素子作製の工程が少なく、かつ特殊な動
作特性を示す人工格子膜を用いることにより、小さな情
報記録電流と、大きな情報読み出し出力の微小メモリー
素子を可能とし、又使用法をかえれば増幅素子ともなる
ものである。
According to the present invention, an artificial lattice magnetoresistive film has a structure in which an information holding portion and an information reading portion are also used. The use of the film enables a small memory element having a small information recording current and a large information reading output, and can also be used as an amplifying element if the usage is changed.

【0005】[0005]

【課題を解決するための手段】本発明は、情報保持と読
み出しを兼ねた磁性膜と非磁性金属膜を積層して成る人
工格子膜導体部と絶縁膜を介してこの近傍に設けられた
情報記録及び情報読み出番地指定用の金属導体線部より
成り、上記人工格子膜部において、磁性膜間の交換結合
エネルギーJを非磁性金属膜厚を調整してJ<0、即ち
各磁性層のスピンが反平行の場合の方が平行の場合より
もエネルギーが低くなるようにし、かつ該人工格子膜の
磁気異方性エネルギーKがK>|J|を満足するように
し、上記電流線部に電流を流すことにより発生する磁界
方向と上記Kに起因する磁化容易軸方向がほぼ平行とな
るように構成し、図1に示すように外部磁界Hを0から
H>0に増加させた場合、該人工格子膜の抵抗が一旦増
加し、反転磁界Hmで極大を示した後減少して飽和磁界
Hs以上ではH=0の場合とほぼ同じ抵抗値となり、そ
の後Hを減少させると、H=0まではほぼ抵抗変化が無
く、磁界を反転してH<0方向に磁界を増加させると上
記H>0の場合と対称的な磁気抵抗変化動作を示すよう
にするものである。
According to the present invention, there is provided an artificial lattice film formed by laminating a magnetic film and a non-magnetic metal film having both information holding and reading functions, and an information provided in the vicinity thereof via an insulating film via an insulating film. In the artificial lattice film portion, the exchange coupling energy J between the magnetic films is adjusted by adjusting the non-magnetic metal film thickness to J <0, that is, for each magnetic layer. The energy is lower when the spin is antiparallel than when the spin is parallel, and the magnetic anisotropy energy K of the artificial lattice film satisfies K> | J |. When the direction of the magnetic field generated by passing a current and the direction of the easy axis of magnetization caused by K are substantially parallel to each other, and the external magnetic field H is increased from 0 to H> 0 as shown in FIG. Once the resistance of the artificial lattice film increases, the reversal magnetic field H After reaching the maximum, the resistance value decreases and becomes substantially the same resistance value as when H = 0 when the saturation magnetic field is equal to or higher than Hs. After that, when H is reduced, there is almost no change in resistance until H = 0, and the magnetic field is inverted to H When the magnetic field is increased in the <0 direction, the magnetoresistance change operation is symmetrical to the case of H> 0.

【0006】[0006]

【作用】磁性層1,2と非磁性層より成る人工格子膜の磁
性層の飽和磁化をMi(i=1,2)、非磁性層を介した交換
結合エネルギーをJ12、磁性層の磁気異方性エネルギー
をKi(i=1,2)、外部磁界をHとすると、この系のエネ
ルギーEは E=−1/2ΣHMicosφi−ΣJ12cos(φ12)+1/2ΣKisin2φi ---- (1) と表される。ただし単純な例として磁界印加方向を磁化
容易軸方向とし、印加磁界方向と磁性層の磁化のなす角
をφとし、一軸異方性を仮定した。この一軸異方性Kは
成膜法を工夫することにより膜に付与することが可能で
ある。又非磁性膜の膜厚を適当に調整することによりJ
<0とすることが可能で、この時一般に膜は巨大磁気抵
抗効果を示す。(1)式において、J<0でK>|J|、
かつ|J|もKも比較的小さい場合のこの人工格子膜の
磁化容易軸方向のMR(磁気抵抗)曲線は以下の実施例で
述べるように図1のような曲線となり、零磁界近傍の小
さい磁界で大きな磁気抵抗変化を示すことが可能とな
る。
The saturation magnetization of the magnetic layer of the artificial lattice film composed of the magnetic layers 1 and 2 and the non-magnetic layer is M i (i = 1, 2), the exchange coupling energy through the non-magnetic layer is J 12 , If the magnetic anisotropy energy is K i (i = 1,2) and the external magnetic field is H, the energy E of this system is E = −1 / 2ΣHM i cos φ i −φJ 12 cos (φ 12 ) +1 / 2ΣK i sin 2 φ i ---- (1) However, as a simple example, a uniaxial anisotropy is assumed, where the direction of the applied magnetic field is the easy axis direction, the angle between the applied magnetic field direction and the magnetization of the magnetic layer is φ. This uniaxial anisotropy K can be given to a film by devising a film forming method. By appropriately adjusting the thickness of the non-magnetic film, J
<0, where the film generally exhibits a giant magnetoresistance effect. In equation (1), J <0 and K> | J |,
In addition, when both | J | and K are relatively small, the MR (magnetic resistance) curve in the easy axis direction of the artificial lattice film becomes a curve as shown in FIG. It is possible to show a large change in magnetoresistance in a magnetic field.

【0007】この条件が満足されない場合、例えばK<
|J|の時は零磁界近傍の小さい磁界で大きな磁気抵抗
変化は得られない。またJ>0ではいわゆる巨大磁気抵
抗効果は得られない。
If this condition is not satisfied, for example, K <
When | J |, a large change in magnetoresistance cannot be obtained with a small magnetic field near the zero magnetic field. When J> 0, a so-called giant magnetoresistance effect cannot be obtained.

【0008】人工格子膜部は[磁性金属膜/非磁性金属
膜/磁性金属膜]を基本構成とするが、[磁性金属膜/
非磁性金属膜]を積層したものでも良い。又磁性金属層
膜は同じ組成でも異なる組成のものでも良いが、本質的
には同じ組成で良いので従来の磁気的に結合していない
異なる保磁力を用いた磁気抵抗効果素子に比べて、スパ
ッタ−法等で成膜する場合磁性タ−ゲットが1種類でも
出来るメリットがある。
The basic structure of the artificial lattice film portion is [magnetic metal film / non-magnetic metal film / magnetic metal film].
Nonmagnetic metal film] may be laminated. The magnetic metal layer film may have the same composition or a different composition. However, since the composition may be essentially the same, compared to a conventional magnetoresistive element using a different coercive force that is not magnetically coupled, the sputtering may be performed. In the case of forming a film by the method, there is an advantage that only one kind of magnetic target can be used.

【0009】磁気抵抗変化が生じるメカニズムは、磁性
層間の磁化方向が反平行の場合は磁性層/非磁性層界面
での電子の磁気的散乱が大きくなり抵抗が増加するため
で、図1において磁気抵抗が極大を示すところで、各磁
性層の磁化方向がほぼ反平行となり、十分磁界を印加し
た場合は各磁性層の磁化方向が磁界方向と平行となる。
The mechanism by which the magnetoresistance change occurs is that when the magnetization direction between the magnetic layers is antiparallel, the magnetic scattering of electrons at the interface between the magnetic layer and the nonmagnetic layer increases and the resistance increases. When the resistance shows the maximum, the magnetization directions of the respective magnetic layers become substantially antiparallel, and when a sufficient magnetic field is applied, the magnetization directions of the respective magnetic layers become parallel to the magnetic field directions.

【0010】図2は本発明素子の1例で、絶縁膜3の上
に設けられた金属導体線1に電流を流し、磁性膜2Mと
非磁性膜2Nより成る人工格子膜部2の飽和磁界Hs以
上の磁界を発生させて情報を記録し、情報の読み出し時
には金属導体線に図1に示された反転磁界Hm以下の磁
界を印加し、その磁界方向と上記の情報記録磁界方向が
平行の場合は人工格子膜導体部の抵抗変化が殆ど無く、
反平行の場合は人工格子膜導体部の抵抗変化が生ずるこ
とにより情報の読み出しを行う。又情報読み出しは電流
線に磁界方向が変化するパルスを流し、この時の人工格
子膜導体部の抵抗変化が+(増加)か、−(減少)かに
より行っても良い。
FIG. 2 shows an example of the element of the present invention, in which an electric current is applied to a metal conductor wire 1 provided on an insulating film 3 to saturate an artificial lattice film portion 2 composed of a magnetic film 2M and a nonmagnetic film 2N. Information is recorded by generating a magnetic field of Hs or more, and at the time of reading information, a magnetic field of a reversal magnetic field Hm or less shown in FIG. 1 is applied to the metal conductor wire, and the direction of the magnetic field is parallel to the direction of the information recording magnetic field. In the case, there is almost no resistance change of the artificial lattice film conductor,
In the case of antiparallel, information is read out due to a change in the resistance of the artificial lattice film conductor. Further, information reading may be performed by applying a pulse in which the direction of the magnetic field changes to the current line, and determining whether the resistance change of the artificial lattice film conductor at this time is + (increase) or-(decrease).

【0011】本発明では人工格子膜部の磁性膜に硬質磁
性膜を用いず、かつ人工格子膜の磁気異方性エネルギー
Kに起因する容易軸方向と金属導体線部によって発生す
る磁界方向が平行となるように構成し、かつK>|J|
として特殊なMR特性を示すようにしているため、従来
の反強磁性結合型人工格子膜と異なり人工格子膜部の飽
和磁界Hsが小さく、従って金属導体線部に流す電流を
小さく抑えることが可能である。又本発明では人工格子
膜の非磁性金属膜厚を調整し、磁性金属膜が反強磁性結
合するようにして巨大磁気抵抗効果が得られるようにし
てあるため、磁気抵抗変化が大きく、情報読み出し時の
出力も大きなものが得られる。
In the present invention, the hard magnetic film is not used as the magnetic film of the artificial lattice film portion, and the direction of the easy axis due to the magnetic anisotropy energy K of the artificial lattice film and the direction of the magnetic field generated by the metal conductor wire portion are parallel. And K> | J |
As a result, unlike the conventional antiferromagnetically-coupled artificial lattice film, the saturation magnetic field Hs of the artificial lattice film portion is small, so that the current flowing through the metal conductor wire portion can be suppressed to be small. It is. Also, in the present invention, the nonmagnetic metal film thickness of the artificial lattice film is adjusted so that the magnetic metal film is antiferromagnetically coupled so that a giant magnetoresistance effect can be obtained. The output at the time is also large.

【0012】このメモリー素子をマトリックス状に配置
し、導体線部が2本の導体線より成るようにし、これら
の線の交点に各メモリー素子が配置されるようにすれ
ば、メモリーアレ−が得られる。
A memory array can be obtained by arranging the memory elements in a matrix, forming a conductor line portion comprising two conductor lines, and arranging each memory element at the intersection of these lines. Can be

【0013】更に人工格子膜部がそれぞれ異なる磁気抵
抗変化特性を示す(即ちHsとHmがそれぞれ異なる)
複数種類の構成ブロック[磁性金属膜/非磁性金属膜/
磁性金属膜]N(Nは積層数でN≧1)をこれら構成ブロ
ック間の磁気的相互作用の分離をすべく設けられた非磁
性膜を介して複数ブロック積層した人工格子膜部を用い
れば、導体線の記録電流の値により情報が記録される構
成ブロックと記録されない構成ブロックが生じて多重メ
モリー素子が可能となる。
Further, the artificial lattice film portions exhibit different magnetoresistance change characteristics (that is, Hs and Hm are different).
Multiple types of building blocks [magnetic metal film / non-magnetic metal film /
Magnetic metal film] N (where N is the number of layers N ≧ 1) is obtained by using an artificial lattice film portion in which a plurality of blocks are laminated via a non-magnetic film provided for separating magnetic interaction between these constituent blocks. In addition, a configuration block in which information is recorded and a configuration block in which information is not recorded are generated according to the value of the recording current of the conductor wire, and a multiple memory element can be realized.

【0014】増幅素子として使用する場合は、一度導体
線にHsを越える磁界が発生する電流を流して素子を初
期化しておき、導体線に入力電圧に比例した弱電流を流
しHmを越えない弱磁界を発生させ、人工格子膜部の磁
気抵抗がこれに連動して変化することより、増幅された
出力を取り出すものである。
When used as an amplifying element, the element is initialized by passing a current that generates a magnetic field exceeding Hs into the conductor wire once, and a weak current proportional to the input voltage is applied to the conductor wire so that the current does not exceed Hm. A magnetic field is generated, and the amplified resistance is extracted by changing the magnetic resistance of the artificial lattice film portion in conjunction therewith.

【0015】[0015]

【実施例】人工格子膜部の磁性膜としては磁気抵抗変化
が生じやすく、低磁歪の膜であることが必要である。こ
れは実用上磁歪が大きいとノイズの原因や特性のばらつ
きが生じるからである。又それ自体の結晶磁気異方性も
小さいことが望ましく、磁界中蒸着や、斜め蒸着、ある
いは特殊な基板を用いて簡単に磁気異方性を付けること
が出来るものが望ましい。これの条件を満足し、磁歪が
10-5以下で軟磁性を示し低磁界で磁化反転しやすいもの
としては、 NiXCoYFeZ --- (2) を主成分とし、原子組成比が X=0.6〜0.9、Y=0〜0.4、Z=0〜0.3 --- (2') のNi-richの軟磁性膜が望ましく、その代表的なものは
Ni0.8Co0.10Fe0.10, Ni0 .68Co0.2Fe0.12等である。これ
らよりやや軟磁気特性は劣るものの、磁歪がやはり10-5
以下で比較的低磁界で磁化反転し、より大きな磁気抵抗
変化が得られるものとしては NiX'CoY'FeZ' --- (3) を主成分し、原子組成比が X'=0〜0.4、Y'=0.2〜0.95、Z=0〜0.5 --- (3') のCo-richの磁性膜があり、その代表的なものは Co0.7N
i0.1Fe0.2, Co0.61Ni0.2 3Fe0.16, Co0.46Fe0.34Ni0.20
等である。なお磁性層の膜厚は1nm未満では人工格子膜
の軟磁気特性がやや損なわれ、10nmより厚いとMR特性
が劣化するので1nmから10nmであることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The magnetic film of the superlattice film portion is liable to cause a change in magnetoresistance and needs to be a film with low magnetostriction. This is because, if the magnetostriction is practically large, a cause of noise and a variation in characteristics occur. It is also desirable that the crystal anisotropy of the crystal itself be small, and it is desirable that the magnetic anisotropy can be easily imparted using magnetic field evaporation, oblique evaporation, or a special substrate. Satisfying these conditions, magnetostriction
A material that exhibits soft magnetism at 10 −5 or less and easily reverses magnetization at a low magnetic field is mainly composed of Ni X Co Y Fe Z --- (2) with an atomic composition ratio of X = 0.6 to 0.9 and Y = 0. ~ 0.4, Z = 0 ~ 0.3 --- (2 ') Ni-rich soft magnetic film is desirable.
Ni 0.8 Co 0.10 Fe 0.10, a Ni 0 .68 Co 0.2 Fe 0.12 mag. Although the soft magnetic properties are slightly inferior to these, the magnetostriction is still 10 -5.
In the following, Ni X ' Co Y' Fe Z ' --- (3) is used as the main component, and the atomic composition ratio X' = 0 ~ 0.4, Y '= 0.2 ~ 0.95, Z = 0 ~ 0.5 --- (3') Co-rich magnetic film, typical of which is Co 0.7 N
i 0.1 Fe 0.2 , Co 0.61 Ni 0.2 3 Fe 0.16 , Co 0.46 Fe 0.34 Ni 0.20
And so on. When the thickness of the magnetic layer is less than 1 nm, the soft magnetic properties of the artificial lattice film are slightly impaired, and when the thickness is more than 10 nm, the MR properties are deteriorated.

【0016】非磁性金属膜は上記磁性金属膜との界面で
の反応が少なく固溶し難く、磁性金属膜/非磁性金属膜
の界面が明確なものが望ましく、かつこの非磁性金属膜
を介して磁性膜間が反強磁性的に結合する必要があり、
これらの条件を満足するものとしてはCu,Ag,Auがあり、
特に大きな磁気抵抗変化を得るにはCuが特に好ましい。
この非磁性金属膜の厚さtを変化させると磁性層間の結
合エネルギーJが正と負の間を振動しつつ減少する。J
が負となり大きなMR変化が得られるのは、スパッタ法
で人工格子膜を成膜した場合tが0.9nm, 2.0nm近傍であ
るが、tが0.9nm近傍では一般的に|J|が大きく、K
>|J|を満足しようとするとKも大きくなり、本発明
の目的である低磁界で大きなMR変化を得ることが困難
となるのでtは0.2nm近傍であることが望ましい。又M
BE等を用いた蒸着法て作製した人工格子エピ膜ではt
が1.6nm, 2.0nm, 2.4nm近傍でもJが負で比較的|J|
も小さく大きなMR変化が得られる。従ってtは1.5nm
から2.5nmであることが望ましい。具体的には低磁界動
作のMR特性を得ようとすれば少なくともKは5x104erg
/cc以下であることが必要で|J|もこれ以下であるこ
とが必要である。
The non-magnetic metal film has a small reaction at the interface with the magnetic metal film and is hardly dissolved, and it is desirable that the interface between the magnetic metal film and the non-magnetic metal film is clear. It is necessary to couple the magnetic films antiferromagnetically,
Those satisfying these conditions include Cu, Ag, and Au.
Cu is particularly preferred for obtaining a particularly large magnetoresistance change.
When the thickness t of the nonmagnetic metal film is changed, the coupling energy J between the magnetic layers decreases while oscillating between positive and negative. J
Is negative and a large MR change is obtained when the artificial lattice film is formed by the sputtering method when t is around 0.9 nm and 2.0 nm. When t is around 0.9 nm, | J | K
In order to satisfy> | J |, K becomes large, and it becomes difficult to obtain a large MR change in a low magnetic field, which is the object of the present invention. Therefore, it is desirable that t is around 0.2 nm. And M
In an artificial lattice epitaxial film produced by a vapor deposition method using BE or the like, t
Is near 1.6nm, 2.0nm, 2.4nm and J is relatively negative | J |
And a large MR change is obtained. Therefore, t is 1.5 nm
To 2.5 nm is desirable. More specifically, at least K is 5 × 10 4 erg in order to obtain the MR characteristic of the low magnetic field operation.
/ cc and | J | also needs to be less than this.

【0017】なお人工格子膜部は基本的には[磁性金属
膜/非磁性金属膜/磁性金属膜]なる構成があれば良い
が、[磁性金属膜/非磁性金属膜]の積層数があまり少
ないと大きな磁気抵抗変化が得られ難いので、少なくと
もこの積層数が3以上あることが望ましい。又増幅素子
として使用する場合は、メモリー素子として使用する場
合より人工格子導体部に電流を流す必要があり、やはり
積層数は3以上あることが望ましい。
The artificial lattice film portion basically needs to have a configuration of [magnetic metal film / non-magnetic metal film / magnetic metal film], but the number of stacked [magnetic metal film / non-magnetic metal film] is too small. If the number is small, it is difficult to obtain a large change in magnetoresistance. Therefore, it is desirable that at least the number of layers be three or more. In addition, when used as an amplifying element, it is necessary to supply a current to the artificial lattice conductor part more than when used as a memory element, and it is also desirable that the number of layers be three or more.

【0018】又多重メモリー素子として使用する場合は
磁性金属膜の組成の異なる組み合わせを上記(2),(3)式
のものから選んでも良いし、組成は変えずに磁性金属膜
の膜厚を変えてKを調整したり、非磁性金属膜の膜厚を
変えてJを調整しても良い。なお構成ブロック間の磁気
的相互作用分離用を目的とする非磁性膜は上記の非磁性
金属膜と同じ組成のものでも良いが、目的が上記の反強
磁性結合を目的とする非磁性金属膜とは異なるため、こ
の膜厚は2nm近傍とする必要はない。。
When used as a multiple memory element, different combinations of the composition of the magnetic metal film may be selected from the above formulas (2) and (3), or the thickness of the magnetic metal film may be changed without changing the composition. K may be adjusted by changing the thickness, or J may be adjusted by changing the thickness of the nonmagnetic metal film. The non-magnetic film for the purpose of separating magnetic interaction between the constituent blocks may have the same composition as the above-mentioned non-magnetic metal film. Therefore, the film thickness does not need to be near 2 nm. .

【0019】(参考例) タ−ゲットに Ni80Fe10Co10(磁性膜), Cu(非磁性金属
膜)を用い(組成はすべて原子%)、NiFeCo層厚が3nm,
Cu層厚が2nm、積層回数10の人工格子膜をスパッタされ
た原子が斜めに基板に入射するようにして成膜した。こ
の膜はKが約4x104/cc、Jが約−2x104erg/ccであり、
本願発明の条件K>|J|を満足している。このように
して得られた膜のMR曲線をその容易軸方向に磁界を印
加して測定したところ図1に示すような結果が得られ
た。このようにして人工格子磁気抵抗変化部を作製した
後、SiO2膜絶縁膜をこの上に成膜し、更に導体線用のAu
Crを成膜し、メモリ−素子を作製した。
(Reference Example) Ni 80 Fe 10 Co 10 (magnetic film) and Cu (non-magnetic metal film) were used as targets (all compositions were atomic%), and the thickness of the NiFeCo layer was 3 nm.
An artificial lattice film having a Cu layer thickness of 2 nm and a lamination number of 10 was formed such that sputtered atoms were obliquely incident on the substrate. This membrane has a K of about 4 × 10 4 / cc and a J of about −2 × 10 4 erg / cc;
The condition K> | J | of the present invention is satisfied. When the MR curve of the film thus obtained was measured by applying a magnetic field in the easy axis direction, the result shown in FIG. 1 was obtained. After forming the artificial lattice magnetoresistance change portion in this manner, an SiO 2 insulating film is formed thereon, and further, Au for the conductor wire is used.
Cr was deposited to produce a memory element.

【0020】このメモリー素子の動作を確認すべく、図
3(a)に示す様に導体線1に+もしくは−のパルス電流
を流し、図1のHsもしくは−Hsを越える磁界を発生
させて人工格子膜部2を一方向に磁化して情報を記録
し、次に同図(b),(c)に示す様に導体線1に+から−に
変化するパルス弱電流を流して+Hmと−Hmの間の強
度のパルス弱磁界を発生させ、同図(d)に示す様にその
時の人工格子磁気抵抗素子部の抵抗変化を測定したとこ
ろ、同図(d)に示す様に記録された磁化方向によってこ
の抵抗変化が+(増)か、−(減)かに明確に変化する
ことよりそのメモリー機能を確認した。
In order to confirm the operation of this memory element, as shown in FIG. 3A, a + or-pulse current is applied to the conductor wire 1 to generate a magnetic field exceeding Hs or -Hs in FIG. The information is recorded by magnetizing the lattice film portion 2 in one direction, and then a weak pulse current that changes from + to-is applied to the conductor line 1 as shown in FIGS. A pulse weak magnetic field having an intensity of Hm was generated, and the resistance change of the artificial lattice magnetoresistive element at that time was measured as shown in FIG. 4 (d). The result was recorded as shown in FIG. 4 (d). The memory function was confirmed from the fact that the resistance change clearly changed to + (increase) or-(decrease) depending on the magnetization direction.

【0021】(実施例) 参考例 と同様にタ−ゲットに Ni80Fe10Co10(軟磁性膜),
Cu(非磁性金属膜)を用い(組成はすべて原子%)、NiF
eCo層厚が3nm, Cu層厚が2nm、積層回数10の人工格子膜
をスパッタされた原子が斜めに基板に入射するようにし
て成膜した。このようにして人工格子磁気抵抗変化部を
作製した後、SiO2膜絶縁膜をこの上に成膜し、更に導体
線用のAuCrを成膜し、増幅素子を作製した。
(Example) Ni 80 Fe 10 Co 10 (soft magnetic film) was used as a target in the same manner as in the reference example .
Using Cu (non-magnetic metal film) (all compositions are atomic%), NiF
An artificial lattice film having an eCo layer thickness of 3 nm, a Cu layer thickness of 2 nm, and a lamination number of 10 was formed such that sputtered atoms were obliquely incident on the substrate. After producing the artificial lattice magnetoresistance change portion in this way, an SiO 2 film insulating film was formed thereon, and AuCr for a conductor wire was further formed to produce an amplification element.

【0022】この増幅素子の動作を確認すべく、図4
(a)に示す様に導体線1に+のパルス電流を流して図1
のHsを越える磁界を発生させ、人工格子膜部の磁化方
向を初期化し、次に同図(b)に示す様に導体線1に入力
交流電圧を印加し弱電流を流し、これによる発生磁界の
振幅が図1のHmを越えないようにし、人工格子磁気抵
抗素子部2に電圧を印加しておき、この導体部の抵抗変
化による出力電圧変化を測定したところ、同図(c)に示
す様に入力電圧が増幅されることより素子が増幅機能を
確認した。
In order to confirm the operation of this amplifying element, FIG.
As shown in FIG.
A magnetic field exceeding Hs is generated, the magnetization direction of the artificial lattice film portion is initialized, and then an input AC voltage is applied to the conductor wire 1 to flow a weak current as shown in FIG. Of the artificial lattice magneto-resistive element portion 2 was measured so that the output voltage change due to the resistance change of the conductor portion was measured. As shown in FIG. The element was confirmed to have an amplification function by amplifying the input voltage as described above.

【0023】[0023]

【発明の効果】本発明は簡単な構成で磁気抵抗効果を用
いた素子としては低電流動作が可能な微小なメモリー素
子と増幅素子を可能とするものである。
According to the present invention, as a device using the magnetoresistive effect with a simple structure, a small memory device and an amplifying device capable of operating at a low current can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の人工格子磁気抵抗効果素子部のMR
(磁気抵抗)曲線の一例を示す図
FIG. 1 shows MR of an artificial lattice magnetoresistive element of the present invention.
Diagram showing an example of a (magnetic resistance) curve

【図2】本発明のメモリー素子、及び増幅素子の構成図FIG. 2 is a configuration diagram of a memory element and an amplification element of the present invention.

【図3】本発明のメモリー素子の動作説明図FIG. 3 is a diagram illustrating the operation of the memory element of the present invention.

【図4】本発明の増幅素子の動作説明図FIG. 4 is an explanatory diagram of the operation of the amplifying element of the present invention.

【図5】従来の磁気抵抗効果を利用したメモリー素子の
構成図
FIG. 5 is a configuration diagram of a conventional memory element utilizing a magnetoresistance effect.

【符号の説明】[Explanation of symbols]

1 導体線 2 人工格子膜 2M 磁性金属膜 2N 非磁性金属膜 3 絶縁膜 S 人工格子磁気抵抗効果膜より成る情報読み出し部 M 硬質磁性膜より成る情報保持部 R, R' 磁界印加用電流線 REFERENCE SIGNS LIST 1 conductor wire 2 artificial lattice film 2 M magnetic metal film 2 N non-magnetic metal film 3 insulating film S information reading unit composed of artificial lattice magnetoresistive film M information holding unit composed of hard magnetic film R, R ′ magnetic field applying current line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川分 康博 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−243673(JP,A) 特開 平4−302103(JP,A) 特開 平8−55313(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 43/08 G11C 11/14 H01F 10/08 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Kawabata 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-6-243673 (JP, A) JP-A-4 -302103 (JP, A) JP-A-8-55313 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 43/08 G11C 11/14 H01F 10/08 JICST file (JOIS )

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性金属膜を介して反強磁性結合をして
いる二つの磁性金属膜より成る[磁性金属膜/非磁性金
属膜/磁性金属膜]人工格子膜導体部と、この導体部近
傍に絶縁膜を介して設けられた金属導体線を備え、該磁
性膜間の交換結合エネルギ−をJ(<0)、該人工格子
膜の磁気異方性エネルギ−をKとするとき、該人工格子
膜部がK>|J|を満足し、かつ該金属導体線に電流を
流すことにより発生する磁界方向と該人工格子膜のKに
起因する磁化容易軸方向がほぼ平行となるように構成さ
れ、該人工格子膜部のMR曲線(磁界による抵抗変化曲
線)が上記発生磁界Hを0からH>0に増加させた場
合、該人工格子膜部の抵抗が一旦増加し、極大を示した
後減少してH=0の場合とほぼ同じ抵抗値となり、その
後Hを減少させると、H=0まではほぼ抵抗変化が無
く、磁界を反転してH<0方向に磁界を増加させると抵
抗は一旦増加し、極大を示した後減少しH=0の場合と
ほぼ同じ抵抗値を示す動作をすることを特徴とする増幅
素子。
1. An anti-ferromagnetic coupling through a non-magnetic metal film
[Magnetic metal film / Nonmagnetic gold]
Metal film / magnetic metal film] an artificial lattice film conductor portion and the vicinity of this conductor portion
A metal conductor wire provided on the side with an insulating film interposed is provided.
The exchange coupling energy between the permeable membranes is J (<0),
When the magnetic anisotropy energy of the film is K, the artificial lattice
The film part satisfies K> | J |, and current is applied to the metal conductor wire.
The direction of the magnetic field generated by flowing and the K of the artificial lattice film
So that the directions of the easy axes of magnetization are almost parallel.
And the MR curve of the artificial lattice film portion (resistance change curve due to the magnetic field)
Line) indicates that the generated magnetic field H is increased from 0 to H> 0.
In the case, the resistance of the artificial lattice film part once increased and showed a maximum.
After that, the resistance value decreases and becomes almost the same resistance value as in the case of H = 0.
After that, when H is decreased, there is almost no resistance change until H = 0.
When the magnetic field is reversed and the magnetic field is increased in the H <0 direction,
The resistance increases once, decreases after showing the maximum, and when H = 0.
Amplification characterized by operating with almost the same resistance value
element.
【請求項2】特に人工格子膜部が[磁性金属膜/非磁性
金属膜]を構成要素として、この構成要素を少なくとも
3回以上積層して成ることを特徴とする請求項1記載の
増幅素子。
2. The method according to claim 1, wherein the artificial lattice film portion is a magnetic metal film / non-magnetic film.
Metal film] as a component, and at least this component
2. The method according to claim 1, wherein the layers are laminated three or more times.
Amplifying element.
【請求項3】特に人工格子膜部の磁性金属膜がNixC
oyFezを主成分とする磁性膜で、原子組成比でXは
0.6〜0.9、Yは0〜0.4、Zは0〜0.3であ
ることを特徴とする請求項1又は2記載の増幅素子。
3. The method according to claim 1, wherein the magnetic metal film of the artificial lattice film portion is NixC.
X is a magnetic film containing oyFez as a main component.
0.6-0.9, Y is 0-0.4, Z is 0-0.3
3. The amplifying device according to claim 1, wherein:
【請求項4】特に人工格子膜部の磁性金属膜がNix’
Coy’Fez’を主成分し、原子組成比でX’は0〜
0.4、Y’は0.2〜0.95、Z’は0〜0.5で
あることを特徴とする請求項1又は2記載の増幅素子。
4. The method according to claim 1, wherein the magnetic metal film of the artificial lattice film portion is Nix '.
Main component is Coy'Fez ', and X' is 0 to 0 in atomic composition ratio.
0.4, Y 'is 0.2-0.95, Z' is 0-0.5
3. The amplifying element according to claim 1, wherein the amplifying element is provided.
【請求項5】特に人工格子膜部の非磁性金属膜がCu,
Ag,Auのいずれかであることを特徴とする請求項1
〜4のいずれかに記載の増幅素子。
5. The method according to claim 1, wherein the nonmagnetic metal film of the artificial lattice film portion is made of Cu,
2. The method according to claim 1, wherein the material is one of Ag and Au.
5. The amplifying element according to any one of items 1 to 4.
【請求項6】特に人工格子膜部の非磁性金属膜がCuで
あることを特徴とする請求項1〜4のいずれかに記載の
増幅素子。
6. The non-magnetic metal film of the artificial lattice film portion is made of Cu.
The method according to any one of claims 1 to 4, wherein
Amplifying element.
【請求項7】特に非磁性金属膜の膜厚が1.5nm以
上、2.5nm以下であることを特徴とする請求項1〜
6のいずれかに記載の増幅素子。
7. A non-magnetic metal film having a thickness of 1.5 nm or less.
The thickness is not more than 2.5 nm.
7. The amplifying element according to any one of 6.
JP27757494A 1994-11-11 1994-11-11 Amplifying element Expired - Fee Related JP3216448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27757494A JP3216448B2 (en) 1994-11-11 1994-11-11 Amplifying element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27757494A JP3216448B2 (en) 1994-11-11 1994-11-11 Amplifying element

Publications (2)

Publication Number Publication Date
JPH08139387A JPH08139387A (en) 1996-05-31
JP3216448B2 true JP3216448B2 (en) 2001-10-09

Family

ID=17585386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27757494A Expired - Fee Related JP3216448B2 (en) 1994-11-11 1994-11-11 Amplifying element

Country Status (1)

Country Link
JP (1) JP3216448B2 (en)

Also Published As

Publication number Publication date
JPH08139387A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
JP2771128B2 (en) Magnetoresistive element, magnetoresistive head using the same, memory element, and amplifying element
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
US4103315A (en) Antiferromagnetic-ferromagnetic exchange bias films
EP0877398B1 (en) Magnetic element and magnetic head and magnetic memory device using thereof
JP2651015B2 (en) Magnetic field sensor with ferromagnetic thin film
JP3574186B2 (en) Magnetoresistance effect element
JP3184352B2 (en) Memory element
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
JP3691898B2 (en) Magnetoresistive effect element, magnetic information reading method, and recording element
JP2001156358A (en) Magneto-resistance effect element and magnetic memory element
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP3547974B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP2000307171A (en) Pinning layer of magnetic device
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP3216448B2 (en) Amplifying element
JPH10308313A (en) Magnetic element and magnetic head using the same and magnetic storage device
JP3677107B2 (en) Magnetoresistive effect element
JP2003197872A (en) Memory using magneto-resistance effect film
Liu et al. Negative coercivity and spin configuration in Ni/TbFeCo/Ni trilayers
JP3132809B2 (en) Magnetoresistive element and magnetoresistive head
JP2848083B2 (en) Magnetoresistance effect element
JPH08321016A (en) Magnetoresistive film
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JPH0935216A (en) Magnetoresistance effect film and magnetic recording head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees