JP3215716B2 - Measuring device for cold energy supply - Google Patents

Measuring device for cold energy supply

Info

Publication number
JP3215716B2
JP3215716B2 JP15004392A JP15004392A JP3215716B2 JP 3215716 B2 JP3215716 B2 JP 3215716B2 JP 15004392 A JP15004392 A JP 15004392A JP 15004392 A JP15004392 A JP 15004392A JP 3215716 B2 JP3215716 B2 JP 3215716B2
Authority
JP
Japan
Prior art keywords
ice
amount
snow
water mixture
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15004392A
Other languages
Japanese (ja)
Other versions
JPH05322669A (en
Inventor
和平 井上
要 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP15004392A priority Critical patent/JP3215716B2/en
Publication of JPH05322669A publication Critical patent/JPH05322669A/en
Application granted granted Critical
Publication of JP3215716B2 publication Critical patent/JP3215716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は地域的に冷房を要する例
えば地上、船上或いは車上に設置される複数の冷却負荷
に対して液送管から圧送される冷熱媒体として、寒冷地
においては降雪並びにこれらを除雪した氷雪の水との混
合体(氷雪水混合体)を用い、これに含まれる氷雪水の
混合割合と冷却水温度とが変動する冷熱媒体として取扱
い、氷雪量が保有する潛熱量並びに水量の保有する顕熱
量との総熱量を積算することによって、冷熱供給源から
複数の冷却負荷への真の冷熱総量を計測する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling medium which is required to be locally cooled, for example, a plurality of cooling loads installed on the ground, on a ship, or on a vehicle. Using a mixture of ice and snow water from which snow has been removed (ice and snow water mixture) and treating it as a cooling medium in which the mixing ratio of ice and snow water and the temperature of the cooling water fluctuate, the amount of latent heat held by the amount of ice and snow Also, the present invention relates to a device for measuring the total amount of true cold from a cold supply source to a plurality of cooling loads by integrating the total amount of heat with the amount of sensible heat held by the amount of water.

【0002】[0002]

【従来の技術】従来、液送管によって給送される氷雪水
混合体の冷熱量を計測するには、冷熱媒体液の流量とそ
の保有する潛熱及び顕熱が常に一様な割合で供給されて
いることを前提としているが、実際には冷熱媒体として
氷雪水混合体を用いると、その氷雪水と水との割合、及
び冷却水の温度が一定ではなく、更に使用される供給熱
量を計測するに際して、潛熱利用後の排出水が顕熱とし
て使われるので、これを加算したとしても真の熱量が算
出されたことにはならない。
2. Description of the Related Art Conventionally, in order to measure the amount of cold of an ice-snow water mixture fed by a liquid feed pipe, the flow rate of a cooling medium and the latent heat and sensible heat held by the liquid are always supplied at a uniform rate. Actually, when an ice-snow water mixture is used as the cooling medium, the ratio of the ice-snow water to the water and the temperature of the cooling water are not constant, and the amount of heat used is further measured. In doing so, the discharged water after using the latent heat is used as sensible heat, so even if this is added, the true calorific value is not calculated.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は前記従
来の問題点に鑑み、液送管によって冷却負荷に圧送され
る氷雪水混合割合が変化する冷媒液の質量と温度並び
に、氷雪水混合体の保有する潛熱及び水の保有する顕熱
とが把握されていないことのために、使用された真の総
合熱量が明確に捕捉できなっかったという問題点を解決
せんとするにある。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has been made in view of the above-mentioned problems. The problem is that the true total calorific value used cannot be clearly captured because the latent heat of water and the sensible heat of water are not grasped.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明は、液送管により冷却負荷に圧送される冷
熱媒体液の有する冷熱量を積算して計測する装置におい
て、上記冷熱媒体液として氷雪水混合体が圧送される上
記液送管の流路に、コリオリの力を利用したコリオリ式
質量流量計の計測管と温度計測手段とを設け、上記圧送
される氷雪水混合体を上記コリオリ式質量流量計の計測
管に流しながら、該計測管に対して外部の発振手段から
電気的振動を加えて、計測管内の氷雪水混合体を含む共
振周波数若しくはその位相の変化を検出して、前記氷雪
水混合体の氷雪量の割合を計測し、前記氷雪量の割合に
基づいて冷熱媒体液の保有する潛熱量と顕熱量とを求
め、これら2つの総熱量により冷熱供給源から給送され
る氷雪水混合体の供給冷熱量を計測することを特徴とす
るものである。即ち、上記潜熱量と顕熱量とにより氷雪
水混合体からなる冷熱媒体液の総熱量を逐次演算しなが
ら積算することにより、上記冷熱供給源側から上記液送
管により給送されて冷却負荷に至る氷雪水混合体の総熱
量を求め、これにより冷却負荷が使用された熱量と冷熱
利用後の排出水が保有する冷熱量を含めた真の総熱量を
求め、表示する事が出来る。
In order to solve the above-mentioned problems, the present invention relates to an apparatus for integrating and measuring the amount of cooling heat of a cooling medium which is pressure-fed to a cooling load by a liquid feed pipe. In the flow path of the liquid sending pipe in which the ice-water mixture is pumped as a liquid, a measuring tube and a temperature measuring means of a Coriolis mass flowmeter using Coriolis force are provided, and the ice-water mixture is pumped. While flowing through the measuring tube of the Coriolis mass flow meter, an electric oscillation is applied to the measuring tube from an external oscillating means to detect a change in the resonance frequency or the phase thereof including the ice-snow water mixture in the measuring tube. Then, the ratio of the amount of ice and snow in the ice and snow water mixture is measured, the amount of latent heat and the amount of sensible heat of the cooling medium liquid are obtained based on the ratio of the amount of ice and snow, and supplied from the cold heat source based on the total amount of these two heats. Of the ice / water mixture It is characterized in that to measure the cold calorie. That is, by integrating the total heat amount of the cooling medium liquid composed of the ice-snow water mixture based on the latent heat amount and the sensible heat amount while sequentially calculating, the liquid is fed from the cold heat supply side by the liquid feed pipe to the cooling load. The total amount of heat of the whole ice-water mixture can be obtained, and the true total amount of heat including the amount of heat used by the cooling load and the amount of cold held by the discharged water after using the cold can be obtained and displayed.

【0005】尚、前記コリオリ式質量流量計は、公知の
ように、その計測管に外部の発振手段から電気的振動を
加えた時、液体を含む共振周波数若しくはその位相の変
化を検出して求めるものであるために、計測管の質量M
p、計測管中を流れる測定対象液の質量ML、計測管の
容積V、計測管のヤング率C、氷雪水混合体の密度ρと
すると、上記共振周波数Fνは、 Fν=1/2π(C/Mp+ML)1/2 = 1/2π
(C/Mp+ρV)1/2 で表せる。
As is well known, the Coriolis mass flowmeter detects and obtains a change in the resonance frequency containing liquid or its phase when electric vibration is applied from an external oscillating means to its measuring tube. The mass of the measuring tube
Assuming that p, the mass ML of the liquid to be measured flowing in the measurement tube, the volume V of the measurement tube, the Young's modulus C of the measurement tube, and the density ρ of the ice-water mixture, the resonance frequency Fν is expressed as Fν = 1 / 2π (C / Mp + ML) 1/2 = 1 / 2π
(C / Mp + ρV) 1/2 .

【0006】従って計測管中の氷雪の体積をViとする
と、氷雪の体積比はPi=Vi/V(%)で表せ、水の
体積をVwとすると、計測管中の体積比はPw=Vw/V
(%)であるから、測定対象液即ちこの場合は氷雪水混
合体の計測管中の密度は、 ρ=Pi×ρi+Pwρw=Vi/V×ρi+Vw/V
×ρwとなり、計測管中の氷雪の割合は、Vi/V=
(ρ−ρw)/(ρi−ρw)から求めることができ
る。ここで、ρw=1、ρi=0.917、氷雪の潛熱
L=79.6Kcal/Kg、水の顕熱S=1Kcal
/Kg℃の条件下で氷雪が融けて0℃の水になったと
し、計測される上記ρの値から質量流量をQMとして氷
雪の有する溶熱量の積算値QLを求めると、その溶熱量
の瞬時値(ΔQL)t1〜tnの積算合計である。ここ
でt1〜tnは、流速をvとして計測管の長さをzとし
た場合のz/v:t1〜tnである。 そして瞬時の質量
流量ΔQMは「A ρ」=「ΔV ρ」であることは当然
であるので、積算質量QMは「(ΔVt1…ΔVtn)
ρ」である。そして(ΔVt1+…ΔVtn)=V(計
測管の容積)であるから積算質量QMは「V ρ」とな
る。 そして質量密度計で計測される上記ρの値から積算
質量流量をQMとして氷雪の有する溶熱量の積算値QLを
求めると QL=(QM/ρ)×Pi×L×ρi=(V ρ/ρ) v×Pi×L×ρi =(V)Pi×L×v×ρiとなる。 即ちQL=(V)Pi ρiの式が成り立つ。 この
ようにQL=VPi×L・v ρiとなるので、これを演
算回路で演算すれば表示値として表すことができる。
Accordingly, the volume of ice and snow in the measuring tube is defined as Vi.
And the volume ratio of ice and snow can be expressed by Pi = Vi / V (%),
Assuming that the volume is Vw, the volume ratio in the measuring tube is Pw = Vw / V
(%), The liquid to be measured, in this case, ice, snow and water
The density of the coalescing in the measuring tube is: ρ = Pi × ρi + Pwρw = Vi / V × ρi + Vw / V
× ρw, and the ratio of ice and snow in the measuring tube is Vi / V =
(Ρ−ρw) / (ρi−ρw)
You. Here, ρw = 1, ρi = 0.917, the latent heat of ice and snow
L = 79.6 Kcal / Kg, sensible heat of water S = 1 Kcal
Under the condition of / Kg ℃, ice and snow melt and become water at 0 ℃
The mass flow rate is QM based on the measured ρ
When calculating the integrated value QL of the amount of heat that snow has,The amount of heat
Is the integrated sum of the instantaneous values (ΔQL) t1 to tn. here
In t1 to tn, the flow velocity is v and the length of the measuring tube is z.
Z / v: t1 to tn. And instant mass
The flow rate ΔQM is “A ρ ”=“ ΔV ρ ”
Therefore, the integrated mass QM becomes “(ΔVt1... ΔVtn)
ρ ”. Then, (ΔVt1 +... ΔVtn) = V (total
(Measuring tube volume), the integrated mass QM is “V ρ ”
You. And integrated from the value of ρ measured by the mass density meter
With the mass flow rate as QM, the integrated value QL of the amount of heat
When asked QL = (QM / ρ) × Pi × L × ρi = (V ρ / ρ) v × Pi × L × ρi  = (V) Pi × L × v × ρi. That is, QL = (V) Pi L v The equation for ρi holds. this
QL = VPi × L · v ρi
If the calculation is performed by the arithmetic circuit, it can be represented as a display value.

【0007】前記の計算は氷雪の有する潛熱のみについ
ての熱量であるが、更に0℃以上の温度でも冷却に利用
される。つまり氷雪水混合体では、氷雪のみが融解し終
わるまでは、冷却水の温度が0℃に保持され、0℃以上
の温度上昇が顕熱として冷却負荷に対して利用でき、そ
の0℃以上の冷却に利用される上昇温度をt℃とする
と、水の顕熱SはS=txVより顕熱量QS=t×QMで
あるから、全冷熱熱量を求めると、Q=潜熱量QL+顕
熱量QSを演算することによって、氷雪水混合体からな
る冷熱媒体液の総熱量Qの値を表示させる事が出来る。
The above calculation is only for the latent heat of ice and snow, but it is used for cooling even at a temperature of 0 ° C. or more. That is, in the ice-snow water mixture, the temperature of the cooling water is maintained at 0 ° C. until only the ice and snow are completely melted, and a temperature rise of 0 ° C. or more can be used as a sensible heat for the cooling load. Assuming that the rising temperature used for cooling is t ° C., the sensible heat S of the water is sensible heat quantity QS = t × QM from S = txV. Therefore, when the total cooling heat quantity is obtained, Q = latent heat quantity QL + sensible heat quantity QS By performing the calculation, the value of the total heat quantity Q of the cooling medium liquid composed of the ice snow water mixture can be displayed.

【0008】[0008]

【作用】従って本発明によれば、冷熱供給源から給送管
を介して冷却負荷に給送される冷熱媒体として氷雪水混
合体を用い、氷雪の保有する潛熱総量と、冷却負荷から
の排出水の顕熱総量とを、質量流量計測手段と温度計測
手段とにより計測値を演算し積算することによって、供
給冷熱量の真値を積算表示手段に表出させることができ
る。
Therefore, according to the present invention, an ice snow water mixture is used as a cooling medium fed from a cold heat source to a cooling load via a feed pipe, the total amount of latent heat held by the ice and snow, and the discharge from the cooling load. By calculating and integrating the measured value of the total amount of sensible heat of water with the mass flow rate measuring means and the temperature measuring means, the true value of the supplied cooling heat can be displayed on the integrating and displaying means.

【0009】以下、図面に基ずいて本発明の好ましい実
施例について例示的に詳しく説明する。但しこの実施例
に記載されている構成部品、手段等の寸法、材質、形
状、これらの相対的配置については特に断りのない限
り、本発明の範囲をそれのみに限定する趣旨はなく、単
なる説明例に過ぎないものである。
Hereinafter, preferred embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, and relative arrangements of the components, means, and the like described in this embodiment are not intended to limit the scope of the present invention to them, unless otherwise specified. It is only an example.

【0010】図1は質量流量計測手段の概要説明図であ
って、1は冷却熱供給源側から冷却負荷側への氷雪水混
合体を圧送するための液送管、3は上記液送管の途中に
上記氷雪水の混合液の冷却熱供給量を計測するために連
結された例えばコリオリ質量流量計2の計測管である。
ここに計測管は本実施例における直管の他、U字状管等
種々な形状のものがあるが、耐ノイズ性に優れ、しかも
高感度の検出特性を有するものであれば任意に用いるこ
とができる。
FIG. 1 is a schematic explanatory view of a mass flow rate measuring means, wherein 1 is a liquid feed pipe for pressure-feeding an ice-snow water mixture from a cooling heat supply source side to a cooling load side, and 3 is the above liquid feed pipe. For example, a measuring pipe of the Coriolis mass flow meter 2 connected to measure the cooling heat supply amount of the mixed liquid of ice and snow water.
Here, there are various shapes such as a U-shaped tube other than the straight tube in the present embodiment, but any measuring tube having excellent noise resistance and high sensitivity detection characteristics can be used. Can be.

【0011】次に4は、上記氷雪水混合体の流水を含め
て上記計測管3に対して自由振動により励振させるため
の発振手段、5は上記発振手段による励振周波数又は位
相角を検出する励振検出手段である。6は上記励熱供給
源側から上記液送管1により給送されて上記質量流量計
測手段2の計測管3を経て、冷却負荷に至る氷雪水混合
体の氷雪量及び水量、上記氷雪量と水量の割合、氷雪の
保有する総潛熱量、並びに冷却負荷から排出される冷却
水の有する総顕熱量の総合計を演算して、その積算値を
表出する積算表示手段であり、7は冷却負荷側において
冷却水となって排出される液体の温度を検出するための
冷却水顕熱計測センサである。
Next, 4 is an oscillating means for exciting the measuring pipe 3 including free flowing water of the ice / water mixture by free vibration, and 5 is an exciting means for detecting an exciting frequency or a phase angle by the oscillating means. It is a detecting means. Reference numeral 6 denotes the amount of ice and snow and the amount of ice and snow of the ice and water mixture, which is supplied from the excitation heat source side by the liquid supply pipe 1 and passes through the measuring pipe 3 of the mass flow rate measuring means 2 to the cooling load. Integrated display means for calculating the total of the water content, the total amount of latent heat of ice and snow, and the total sensible heat of the cooling water discharged from the cooling load, and displaying the integrated value. This is a cooling water sensible heat measurement sensor for detecting the temperature of liquid discharged as cooling water on the load side.

【0012】図2は本発明の冷熱供給量の計測装置を実
施した冷熱供給系統図であって、冷熱供給源9から複数
の液送管11、12、13、14等が夫々冷却負荷8
1、82、83、84に連結されて冷熱量が供給される
態様を表している。そして21、22、23、24は前
記図1において説明した通り、複数の上記液送管11、
12、13、14の間に夫々配設された質量流量計測手
段で、上記液送管の途中に夫々計測管31、32、33
等が連結されて、上記液送管11、12、13、14を
を夫々通過する氷雪水の質量流量を発振手段41、4
2、43、44の夫々から上記計測管31、32、33
の各々を、自由振動周波数によって励振して、その振動
周波数若しくは位相差を励振検出手段51、52、5
3、54にて上記計測管内の通流液の質量から氷雪量を
求めることができるので、氷雪水混合体の総潛熱量が演
算されて、その積算結果を図1の符号6と同様に不図示
の積算表示手段を夫々正確に表示する。
FIG. 2 is a cold heat supply system diagram in which the cold heat supply amount measuring device of the present invention is implemented, and a plurality of liquid feed pipes 11, 12, 13, 14 and the like are connected to a cooling load 8 from a cold heat source 9.
1, 82, 83, and 84 are connected to supply cold energy. Further, 21, 22, 23, and 24 are provided with a plurality of the liquid feed pipes 11,
The mass flow measuring means disposed between 12, 13, and 14 respectively measures the measuring pipes 31, 32, 33 in the middle of the liquid feeding pipe.
The mass flow rates of the ice and snow water passing through the liquid supply pipes 11, 12, 13, and 14 are respectively connected to the oscillation units 41 and 4,
From each of 2, 43, 44, the measuring tubes 31, 32, 33
Are excited by the free oscillation frequency, and the oscillation frequency or phase difference is detected by the excitation detection means 51, 52, 5
Since the amount of ice and snow can be obtained from the mass of the flowing liquid in the measuring tube at 3, 54, the total amount of latent heat of the ice-water mixture is calculated, and the integrated result is determined in the same manner as reference numeral 6 in FIG. The integrated display means shown in the figure is displayed accurately.

【0013】従って上記のように氷雪水混合体を用いた
場合、氷雪のみの融解が終了するまでは、冷却水として
の温度がそのまま0℃に保持し続けるが、更にこの0℃
以上の温度上昇が冷却負荷81、82、83、84側で
の冷却に顕熱として利用できるのであるから、上記冷却
負荷側での排出水の温度を検出することによって、この
温度上昇値と水量との積を、上記積算表示手段(不図
示)によって演算すれば、最終的に真の総熱量が積算さ
れ、その値を表示値として表出することができるのであ
る。
Therefore, when the ice-snow water mixture is used as described above, the temperature as the cooling water is kept at 0 ° C. until the melting of only the ice and snow is completed.
Since the above temperature rise can be used as sensible heat for cooling on the cooling loads 81, 82, 83, 84 side, by detecting the temperature of the discharged water on the cooling load side, this temperature rise value and the amount of water Is calculated by the integration display means (not shown), the true total heat quantity is finally integrated, and the value can be expressed as a display value.

【0014】[0014]

【発明の効果】かくして本発明の冷熱供給量の計測装置
によれば、氷雪水混合体の通流する計測管に対し、氷雪
水も含めて発振手段からの励振によって管内を通過する
氷雪水自体を均一にし、しかも管内の一様な通流を助長
するので、正確な質量流量計測が達成できるのみか、前
記した通り冷熱供給源から液送管を通流して冷却負荷側
に至る氷雪水混合体の氷雪量を抽出し、冷却負荷側での
0°C以上の温度上昇分の冷却に顕熱として寄与する排
出水の熱量をも加えた供給冷熱総量の真値が正確に演算
され、総量が表示されるから、例えば地上又は船上或い
は車上等に設置する冷却負荷に対して冷熱供給系の合理
的な計画と設置に貢献するところ極めて大きい。
As described above, according to the apparatus for measuring the amount of cold heat supplied according to the present invention, the snow and ice water itself passing through the inside of the pipe by the excitation from the oscillating means, including the ice and snow water, is applied to the measurement pipe through which the ice and snow water mixture flows. In addition, since uniform mass flow is promoted and uniform flow in the pipe is promoted, only accurate mass flow measurement can be achieved, or as described above, ice / snow water mixture flowing from the cold heat source through the liquid feed pipe to the cooling load side The amount of ice and snow extracted from the body is extracted, and the true value of the total amount of supplied cold heat including the amount of discharged water that contributes as sensible heat to the cooling of 0 ° C or more on the cooling load side is accurately calculated. Is displayed, which greatly contributes to the rational planning and installation of the cold heat supply system with respect to the cooling load installed on the ground, on a ship, or on a car, for example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明冷熱供給量の計測装置を説明するための
概要図。
FIG. 1 is a schematic diagram for explaining a cold heat supply amount measuring device according to the present invention.

【図2】図1の質量流量計測手段を用いた冷熱供給系統
図。
FIG. 2 is a cold heat supply system diagram using the mass flow rate measuring means of FIG.

【符号の説明】[Explanation of symbols]

1、11、12、13、14 液送管 2、21、22、23、24 質量流量計測手段 3、31、32、33、34 計測管 4、41、42、43、44 発振手段 5、51、52、53、54 励振検出手段 6 積算表示手段 7 冷却水顕熱量計測セ
ンサ 81、82、83、84 冷却負荷 9 冷熱供給源
1, 11, 12, 13, 14 Liquid feed pipe 2, 21, 22, 23, 24 Mass flow rate measurement means 3, 31, 32, 33, 34 Measurement pipe 4, 41, 42, 43, 44 Oscillation means 5, 51 , 52, 53, 54 Excitation detecting means 6 Integrating display means 7 Cooling water sensible heat measurement sensor 81, 82, 83, 84 Cooling load 9 Cold heat supply source

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液送管により冷却負荷に圧送される冷熱
媒体液の有する冷熱量を積算して計測する装置におい
て、 上記冷熱媒体液として氷雪水混合体が圧送される上記液
送管の流路に、コリオリの力を利用したコリオリ式質量
流量計の計測管と温度計測手段とを設け、 上記圧送される氷雪水混合体を上記コリオリ式質量流量
計の計測管に流しながら、該計測管に対して外部の発振
手段から電気的振動を加えて、計測管内の氷雪水混合体
を含む共振周波数若しくはその位相の変化を検出して、
前記氷雪水混合体の氷雪量を計測し、 前記氷雪量に基づいて冷熱媒体液の保有する潛熱量と、
前記温度計測手段により前記氷雪水混合体の水量の保有
する顕熱量とを求め、 これらにより冷熱供給源から給送される氷雪水混合体の
供給冷熱量を計測することを特徴とする冷熱供給量の計
測装置。
1. Cold heat pumped to a cooling load by a liquid feed pipe
In a device that integrates and measures the amount of cold energy of the medium liquid
The liquid in which an ice snow water mixture is pumped as the cooling medium liquid
Fluid flow pathTo the Coriolis mass using the Coriolis force
Provision of a flowmeter measurement tube and temperature measurement means, The above-mentioned pumped ice-snow water mixture is subjected to the above-mentioned Coriolis mass flow rate.
Oscillation external to the measuring tube while flowing through the measuring tube
By applying electric vibration from the means, the ice-water mixture in the measuring tube
Detect the change in the resonance frequency or its phase including
Measuring the amount of ice and snow in the ice and water mixture, The amount of latent heat of the cooling medium liquid based on the amount of ice and snow,
Holding the water content of the ice snow water mixture by the temperature measuring means
And the amount of sensible heat  These allow the ice-water mixture to be fed from the cold source.
Supply coolingThe amountCooling heat supply meter characterized by measuring
Measuring device.
JP15004392A 1992-05-19 1992-05-19 Measuring device for cold energy supply Expired - Fee Related JP3215716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15004392A JP3215716B2 (en) 1992-05-19 1992-05-19 Measuring device for cold energy supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15004392A JP3215716B2 (en) 1992-05-19 1992-05-19 Measuring device for cold energy supply

Publications (2)

Publication Number Publication Date
JPH05322669A JPH05322669A (en) 1993-12-07
JP3215716B2 true JP3215716B2 (en) 2001-10-09

Family

ID=15488259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15004392A Expired - Fee Related JP3215716B2 (en) 1992-05-19 1992-05-19 Measuring device for cold energy supply

Country Status (1)

Country Link
JP (1) JP3215716B2 (en)

Also Published As

Publication number Publication date
JPH05322669A (en) 1993-12-07

Similar Documents

Publication Publication Date Title
US11747185B2 (en) Systems and methods for multiphase flow metering accounting for dissolved gas
US7013740B2 (en) Two-phase steam measurement system
US8939035B2 (en) Multiphase metering system
EP2535688B1 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
US6556931B1 (en) Apparatus and method for compensating mass flow rate of a material when the density of the material causes an unacceptable error in flow rate
US7831400B2 (en) Diagnostic apparatus and methods for a coriolis flow meter
US5526696A (en) Flow meters
EP2641071B1 (en) Determining the heat flow emanating from a heat transporting fluid
CA2317678A1 (en) System for validating calibration of a coriolis flowmeter
CN100559132C (en) The compensation method and the equipment that are used for the Coriolis flow instrument
WO1998052000A3 (en) Method and device for detecting and compensating zero point influences on coriolis-type mass flowmeters
JP3215716B2 (en) Measuring device for cold energy supply
WO2006062856A1 (en) Multi-phase flow meter system and method of determining flow component fractions
US6190036B1 (en) Method and apparatus for determining the concentration of a liquid ice mixture
JPH08258898A (en) Measuring device
US11592379B2 (en) Flowing vapor pressure apparatus and related method
US20240011882A1 (en) Method and measuring device for determining a viscosity measurement value, as well as a method and measuring arrangement for determining a volumetric flow measurement value
JP3506082B2 (en) Method for measuring solids fraction or heat density of hydrate slurry
US20220260469A1 (en) True vapor pressure and flashing detection apparatus and related method
JP3294161B2 (en) Ice volume ratio measurement device
RU8468U1 (en) DEVICE FOR MEASURING FLOWS OF LIQUID AND GAS MEDIA
CA2757548C (en) Diagnostic apparatus and methods for a coriolis flow meter
JPH03195924A (en) Method and apparatus for measuring flow rate of liquid
JPH0850063A (en) Calorimeter system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees