JP3215065B2 - Methods and equipment for treating contaminated soil - Google Patents
Methods and equipment for treating contaminated soilInfo
- Publication number
- JP3215065B2 JP3215065B2 JP06561497A JP6561497A JP3215065B2 JP 3215065 B2 JP3215065 B2 JP 3215065B2 JP 06561497 A JP06561497 A JP 06561497A JP 6561497 A JP6561497 A JP 6561497A JP 3215065 B2 JP3215065 B2 JP 3215065B2
- Authority
- JP
- Japan
- Prior art keywords
- soil
- type
- drum
- contaminated
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002689 soil Substances 0.000 title claims description 182
- 238000000034 method Methods 0.000 title claims description 54
- 238000011282 treatment Methods 0.000 claims description 56
- 229910001385 heavy metal Inorganic materials 0.000 claims description 51
- 239000000654 additive Substances 0.000 claims description 44
- 230000000996 additive effect Effects 0.000 claims description 31
- 150000002894 organic compounds Chemical class 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 30
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 16
- 239000003513 alkali Substances 0.000 claims description 16
- 239000000356 contaminant Substances 0.000 claims description 15
- 239000000292 calcium oxide Substances 0.000 claims description 13
- 235000012255 calcium oxide Nutrition 0.000 claims description 13
- 239000003344 environmental pollutant Substances 0.000 claims description 13
- 231100000719 pollutant Toxicity 0.000 claims description 13
- 229910052785 arsenic Inorganic materials 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 12
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 8
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 8
- 239000000920 calcium hydroxide Substances 0.000 claims description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 8
- 238000009412 basement excavation Methods 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- 235000010216 calcium carbonate Nutrition 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000007792 addition Methods 0.000 claims description 3
- 238000003672 processing method Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 18
- 238000010828 elution Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000011109 contamination Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000003595 mist Substances 0.000 description 4
- 238000004017 vitrification Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 238000007605 air drying Methods 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- 239000002801 charged material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- UBOXGVDOUJQMTN-UHFFFAOYSA-N 1,1,2-trichloroethane Chemical compound ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000000705 flame atomic absorption spectrometry Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 239000002680 soil gas Substances 0.000 description 2
- UKDOTCFNLHHKOF-FGRDZWBJSA-N (z)-1-chloroprop-1-ene;(z)-1,2-dichloroethene Chemical group C\C=C/Cl.Cl\C=C/Cl UKDOTCFNLHHKOF-FGRDZWBJSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108700021154 Metallothionein 3 Proteins 0.000 description 1
- 102100028708 Metallothionein-3 Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N carbon tetrachloride Substances ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- IHYNKGRWCDKNEG-UHFFFAOYSA-N n-(4-bromophenyl)-2,6-dihydroxybenzamide Chemical compound OC1=CC=CC(O)=C1C(=O)NC1=CC=C(Br)C=C1 IHYNKGRWCDKNEG-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004856 soil analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Fire-Extinguishing Compositions (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は,重金属類や各種有
機化合物を含む工業跡地等の土壌を,人の健康保護およ
び生活環境の保全のために悪影響を及ぼさないように改
質する,汚染土壌の処理法および設備に関する。[0001] The present invention relates to a contaminated soil for modifying soil such as an industrial site containing heavy metals and various organic compounds so as not to adversely affect the protection of human health and the preservation of the living environment. The processing method and equipment for
【0002】[0002]
【従来の技術】汚染土壌の処理技術として,土壌ガス吸
引法,揚水処理法,バイオレメディエーション法,原位
置ガラス固化法,洗浄法,風乾法,低温加熱法,焼却加
熱処理法,固形化法等が知られている。これらのうち,
添加剤を用いて処理するのは,バイオレメディエーショ
ン法,原位置ガラス固化法,低温加熱法のうち反応熱を
利用する方法,固形化法等である。2. Description of the Related Art Soil gas suction, pumping, bioremediation, in-situ vitrification, washing, air drying, low-temperature heating, incineration heating, solidification, etc. It has been known. Of these,
The treatment using an additive includes a bioremediation method, an in-situ vitrification method, a method utilizing reaction heat among low-temperature heating methods, and a solidification method.
【0003】[0003]
【発明が解決しようとする課題】前記の処理法にはそれ
ぞれ一長一短があり,対象土壌に応じて適切なものが選
ばれるが,各々単独の処理法ではあらゆる土壌に適用で
きるものはないといって過言ではない。すなわち,どの
ような重金属類やどのような有機化合物を含む土壌で
も,全てを経済的に改質できるという汎用法はない。The above-mentioned treatment methods have their advantages and disadvantages, and appropriate treatments are selected according to the target soil. However, it cannot be said that each treatment method can be applied to any soil. It's not too much to say. That is, there is no general-purpose method that can economically reform all soils containing any heavy metals or any organic compounds.
【0004】例えば,土壌ガス吸引法は土壌間隙中のガ
スを真空ポンプで吸引して揮発性有機化合物を除去する
ものであるが,重金属類の除去はできない。[0004] For example, the soil gas suction method removes volatile organic compounds by sucking gas in a soil gap by a vacuum pump, but cannot remove heavy metals.
【0005】揚水処理法は地下水中に溶解した有機化合
物を揚水して除去処理するものであるが,汚染土壌から
有機化合物を完全に取り除くことはできず,また重金属
に汚染された土壌はほぼ対象としない。[0005] The water pumping method is a method in which organic compounds dissolved in groundwater are pumped and removed. However, organic compounds cannot be completely removed from contaminated soil, and soil contaminated with heavy metals is almost completely removed. And not.
【0006】バイオレメディエーション法は有機化合物
を資化する微生物を土壌中に繁殖させて分解を行わせる
ものであるが,土壌環境により微生物の活動が左右さ
れ,生育阻害因子が存在する場合適応不可であり,重金
属で汚染された土壌はほぼ対象外である。In the bioremediation method, microorganisms that assimilate organic compounds are propagated in the soil to decompose them. However, the activity of the microorganisms is affected by the soil environment and cannot be adapted when a growth inhibitory factor is present. Yes, soil contaminated with heavy metals is almost out of scope.
【0007】原位置ガラス固化法は土壌を熱溶融させて
有機化合物を分解し同時に重金属を封じ込めるものであ
るが,大容量の電力発生器や密閉型の排ガス処理設備等
を必要として,また処理後のガラス固化物の埋立てが必
要で,現地埋設の場合は処理後の土地活用に制限が残
る。The in situ vitrification method is to heat melt the soil to decompose organic compounds and simultaneously confine heavy metals. However, it requires a large-capacity power generator and a closed-type exhaust gas treatment facility. It is necessary to reclaim vitrified waste, and in the case of on-site burial, there is still a restriction on land use after treatment.
【0008】洗浄法は掘削した土壌を水洗する事で重金
属を土壌から水相へ移行させるか又は重金属濃縮部分を
非含有部分と分離する(一部の油類にも対応可能)もの
であるが,その効果は土質による影響を受けやすく多量
の廃水処理が必要となる。In the washing method, heavy metals are transferred from the soil to the water phase by washing the excavated soil with water, or the concentrated portion of the heavy metal is separated from the non-containing portion (it is possible to cope with some oils). , Its effect is easily affected by soil quality and requires a large amount of wastewater treatment.
【0009】風乾法は掘削した土壌を風乾させる事で土
壌より揮発性有機化合物を揮発除去するものであるが,
重金属類で汚染された土壌には無益である。In the air drying method, volatile organic compounds are volatilized and removed from the excavated soil by air drying.
It is useless for soils contaminated with heavy metals.
【0010】低温加熱法は土壌を低温で加熱処理して揮
発性有機化合物を揮発除去させるものであるが,重金属
類で汚染された土壌には適用不可である。この加熱源と
して水と発熱反応する物質例えば生石灰を使用する方法
も提案されている。この方法は土壌に生石灰を混合し
て,土壌中の水分との発熱反応で揮発性の有機化合物を
揮発させるものであり,重金属類で汚染された土壌は対
象外である。同様に,加熱源として酸とアルカリの中和
反応熱を利用したもの,燃料やジュール熱を利用したも
の等も有機化合物を揮発させる方法として提案されてい
るが,やはり重金属類で汚染された土壌は対象外であ
る。[0010] The low-temperature heating method is a method of heating the soil at a low temperature to volatilize and remove volatile organic compounds, but cannot be applied to soil contaminated with heavy metals. A method of using a substance that reacts exothermically with water, for example, quicklime, as this heating source has also been proposed. This method mixes quicklime with soil and volatilizes volatile organic compounds by an exothermic reaction with water in the soil. Soils contaminated with heavy metals are not applicable. Similarly, methods utilizing the heat of neutralization of acids and alkalis as heating sources, and methods utilizing fuel or Joule heat have been proposed as methods for volatilizing organic compounds. Is out of scope.
【0011】焼却加熱処理法は重金属の安定化と有機化
合物の熱分解を行うことから複合汚染土壌に対応できる
可能性があるが,掘削土を加熱炉で熱処理するものであ
るから設備費用および稼働費用が嵩む。Although the incineration heat treatment method can stabilize heavy metals and thermally decompose organic compounds, it is possible to cope with complex contaminated soil. However, since excavated soil is heat-treated in a heating furnace, equipment costs and operating costs are high. Expensive.
【0012】固形化法は添加剤等によって有害物質を土
壌中に封じ込めるものであって有機化合物で汚染された
土壌は対象外である。In the solidification method, harmful substances are contained in soil by additives or the like, and soil contaminated with organic compounds is not applicable.
【0013】このように,従来の土壌の浄化または改質
法は,処理対象物質が揮発性の有機化合物である場合
と,重金属類である場合のどちらかに限って適応するも
のが多く,有機化合物と重金属類とで複合汚染されてい
る土壌に対しては一元的な処理で対応することが困難で
あるという問題を有している。また原位置ガラス固化法
や焼却熱処理法等のよう複合汚染土壌が対象可能なもの
でも設備費用や稼働費用が高く,工場跡地のごとく大量
の土壌を対象とする場合に甚大な費用が必要となるう
え,処理済土壌の再利用性にも問題がある。[0013] As described above, the conventional soil purification or reforming method is often applied only to the case where the substance to be treated is a volatile organic compound or to the case where it is a heavy metal. There is a problem that it is difficult to cope with soil contaminated with a compound and heavy metals by a single treatment. In addition, equipment costs and operating costs are high even for those that can be used for complex contaminated soils such as in-situ vitrification method and incineration heat treatment method, and enormous costs are required when a large amount of soil such as a factory site is targeted. Moreover, there is a problem with the reusability of the treated soil.
【0014】本発明は,従来の土壌環境の修復技術が有
する前記のような問題を解決することを課題としたもの
で,汚染物質が有機化合物であろうと重金属類であろう
と,いずれの場合にも環境に負担をかけない状況にまで
土壌を修復する経済的な土壌処理法および設備を提供し
ようとするものである。An object of the present invention is to solve the above-mentioned problems of the conventional technology for remediating the soil environment, and the contaminants may be organic compounds or heavy metals in any case. Another object of the present invention is to provide an economical soil treatment method and equipment for restoring the soil to a state that does not burden the environment.
【0015】[0015]
【課題を解決するための手段】 本発明によれば,汚染
されたグラウンドから当該汚染土壌を掘削して土壌処理
プラントに運び,この土壌処理プラントで処理した土壌
の少なくとも一部を前記掘削箇所に埋め戻すか,または
この処理した土壌を他所に搬出する汚染土壌の処理法に
おいて,前記の土壌処理プラントが土壌と各種添加剤を
混和するためのドラム型スクラバーを備えること,該汚
染グラウンドを試錐して汚染物質の種類とその分布を調
査しておき,この調査結果に基づいて掘削箇所の汚染物
質の種類を推定すること,この推定汚染物質含有土壌を
該ドラム型スクラバーで添加剤と混和するさいに,当該
汚染物質の種類に応じて該添加剤の種類と量を調整する
こと,および 該添加剤として,酸,アルカリまたは鉄粉
の少なくとも1種を使用することを特徴とする汚染土壌
の処理法を提供する。According to the present invention, contaminated soil is excavated from a contaminated ground and carried to a soil treatment plant, and at least a portion of the soil treated by the soil treatment plant is transferred to the excavation site. In a method for treating contaminated soil in which the soil is backfilled or transported to another place, the soil treatment plant includes a drum type scrubber for mixing the soil and various additives, and the contaminated ground is drilled. leave investigate the type and distribution of contaminants Te, miscible with child estimate the type of contaminants drilling locations on the basis of this finding, the additive the estimated contaminant-containing soil with said drum scrubber Finally, adjust the type and amount of the additive according to the type of the contaminant , and use acid, alkali or iron powder as the additive.
A method for treating contaminated soil, characterized by using at least one of the following.
【0016】ここで,土壌と添加剤を混和するドラム型
スクラバーにおいては,汚染物質の種類に応じて,酸,
アルカリ,鉄粉等の添加剤の種類と量を調整し,汚染物
質が重金属類である場合にはその重金属の種類に応じて
処理済土壌のpHを該添加剤により所定の範囲に調整す
る。また,本発明で使用するドラム型スクラバーは,軸
を水平に対して傾けた回転ドラムからなり,この回転ド
ラム内に上流側の材料投入口から材料が装入されると,
ドラム内で転動落下を繰り返しながら排出口に連続移動
し,材料の攪拌およびガスとの接触が同時になされるも
のである。Here, in a drum type scrubber that mixes soil with an additive, an acid,
The type and amount of additives such as alkali and iron powder are adjusted, and when the pollutant is a heavy metal, the pH of the treated soil is adjusted to a predetermined range by the additive according to the type of heavy metal. Further, the drum type scrubber used in the present invention is composed of a rotating drum whose axis is inclined with respect to the horizontal, and when a material is charged into the rotating drum from a material inlet on the upstream side,
It continuously moves to the discharge port while repeatedly rolling and falling in the drum, and simultaneously agitates the material and makes contact with the gas.
【0017】本発明はまた,前記の処理法を実施する設
備として,軸を水平に対して傾けた回転ドラムからなる
ドラム型スクラバーと,このドラム型スクラバーの材料
装入口側に設けた材料投入ホッパーと,この材料投入ホ
ッパーに被処理土壌と各種添加剤を装入するための材料
供給手段と,このドラム型スクラバーの材料排出口側に
設けた排気フードと,この排気フードに接続された散水
塔と,この散水塔の排気側に接続されたガス吸着塔と,
ドラム型スクラバーから該ガス吸着塔まで気体を導くた
めの排気装置とからなる汚染土壌の処理設備を提供す
る。The present invention also provides, as equipment for performing the above-mentioned processing method, a drum type scrubber comprising a rotating drum whose axis is inclined with respect to the horizontal, and a material charging hopper provided on the material loading side of the drum type scrubber. A material supply means for charging the soil to be treated and various additives into the material input hopper, an exhaust hood provided on the material outlet side of the drum type scrubber, and a watering tower connected to the exhaust hood. And a gas adsorption tower connected to the exhaust side of the sprinkler tower,
Provided is a facility for treating contaminated soil comprising an exhaust device for guiding gas from a drum type scrubber to the gas adsorption tower.
【0018】この土壌処理設備は,処理対象グラウンド
内に設置することもできるし,処理対象グラウンドから
離れた地域に設置することもできる。既に掘削してある
土壌に対して,その土壌中の汚染物質の種類を調査し,
その調査結果に基づいて汚染物質の種類に応じて添加材
の種類と量を調整するという稼働の仕方もできる。This soil treatment equipment can be installed in the ground to be treated or in an area remote from the ground to be treated. Investigating the types of pollutants in the already excavated soil,
Based on the results of the survey, an operation method of adjusting the type and amount of the additive in accordance with the type of the pollutant can be performed.
【0019】[0019]
【発明の実施の形態】図1は本発明の土壌処理法の1例
を図解的に示したものであり,1は処理しようとするグ
ラウンドの処理領域を,2は土壌処理プラントの領域を
表している。土壌処理プラント2は,図ではグラウンド
2の外側に存在するように描かれているが,処理しよう
とするグラウンド2内であってもよい。また,このプラ
ント2は固定式である場合のほか,台車上に構成されて
いてもよい。プラント2は土壌処理用のドラム型スクラ
バー3を備えており,このドラム型スクラバー3に掘削
された土壌と添加剤イ,ロ,ハ等が添加される。4はド
ラム型スクラバーへの材料投入ホッパー,5はドラム型
スクラバーの材料排出口側に設けた排気フード,6は散
水塔,7はガス吸着塔,8は排気装置を示している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an example of a soil treatment method according to the present invention, wherein 1 denotes a ground treatment area to be treated, and 2 denotes a soil treatment plant area. ing. The soil treatment plant 2 is illustrated as existing outside the ground 2 in the figure, but may be inside the ground 2 to be treated. The plant 2 may be of a fixed type or may be configured on a trolley. The plant 2 is provided with a drum type scrubber 3 for soil treatment, and the excavated soil and additives A, B, C are added to the drum type scrubber 3. Reference numeral 4 denotes a hopper for charging the material into the drum type scrubber, 5 denotes an exhaust hood provided on the material discharge port side of the drum type scrubber, 6 denotes a water spray tower, 7 denotes a gas adsorption tower, and 8 denotes an exhaust device.
【0020】本発明においては,汚染されたグラウンド
1から当該汚染土壌を掘削して土壌処理プラント2に運
び,この土壌処理プラント2で処理した土壌を掘削箇所
に埋め戻すのであるが,先ず,この処理にあたって,汚
染グラウンド1を試錐して汚染物質の種類とその分布を
計測する。例えば,グラウンド1の表層から数m地中に
試料採取管を差し込んで棒状試料を採取し,分析して,
試料中の汚染物質を調べ,汚染マップを作成する。その
さい,土壌の溶出pHや水分量も必要に応じて調べてお
く。ここで,土壌の溶出pHは,土壌100gを1リッ
トルの水に入れてよく攪拌し,ろ過した後,そのろ液の
pHを測定する方法で測定できる。本明細書中に記載す
るpHはこの方法で測定したものを言う。In the present invention, the contaminated soil is excavated from the contaminated ground 1 and carried to the soil treatment plant 2, and the soil treated by the soil treatment plant 2 is buried back in the excavation site. In the treatment, the type of the pollutant and its distribution are measured by drilling the polluted ground 1. For example, insert a sampling tube into the ground several meters from the surface of ground 1 to collect a rod-shaped sample, analyze it,
Examine the contaminants in the sample and create a contamination map. At that time, the elution pH and water content of the soil should be checked as necessary. Here, the elution pH of the soil can be measured by a method in which 100 g of soil is put into 1 liter of water, stirred well, filtered, and then the pH of the filtrate is measured. The pH described herein refers to the value measured by this method.
【0021】図1において,A,B,C,D,E等で表
示したグラウンド内の領域はそれぞれ異なる汚染物質が
存在するか,同じ物質でも濃度が異なる領域を例示した
ものである。この場合,図1の下段に示すように,深さ
方向の存在量や濃度も調べておくのがよい。試錐を高密
度で行えばそれだけ精密な汚染マップが作成できるが,
それほど精密でなくても,汚染物質の種類は特定可能で
あり,分布についてもおよそのものが得られる。In FIG. 1, the areas in the ground indicated by A, B, C, D, E, etc. are examples in which different contaminants are present or the same substances have different concentrations. In this case, as shown in the lower part of FIG. 1, it is preferable to check the abundance and concentration in the depth direction. If the drilling is performed at a high density, a more accurate pollution map can be created.
Even with less precision, the type of pollutant can be identified and the distribution can be approximated.
【0022】次いで,掘削作業を行うが,掘削箇所の土
壌の種類A〜E,または複合汚染土壌A×B,A×B×
Eなどが前記のマップから判読または推定できるので,
各項目毎に,処理プラント2での処理操作を調整する。
図示のように,グラウンド1の掘削箇所に応じた項目
a,ab,abd,ad等の各項目ごとに掘削土壌を分
類して堆積ヤード10に一旦堆積させておくこともでき
る。Next, excavation work is performed, and the types of soil A to E at the excavation site or the composite contaminated soil A × B, A × B ×
Since E can be read or estimated from the above map,
The processing operation in the processing plant 2 is adjusted for each item.
As shown in the figure, the excavated soil can be classified for each item such as items a, ab, abd, and ad according to the excavation location of the ground 1 and temporarily accumulated in the accumulation yard 10.
【0023】この掘削土壌を処理プラント2で処理する
さいに,各項目ごとに添加剤の種類と量を設定し,当該
土壌を投入する材料投入ホッパー4において,当該土壌
用に設定された種類の添加剤を配合する。これにより,
ドラム型スクラバー3内では当該土壌とそれ用の添加剤
が混合し,後述のように意図する処理が完了してドラム
型スクラバー3から排出し,処理済土壌9が得られる。
この処理済土壌9はグラウンド1の掘削箇所に埋め戻さ
れる。なお,処理済土壌9をサンプリングし,処理不十
分なものがあれば,再処理に回す。When the excavated soil is treated in the treatment plant 2, the type and amount of the additive are set for each item, and in the material input hopper 4 for charging the soil, the type of additive set for the soil is set. Add additives. This gives
In the drum type scrubber 3, the soil and the additive for the soil are mixed, and the intended processing is completed as described later, and the soil is discharged from the drum type scrubber 3 to obtain the processed soil 9.
The treated soil 9 is buried in the excavation site on the ground 1. The processed soil 9 is sampled, and if any of the soil is insufficiently processed, the processed soil 9 is reprocessed.
【0024】図2は処理プラント1の機器配置の例を示
したものである。本発明の処理プラントはドラム型スク
ラバー3を用いる点に一つの特徴がある。このドラム型
スクラバー3は,軸を水平に対して傾けた回転ドラムか
らなり,その傾斜勾配は1/20〜1/40程度であ
る。ドラム型スクラバー3への材料投入口側には材料投
入ホッパー4が設けられ,材料排出口側には排気フード
5が設けられている。FIG. 2 shows an example of the equipment arrangement of the processing plant 1. The processing plant of the present invention has one feature in that a drum type scrubber 3 is used. This drum type scrubber 3 is composed of a rotating drum whose axis is inclined with respect to the horizontal, and its inclination gradient is about 1/20 to 1/40. A material charging hopper 4 is provided on the material charging port side of the drum type scrubber 3, and an exhaust hood 5 is provided on the material discharging port side.
【0025】材料投入ホッパー4には,被処理土壌10
がベルトコンベア11によって搬送され,同時に,各種
添加剤がこのホッパー4内に投入される。添加剤が液体
である場合には,その液体が直接ホッパー4内に滴下さ
れ,粉体または粒状物の場合にはベルトコンベア12に
よって,ホッパー4内に投入される。液状添加剤として
は硫酸,水硫化ソーダ,水等が必要に応じて用いられ,
これらは硫酸容器13,水硫化ソーダ容器14,水容器
15からホッパー4内に定量ポンプを介して制御量で滴
下される。粉体または粒状物の添加剤としては,生石
灰,消石灰,炭酸カルシウム,鉄粉等が使用され,それ
らの貯蔵ビン16〜19からベルトコンベア12でホッ
パー4内に制御量で投入される。The material input hopper 4 has a soil 10 to be treated.
Is conveyed by a belt conveyor 11, and at the same time, various additives are charged into the hopper 4. When the additive is a liquid, the liquid is dropped directly into the hopper 4, and when the additive is a powder or a granular material, the liquid is introduced into the hopper 4 by the belt conveyor 12. Sulfuric acid, sodium bisulfide, water, etc. are used as necessary as liquid additives.
These are dropped from the sulfuric acid container 13, the sodium hydrosulfide container 14, and the water container 15 into the hopper 4 in a controlled amount via a metering pump. As an additive for the powder or the granular material, quick lime, slaked lime, calcium carbonate, iron powder and the like are used, and are fed into the hopper 4 from the storage bins 16 to 19 by the belt conveyor 12 in a controlled amount.
【0026】前記のように被処理土壌10に応じて添加
剤の種類と量を選定して添加されると,この土壌と添加
剤の配合物は,ドラム型スクラバー3内で攪拌されなが
ら反応を起こし,その処理が終えた土壌はドラム型スク
ラバー3の排出口20から取り出される。As described above, when the type and amount of the additive are selected and added according to the soil 10 to be treated, the mixture of the soil and the additive reacts while being stirred in the drum type scrubber 3. The soil that has been raised and treated is taken out of the discharge port 20 of the drum type scrubber 3.
【0027】そのさい,ドラム型スクラバー3内におい
ては,図3に示すような状態で材料が処理される。すな
わち,ドラムの回転により,装入材料21がドラム内壁
22に沿って上昇し,その遠心力および付着力と自重の
バランスが崩れたところで,ドラム内に落下を繰り返す
が,その落下がほぼドラムの最上位のところからドラム
内空間に落下するような状態にコントロールする。この
コントロールはドラム傾斜角,ドラム内径,ドラム内壁
材料が定められた場合,実質的にドラムの回転数を制御
することによって達成できる。すなわち,装入材料の水
分量や粘性等の材質に応じてドラム回転数を適正に調節
すれば,図3のような状態でドラム内空間に分散して落
下する挙動が実現できる。この最適状態が維持されるこ
とは特に汚染物質が揮発性有機化合物である場合に,そ
の除去効率が高くなるという作用効果がある。したがっ
て,このような最適状態が維持されるための処理土壌の
性質とドラム回転数との関係を予め把握しておけば,そ
の既知情報に基づいてドラム回転数を制御して,処理土
壌に応じて最適状態を実現することができる。At that time, the material is processed in the drum type scrubber 3 in a state as shown in FIG. That is, due to the rotation of the drum, the charged material 21 rises along the inner wall 22 of the drum, and when the balance between the centrifugal force, the adhesive force, and the own weight is lost, the charged material 21 is repeatedly dropped into the drum. Control so that it falls into the drum space from the top. This control can be achieved by substantially controlling the rotational speed of the drum when the drum inclination angle, drum inner diameter, and drum inner wall material are determined. That is, by appropriately adjusting the number of revolutions of the drum according to the material such as the amount of water and the viscosity of the charged material, a behavior of being dispersed and dropped in the space in the drum in the state shown in FIG. 3 can be realized. Maintaining this optimum state has the effect of increasing the removal efficiency especially when the pollutant is a volatile organic compound. Therefore, if the relationship between the properties of the treated soil and the drum rotation speed for maintaining such an optimum state is grasped in advance, the drum rotation speed is controlled based on the known information, and the drum rotation speed is controlled. To achieve an optimal state.
【0028】ドラム型スクラバー3の排出口側にはフー
ド5が取付けられ,このフード5内が負圧に維持される
ように排気装置(ブロア)8に接続される。フード5
は,処理済土壌の排出口20をカバーすると共にドラム
型スクラバー3の内部空間にも連通しているので,排気
装置8の駆動によってフード5内が負圧に維持されるこ
とにより,ドラム型スクラバー3内の空気の一部も排気
装置8に導かれ,ひいては,材料投入ホッパー4内から
も空気が誘引される。このため,材料投入ホッパー4で
材料が投入されるさいの粉塵の舞い上がりを抑制すると
共にドラム型スクラバー3内でも処理土壌と空気との接
触も良好となる。A hood 5 is attached to the discharge port side of the drum type scrubber 3, and is connected to an exhaust device (blower) 8 so that the inside of the hood 5 is maintained at a negative pressure. Food 5
Covers the outlet 20 of the treated soil and communicates with the internal space of the drum-type scrubber 3, so that the inside of the hood 5 is maintained at a negative pressure by the driving of the exhaust device 8, so that the drum-type scrubber is maintained. A part of the air in 3 is also guided to the exhaust device 8, and thus the air is also drawn in from the material input hopper 4. For this reason, when the material is input into the material input hopper 4, the rising of the dust is suppressed, and the contact between the treated soil and the air becomes good even in the drum type scrubber 3.
【0029】図2の設備では,排気フード5と排気装置
8との間に,散水塔6とミストトラップ(エリミネー
タ)24が介装され,また排気装置8の下流側にはガス
吸着塔7が接続されている。In the equipment shown in FIG. 2, a water spray tower 6 and a mist trap (eliminator) 24 are interposed between the exhaust hood 5 and the exhaust device 8, and a gas adsorption tower 7 is provided downstream of the exhaust device 8. It is connected.
【0030】散水塔6は,排気と散水を向流式に接触さ
せるもので,塔内への排気取入口27を下部に,排気取
出口28を上部に設け,これにより塔内を上昇する排気
に対し,塔内上部に設けた散水装置26から散水を向流
式に落下させる。この気液接触によって排気中の粉塵や
吸湿性または可溶性の物質は水に同伴して落下し,塔下
部の排水口29から塔外に排出される。なお,この向流
式のものに変えて直交流式や並流式のものを適宜使用で
きる。ミストトラップ24はメッシュ層からなり,散水
塔6内で発生したミスト類を捕集するものである。The water spray tower 6 is for bringing exhaust gas and water spray into contact with each other in a countercurrent manner. An exhaust inlet 27 into the tower is provided at a lower portion, and an exhaust outlet 28 is provided at an upper portion. On the other hand, sprinkling water is dropped in a countercurrent manner from a sprinkling device 26 provided at the upper part in the tower. Due to this gas-liquid contact, dust and moisture-absorbing or soluble substances in the exhaust fall along with the water, and are discharged out of the tower through a drain port 29 at the bottom of the tower. Instead of the countercurrent type, a crossflow type or a parallel flow type can be used as appropriate. The mist trap 24 is formed of a mesh layer and collects mist generated in the water spray tower 6.
【0031】このようにして洗浄され且つミストが除去
された排気は,次にガス吸着塔7に送り込まれる。ガス
吸着塔7は活性炭層30を装填したものであり,この発
生炭層30を排気が通過することにより,排気中に同伴
する有害物質が吸着され,この処理を終えた排気は系外
に放出される。The exhaust gas thus cleaned and from which mist has been removed is then sent to the gas adsorption tower 7. The gas adsorption tower 7 is loaded with an activated carbon layer 30. When the exhaust gas passes through the generated carbon layer 30, harmful substances entrained in the exhaust gas are adsorbed, and the exhaust gas after this treatment is discharged out of the system. You.
【0032】以上の構成になる本発明の土壌処理プラン
トにおいて,重金属類や有機化合物で汚染された掘削土
壌を,その汚染物質の種類や程度に応じて改質すること
ができ,その改質された土壌を掘削箇所に埋め戻すこと
により,環境への影響を低減したグラウンドに修復する
ことができる。また,処理済土壌を分析する分析工程を
設け,その結果に応じて,一部は土壌処理プラントで再
処理したり,また別の場所に搬送することもできる。In the soil treatment plant of the present invention having the above structure, excavated soil contaminated with heavy metals and organic compounds can be modified according to the type and degree of the contaminants. By backfilling the excavated soil with the excavated soil, it can be restored to a ground with reduced environmental impact. In addition, an analysis step for analyzing the treated soil can be provided, and depending on the result, a part can be reprocessed in a soil treatment plant or transported to another place.
【0033】以下に,その汚染物質の種類や程度に応じ
て,本発明法を実施する態様について,重金属類で汚染
された土壌,有機化合物で汚染された土壌,および重金
属類と有機化合物で汚染された土壌を例として具体的に
説明する。In the following, embodiments of the method of the present invention according to the type and degree of the contaminants will be described in connection with soil contaminated with heavy metals, soil contaminated with organic compounds, and soil contaminated with heavy metals and organic compounds. A concrete description will be given by taking the soil as an example.
【0034】(A)重金属類で汚染されている土壌 本発明において,重金属類の汚染土壌に対してはその重
金属類の種類により,次の3種の態様がある。 (1) ドラム型スクラバーで土壌と混和する添加剤とし
て,酸および/またはアルカリを使用して,当該土壌の
pHを当該重金属が溶出しない範囲に調整する。 (2) 添加剤として鉄粉を使用して,当該土壌中の重金属
の不溶化を行い,重金属の溶出を抑制する。 (3) 添加剤として,酸および/またはアルカリと,さら
に硫化剤,キレート剤,水ガラス,鉄粉等の助剤を使用
することにより,当該土壌のpH調整と該助剤による重
金属の不溶化処理を行い,重金属の溶出を防止する。(A) Soil Contaminated with Heavy Metals In the present invention, soil contaminated with heavy metals has the following three modes depending on the type of heavy metals. (1) The pH of the soil is adjusted to a range where the heavy metal does not elute using an acid and / or an alkali as an additive to be mixed with the soil in a drum type scrubber. (2) Use iron powder as an additive to insolubilize heavy metals in the soil and suppress elution of heavy metals. (3) By using an acid and / or alkali and an auxiliary agent such as a sulfide agent, a chelating agent, water glass, and iron powder as an additive, the pH of the soil is adjusted and the heavy metal is insolubilized by the auxiliary agent. To prevent the elution of heavy metals.
【0035】重金属で汚染されている土壌に,酸および
/またはアルカリを添加して混合・攪拌し,対象重金属
の水溶液中の溶解度曲線に見られる最低溶解濃度となる
pHに調整すると,重金属の溶出を抑制することができ
る。重金属の水溶液中の溶解度曲線は,横軸にpHを,
縦軸に最低溶解濃度を採ったときに,或るpH範囲にお
いて最低値を示し,その最低値のpH範囲は重金属の種
類によって異なる。例えば,PbについてはpH8.5
〜11.5の範囲,CdについてはpH9.5〜12の範
囲,Cr(3価)についてはpH9〜11.5の範囲,
AsについてはpH5.5〜10.5の範囲等のごとく重
金属の種類に応じてそれぞれ異なり,この最低溶解濃度
を示すpHであれば,その溶出量は環境基準以下の極め
て微量となる。本発明においては,このように重金属ご
とに異なる適正な土壌pH値に調整し,これにより,重
金属の溶出のない土壌に修復する点に一つの特徴を有し
ている。なお,酸としては鉱酸の中でも硫酸,アルカリ
としては生石灰,消石灰または炭酸カルシウムを単独ま
たは複合して用いることが,コスト面,入手の簡便性,
処理後土壌の安定性等の点から,望ましい。The acid and / or alkali are added to the soil contaminated with heavy metals, mixed and stirred to adjust the pH to the lowest dissolution concentration shown in the solubility curve of the target heavy metal in the aqueous solution. Can be suppressed. The solubility curve of an aqueous solution of heavy metals shows pH on the horizontal axis,
When the lowest dissolved concentration is taken on the vertical axis, the lowest value is shown in a certain pH range, and the lowest pH range differs depending on the type of heavy metal. For example, for Pb, pH 8.5
~ 11.5, Cd for pH 9.5-12, Cr (trivalent) for pH 9-11.5,
As is different depending on the type of heavy metal, such as a range of pH 5.5 to 10.5, and if the pH shows this minimum dissolution concentration, the elution amount is extremely small below the environmental standard. The present invention has one feature in that the soil pH is adjusted to an appropriate soil value which differs for each heavy metal, thereby restoring the soil to a state in which the heavy metal is not eluted. Among the mineral acids, sulfuric acid among mineral acids, and as the alkali, quick lime, slaked lime, or calcium carbonate can be used alone or in combination.
It is desirable from the viewpoint of soil stability after treatment.
【0036】しかし,前記(A−1)のように,酸とア
ルカリで土壌pHを適正値に調整しても,種類の異なる
重金属で複合汚染している場合には,或る重金属は溶出
防止ができても,他の重金属は溶出防止ができない場合
もある。この場合には,前記(A−3)のように,他の
添加助剤を使用すると,重金属の不溶化を行わせること
ができる。また,前記(A−2)の鉄粉の添加は,その
還元作用や吸着作用により或る重金属を処理しやすいイ
オン形態に変化させたり,溶出を抑制したりする作用を
供する。とくに砒素を含有する土壌に鉄粉を添加する
と,砒素の溶出を防止することができる。However, as described in the above (A-1), even if the soil pH is adjusted to an appropriate value with an acid and an alkali, certain heavy metals are prevented from being eluted when they are combined with different types of heavy metals. In some cases, elution of other heavy metals cannot be prevented. In this case, as described in the above (A-3), when another additive is used, the heavy metal can be insolubilized. Further, the addition of the iron powder (A-2) provides an action of changing a heavy metal into an ion form that can be easily treated or suppressing elution by its reducing action or adsorption action. In particular, when iron powder is added to arsenic-containing soil, arsenic elution can be prevented.
【0037】(B)有機化合物で汚染されている土壌 有機化合物の汚染土壌に対しては,汚染有機化合物が比
較的低分子量の有機化合物である場合があり,かような
比較的低分子量の有機化合物は沸点の低い揮発性または
半揮発性であるから,本発明においては,その揮発を促
進する添加剤を使用したうえで,ドラム型スクラバーで
処理する。(B) Soil Contaminated by Organic Compounds With respect to soil contaminated with organic compounds, the contaminated organic compounds may be organic compounds having a relatively low molecular weight. In the present invention, the compound is treated with a drum type scrubber after using an additive which promotes its volatilization because the compound is volatile or semi-volatile with a low boiling point.
【0038】この揮発を促進する添加剤として,カルシ
ウムイオンを含む化合物例えば生石灰,消石灰,炭酸カ
ルシウム等を用いると,吸水作用や吸着作用によって土
壌粒子の団粒化を促進するので,ドラム型スクラバー内
での攪拌性と空気との接触性が高まり,有機化合物の除
去効率が向上する。例えば,硫酸と酸化カルシウムを使
用すると次式の反応により土壌粒子に付着している水分
を除去でき,土壌の団粒化による攪拌性の向上で揮発性
有機物の揮発を促進することができる。 H2SO4+CaO+H2O→CaSO4・2H2OWhen a compound containing calcium ions such as quick lime, slaked lime, calcium carbonate or the like is used as an additive for promoting volatilization, the aggregation of soil particles is promoted by a water absorbing action or an adsorbing action. The agitation property and the contact property with air are improved, and the removal efficiency of organic compounds is improved. For example, when sulfuric acid and calcium oxide are used, water adhering to soil particles can be removed by the following reaction, and volatilization of volatile organic substances can be promoted by improving agitation by soil agglomeration. H 2 SO 4 + CaO + H 2 O → CaSO 4 .2H 2 O
【0039】これとは逆に,カリウム,ナトリウム,り
ん,塩素等を含む潮解性の化合物は,土壌粒子中の水分
の保湿作用を示す傾向にあるので,ドラム型スクラバー
での攪拌性と反応性を阻害するから,本発明の添加剤と
しては望ましくない。例えば,酸とアルカリを添加する
としても,塩酸と苛性ソーダを用いる場合には,次式の
反応により水を生成し,ドラム型スクラバー内での攪拌
性を阻害し,空気との接触効率を低下させるので好まし
くはない。 HCl+NaOH→NaCl+H2OOn the contrary, deliquescent compounds containing potassium, sodium, phosphorus, chlorine and the like tend to show a moisturizing effect of the water in the soil particles. Is not desirable as an additive of the present invention. For example, when hydrochloric acid and caustic soda are used even if an acid and an alkali are added, water is generated by the following reaction, which hinders agitation in a drum type scrubber and reduces the contact efficiency with air. This is not preferred. HCl + NaOH → NaCl + H 2 O
【0040】(C)重金属類と有機化合物で汚染されて
いる土壌 重金属類と有機化合物で汚染されている土壌の場合に
は,前記Aの処理と前記Bの処理を同時に行うか,また
は回分式に行う。(C) Soil Contaminated with Heavy Metals and Organic Compounds In the case of soil contaminated with heavy metals and organic compounds, the treatment of A and the treatment of B are carried out simultaneously or in batch mode. To do.
【0041】同時に行う場合には,酸および/またはア
ルカリの添加により含有重金属の種類に応じた適正なp
Hに調整すると同時に,その酸とアルカリを適正に選択
することにより,前記Bと同様にして有機化合物を揮発
除去する。また,必要に応じて鉄粉を添加したり,硫化
剤,キレート剤,水ガラス等の助剤を配合する。In the case of performing simultaneously, by adding an acid and / or an alkali, an appropriate p depending on the type of heavy metal contained can be obtained.
At the same time as adjusting to H, the organic compound is volatilized and removed in the same manner as in B, by appropriately selecting the acid and alkali. If necessary, iron powder is added, and auxiliary agents such as a sulfurizing agent, a chelating agent, and water glass are added.
【0042】土壌の種類によっては,すなわち含有物質
の汚染濃度や複合汚染の程度によって,一回の同時処理
では不十分な結果しか得られない場合には,その処理済
土壌に再び適正な添加剤を配合してドラム型スクラバー
で再処理するか,未処理の土壌にこの処理済土壌を配合
してドラム型スクラバーでの処理に供する。また,改質
結果によっては他の場所に搬送して適切な処理を行う。Depending on the type of soil, that is, depending on the contamination concentration of the contained substances and the degree of complex contamination, if only one simultaneous treatment gives insufficient results, the appropriate additive is added to the treated soil again. Is mixed and reprocessed with a drum type scrubber, or this treated soil is mixed with untreated soil and subjected to treatment with a drum type scrubber. Further, depending on the reforming result, the wafer is transported to another place to perform an appropriate process.
【0043】以上のようにして,本発明法によれば,処
理対象土壌が各種の汚染物質を含有している場合におい
ても,その汚染の種類や程度に応じて,添加剤の種類と
量を適正に選定し,ドラム型スクラバー内で攪拌と空気
接触を行わせることにより,同一の処理プラントを使用
しながら,人の健康保護および生活環境保全のために悪
影響を及ぼさない土壌に修復することができる。この点
で,特定の土壌に対してのみ効用を有する従来法に比べ
て汎用性が高い。すなわち,土壌汚染の状況はその対象
地域の使用経緯や汚染の履歴により大きく左右され,多
種多様な汚染状況が存在し,単一の汚染源でなく複数に
よる汚染を受けている土壌など,数種の汚染物質が検出
されることが良く見られるが,本発明法はそのようなケ
ースに対し,従来の処理法では対処しきれていない現状
を打開する新しい土壌処理プロセスを提供するものであ
る。As described above, according to the method of the present invention, even when the soil to be treated contains various contaminants, the type and amount of the additive are determined according to the type and degree of the contamination. By properly selecting and agitating and contacting air in a drum type scrubber, it is possible to use the same treatment plant to restore soil that does not adversely affect human health and the living environment. it can. In this respect, the versatility is higher than the conventional method having utility only for a specific soil. In other words, the status of soil contamination is greatly affected by the history of use and the history of contamination in the target area, and there are a wide variety of pollution conditions, such as soils that are contaminated by multiple sources rather than a single source. Although pollutants are often found to be detected, the present method provides a new soil treatment process that overcomes the current situation that conventional treatment methods cannot address.
【0044】なお,本発明の処理にあたって,土壌以外
の異物例えばコンクリート塊,アスファルト片,木片,
配管類や鉄筋等が混入している場合には,これらの異物
を除去してからドラム型スクラバーに投入するようにす
る。また,ドラム型スクラバーでの反応を効率よく行わ
せるには,ドラム型スクラバー内に滞留する材料の容積
率を3〜30%程度とし,回転速度については,内半径
をr(m),角速度をω(rad/sec),重力加速度をg
(kgf/sec2) としたとき, ドラム型スクラバー内材料
(Mkg)が遠心力と重力がバランスする点,すなわちM
rω2 =Mgとなる点が,ドラム型スクラバーの内壁頂
上部かややその前方となるような回転速度を選択するの
がよい。またドラム型スクラバー内に材料が滞留する時
間は3〜10分程度でよい。In the treatment of the present invention, foreign matters other than soil, such as concrete lumps, asphalt pieces, wood pieces,
If pipes, reinforcing bars, etc. are mixed, remove these foreign substances before putting them into a drum type scrubber. Further, in order to make the reaction in the drum type scrubber efficient, the volume ratio of the material staying in the drum type scrubber is set to about 3 to 30%. ω (rad / sec), gravitational acceleration is g
(Kgf / sec 2 ), the point at which the material (Mkg) in the drum type scrubber balances the centrifugal force and gravity,
It is preferable to select a rotational speed such that the point where rω 2 = Mg is at or slightly above the top of the inner wall of the drum type scrubber. The time for which the material stays in the drum type scrubber may be about 3 to 10 minutes.
【0045】また,土壌や各添加薬剤の投入にあたって
は,土壌,生石灰,鉄粉等の固体状物質はベルトコンベ
アを用いて,硫酸,水硫化ソーダ,水等の液体は定量ポ
ンプにて供給できる。本発明の土壌処理では土壌中の微
粒子成分が多量に飛散するが,これらは一旦散水塔で捕
集してから活性炭使用のガス吸着塔に導くことにより,
微粒子成分でガス吸着塔の機能が劣化することが防止さ
れ,揮発性化合物を捕集する本来の機能が長期間発揮さ
れる。In addition, when the soil and each additive agent are charged, solid substances such as soil, quicklime and iron powder can be supplied by using a belt conveyor, and liquids such as sulfuric acid, sodium hydrosulfide, and water can be supplied by a metering pump. . In the soil treatment of the present invention, a large amount of fine particle components in the soil are scattered, but these are once collected in a watering tower and then guided to a gas adsorption tower using activated carbon.
The function of the gas adsorption tower is prevented from deteriorating due to the fine particle components, and the original function of trapping volatile compounds is exhibited for a long time.
【0046】以下に本発明の操業例を挙げる。The following is an example of the operation of the present invention.
【0047】〔稼働例1〕土壌処理プラントの諸元およ
び機械類を表1に示した。表1中に図中No.を付した
が,該番号は図1〜2に示したものに対応している。[Operation Example 1] Table 1 shows the specifications and machinery of the soil treatment plant. The numbers in the figures are given in Table 1, and the numbers correspond to those shown in FIGS.
【0048】[0048]
【表1】 [Table 1]
【0049】図1の処理対象グラウンドのうち鉛汚染が
ひどい領域(例えばBで示す領域)を把握したうえ,こ
の鉛汚染土壌を処理プラント2に運んで処理する。この
領域の土壌はほぼ中性域(pH=6〜7.5)にある。
このため,Pbの溶出が起きないpH=8.9〜11.3
となるようにアルカリとして生石灰使用し,その添加量
を調整しながら添加してドラム型スクラバーで処理し
た。なお,この領域Bについて試錐し,第43番試料を
得た。この第43番試料は表2に示すように鉛の溶出が
基準値以上であったことから前述の処理を実施した。そ
の結果,ドラム型スクラバーの出口より定期的に採取し
た56種の処理済土壌の分析結果は表3および図4のと
おりであった。また,鉛が規制値(0.01 mg/L)以上
の溶出値を示した処理済土壌については再処理を実施
し,規制値を満足した。In the ground to be treated shown in FIG. 1, an area where lead contamination is severe (for example, an area indicated by B) is grasped, and the lead-contaminated soil is carried to the treatment plant 2 for treatment. The soil in this region is almost in the neutral region (pH = 6-7.5).
Therefore, the pH at which Pb elution does not occur is 8.9 to 11.3.
Quicklime was used as an alkali so that the amount of the lime was adjusted. The area B was drilled to obtain a No. 43 sample. This No. 43 sample was subjected to the above-mentioned treatment since the elution of lead was above the reference value as shown in Table 2. As a result, the analysis results of the 56 types of treated soil periodically collected from the outlet of the drum type scrubber were as shown in Table 3 and FIG. In addition, re-treatment was performed on the treated soil in which lead showed an elution value higher than the regulation value (0.01 mg / L), and the regulation value was satisfied.
【0050】[0050]
【表2】 [Table 2]
【0051】[0051]
【表3】 [Table 3]
【0052】表3および図4のの結果から,pHが8.
9〜11.3の範囲に調整された処理済土壌はPb溶出
量が0.01mg/ リットル以下となり,環境に影響を与え
ない程度に修復されていることがわかる。なお,稼働例
1における処理対象量は約2000トンであり,処理速
度は30トン/時間である。From the results shown in Table 3 and FIG.
The treated soil adjusted to the range of 9 to 11.3 has a Pb elution amount of 0.01 mg / liter or less, indicating that the soil has been restored to a level that does not affect the environment. Note that the processing target amount in the operation example 1 is about 2000 tons, and the processing speed is 30 tons / hour.
【0053】土壌の分析(以下の表3〜7のものを含
む)は次の方法に従った。 (1) 含有値(mg/Kg)・・昭和63年環水管第12
7号に準拠 総水銀 :還元気化原子吸光法 カドミウム:フレーム原子吸光法 鉛 :フレーム原子吸光法 砒素 :水素化物発生IPC法 (2) 溶出値・・平成3年環告第46号の方法で以下の項
目を実施 1,1,2-トリクロロエタン,トリクロロエチレン,テトラ
クロロエチレン,四塩化炭素,1,2-ジクロロエチレン,
PCB,総水銀,鉛,カドミウム,砒素,シアンおよび
六価クロム。The soil analysis (including those in Tables 3 to 7 below) was performed according to the following method. (1) Content value (mg / Kg).
Conforms to No. 7. Total mercury: Reduced vapor atomic absorption spectrometry Cadmium: Flame atomic absorption spectrometry Lead: Flame atomic absorption spectrometry Arsenic: Hydride generation IPC method (2) Elution value: The method of 1991 Announcement No. 46 Implemented items 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, carbon tetrachloride, 1,2-dichloroethylene,
PCB, total mercury, lead, cadmium, arsenic, cyanide and hexavalent chromium.
【0054】〔稼働例2〕処理対象グラウンドのうち砒
素汚染がひどい領域(例えば図1のDの領域)の土壌を
処理プラント2で処理する。この領域は鉛汚染も進んで
おり,従って,鉛と砒素の複合汚染領域でもある。この
ため,Pbの不溶化処理に加えて鉄粉添加処理を行っ
た。鉄粉添加量は砒素量に応じ2重量%以内の或る量に
調整した。アルカリとしては消石灰を使用し,この消石
灰添加量は所定のpHが得られる量に調整した。この鉛
・砒素複合汚染土壌を約1000トン処理したが,その
代表的なものについての処理結果を表4と表5に示し
た。[Operation Example 2] In the treatment target ground, the soil in the area where arsenic contamination is severe (for example, the area D in FIG. 1) is treated by the treatment plant 2. This area is also becoming increasingly contaminated with lead, and is therefore a mixed area of lead and arsenic. For this reason, iron powder addition treatment was performed in addition to the Pb insolubilization treatment. The amount of iron powder added was adjusted to a certain amount within 2% by weight according to the amount of arsenic. Slaked lime was used as the alkali, and the added amount of slaked lime was adjusted to an amount at which a predetermined pH was obtained. About 1,000 tons of this lead / arsenic contaminated soil was treated, and the results of typical treatments are shown in Tables 4 and 5.
【0055】[0055]
【表4】 [Table 4]
【0056】[0056]
【表5】 [Table 5]
【0057】表4は,消石灰を添加したが鉄粉無添加の
比較例であり,表5は消石灰と鉄粉を添加した例であ
る。両表の対比から明らかなように,鉄粉を添加すると
砒素の溶出値は格段に低下することがわかる。Table 4 is a comparative example in which slaked lime was added but iron powder was not added, and Table 5 is an example in which slaked lime and iron powder were added. As is clear from the comparison between the two tables, the addition of iron powder significantly reduces the arsenic elution value.
【0058】〔稼働例3〕稼働例1と同じドラム型スク
ラバーをもつ設備で,有機化合物を含有する土壌を処理
した。添加剤としては硫酸と生石灰を使用した。土壌処
理量は1600トンであり30t/hの速度で処理し
た。土壌中の有機化合物は表6に示すように塩素系の揮
発性化合物であり,硫酸添加量はほぼ対土壌6.4%,
生石灰はほぼ対土壌4%とした。[Operation Example 3] Soil containing an organic compound was treated with the same equipment having the same drum type scrubber as in Operation Example 1. Sulfuric acid and quick lime were used as additives. The soil treatment amount was 1600 tons and the treatment was performed at a rate of 30 t / h. As shown in Table 6, the organic compounds in the soil are chlorine-based volatile compounds.
Quick lime was almost 4% of soil.
【0059】[0059]
【表6】 [Table 6]
【0060】表6の結果にみられるように,本発明の設
備によるといずれの有機化合物を含む土壌であっても,
各有機化合物は環境基準以下に除去できることがわか
る。As can be seen from the results in Table 6, according to the equipment of the present invention, even if the soil contains any organic compound,
It can be seen that each organic compound can be removed below environmental standards.
【0061】〔稼働例4〕稼働例1と同じドラム型スク
ラバーをもつ設備で,重金属と有機化合物を含有する土
壌を処理した。処理対象土壌の重金属類はAsとCdで
あったので,添加剤としては硫酸,生石灰および鉄粉を
使用して適切なpH値に調整し,8000tの土壌を3
0t/hの速度で処理した。表7に,処理した土壌の代
表的バッチについて,処理前と処理後の有機化合物の含
有量と,AsおよびCdの溶出量を示した。[Operation Example 4] The same equipment having the same drum type scrubber as in Operation Example 1 was used to treat soil containing heavy metals and organic compounds. Since the heavy metals in the soil to be treated were As and Cd, the pH was adjusted to an appropriate pH value using sulfuric acid, quicklime and iron powder as additives, and 8,000 t of soil was adjusted to 3 times.
Processing was performed at a speed of 0 t / h. Table 7 shows the content of organic compounds before and after the treatment and the elution amounts of As and Cd for the representative batch of the treated soil.
【0062】[0062]
【表7】 [Table 7]
【0063】表7の結果にみられるように,重金属類と
有機化合物で複合汚染された土壌であっても,本発明に
よれば同時処理ができることがわかる。As can be seen from the results in Table 7, it is understood that simultaneous treatment can be performed according to the present invention even on soils contaminated with heavy metals and organic compounds.
【0064】[0064]
【発明の効果】以上説明したように,本発明によれば,
各種の重金属類で汚染された土壌,有機化合物で汚染さ
れた土壌,更には重金属類と有機化合物で複合汚染され
た土壌等のいずれに対しても,それらの汚染物質の種類
と程度に応じて,経済的且つ効率よく,環境に影響を与
えない土壌に修復することができる。As described above, according to the present invention,
For soils contaminated with various heavy metals, soils contaminated with organic compounds, and soils contaminated with heavy metals and organic compounds, depending on the type and degree of these contaminants It can be economically and efficiently restored to soil that does not affect the environment.
【図1】本発明法を説明するための土壌処理の工程図で
ある。FIG. 1 is a process chart of soil treatment for explaining the method of the present invention.
【図2】本発明に従う土壌処理プラントの機器配置図で
ある。FIG. 2 is an equipment layout of a soil treatment plant according to the present invention.
【図3】本発明に従うドラム型スクラバーの好ましい運
転状況を示す略断面図である。FIG. 3 is a schematic sectional view showing a preferred operation state of the drum type scrubber according to the present invention.
【図4】土壌のpHとPb溶出量との関係を示す図であ
る。FIG. 4 is a graph showing the relationship between soil pH and Pb elution amount.
1 処理対象グラウンド 2 土壌処理プラント 3 ドラム型スクラバー 4 材料投入ホッパー 5 排気フード 6 散水塔 7 ガス吸着塔 8 排気装置 9 処理済土壌 10 被処理土壌 DESCRIPTION OF SYMBOLS 1 Ground to be treated 2 Soil treatment plant 3 Drum type scrubber 4 Material input hopper 5 Exhaust hood 6 Sprinkler tower 7 Gas adsorption tower 8 Exhaust device 9 Treated soil 10 Treated soil
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01J 8/10 311 (56)参考文献 特開 平6−226238(JP,A) 特開 昭63−23789(JP,A) 特開 平7−24441(JP,A) 特開 平8−243541(JP,A) 特開 平4−109967(JP,A) 特開 平5−309354(JP,A) 国際公開95/22418(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B09C 1/00 - 1/10 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI B01J 8/10 311 (56) References JP-A-6-226238 (JP, A) JP-A-63-23789 (JP, A) JP-A-7-24441 (JP, A) JP-A-8-243541 (JP, A) JP-A-4-109967 (JP, A) JP-A-5-309354 (JP, A) International publication 95/22418 ( (WO, A1) (58) Field surveyed (Int. Cl. 7 , DB name) B09C 1/00-1/10
Claims (7)
を掘削して土壌処理プラントに運び,この土壌処理プラ
ントで処理した土壌の少なくとも一部を前記掘削箇所に
埋め戻すことからなる汚染土壌の処理法において, 前記の土壌処理プラントが各種添加剤とを混和するため
のドラム型スクラバーを備えること, 該汚染グラウンドを試錐して汚染物質の種類とその分布
を調査しておき,この調査結果に基づいて掘削箇所の汚
染物質の種類を推定すること, この推定汚染物質含有土壌を該ドラム型スクラバーで添
加剤と混和するさいに,当該汚染物質の種類に応じて該
添加剤の種類と量を調整すること,および 該添加剤とし
て,酸,アルカリまたは鉄粉の少なくとも1種を使用す
ることを特徴とする汚染土壌の処理法。1. A method for treating contaminated soil, comprising excavating the contaminated soil from a contaminated ground and carrying it to a soil treatment plant, and backfilling at least a portion of the soil treated by the soil treatment plant at the excavation site. In the above, the above-mentioned soil treatment plant is provided with a drum type scrubber for mixing various additives, and the type of the pollutant and its distribution are investigated by drilling the contaminated ground, and based on the result of the survey, estimating the type of contaminants drilling locations, the estimated pollutants contained soil again that is miscible with the additive in the drum-type scrubber, adjusting the type and amount of the additive according to the type of the pollutant it, and the said additives
Use at least one of acid, alkali and iron powder.
A method for treating contaminated soil.
を掘削して土壌処理プラントに運び,この土壌処理プラ
ントで処理した土壌を他所に搬出することからなる汚染
土壌の処理法において, 前記の土壌処理プラントが土壌と各種添加剤を混和する
ためのドラム型スクラバーを備えること, 該汚染グラウンドを試錐して汚染物質の種類とその分布
を調査しておき,この調査結果に基づいて掘削箇所の汚
染物質の種類を推定すること, この推定汚染物質含有土壌を該ドラム型スクラバーで添
加剤と混和するさいに,当該汚染物質の種類に応じて該
添加剤の種類と量を調整すること,および 該添加剤とし
て,酸,アルカリまたは鉄粉の少なくとも1種を使用す
ることを特徴とする汚染土壌の処理法。2. A method for treating contaminated soil, comprising: excavating the contaminated soil from a contaminated ground, carrying the excavated soil to a soil treatment plant, and carrying out the soil treated by the soil treatment plant to another location. The plant shall be equipped with a drum type scrubber for admixing soil and various additives. The polluted ground shall be drilled to investigate the type and distribution of pollutants. and child the type estimation, the estimated pollutants contained soil again that is miscible with the additive in the drum-type scrubber, adjusting the type and amount of the additive according to the type of the contaminant, and the As an additive
Use at least one of acid, alkali and iron powder.
A method for treating contaminated soil.
石灰または炭酸カルシウムである請求項1または2に記
載の汚染土壌の処理法。3. The method for treating contaminated soil according to claim 1, wherein the acid is sulfuric acid and the alkali is quick lime, slaked lime or calcium carbonate.
化合物である請求項1,2または3に記載の汚染土壌の
処理法。4. The method for treating contaminated soil according to claim 1, wherein the contaminants are heavy metals and / or organic compounds.
金属の種類に応じて処理済土壌のpHを酸またはアルカ
リにより所定の範囲に調整する請求項1,2または3に
記載の汚染土壌の処理法。5. The method according to claim 1, wherein when the pollutant is a heavy metal, the pH of the treated soil is adjusted to a predetermined range with an acid or an alkali in accordance with the type of the heavy metal. Processing method.
て鉄粉を使用する請求項1,2または3に記載の汚染土
壌の処理法。6. The method for treating contaminated soil according to claim 1, wherein when the contaminant is arsenic, iron powder is used as an additive.
なるドラム型スクラバーと,このドラム型スクラバーの
材料装入口側に設けた材料投入ホッパーと,この材料投
入ホッパーに被処理土壌と各種添加剤を装入するための
材料供給手段と,このドラム型スクラバーの材料排出口
側に設けた排気フードと,この排気フードに接続された
散水塔と,この散水塔の排気側に接続されたガス吸着塔
と,ドラム型スクラバーから該ガス吸着塔まで気体を導
くための排気装置とからなる汚染土壌の処理設備。7. A drum type scrubber comprising a rotating drum whose axis is inclined with respect to the horizontal, a material input hopper provided on a material loading side of the drum type scrubber, and a soil to be treated and various additions to the material input hopper. Material supply means for charging the agent, an exhaust hood provided on the material outlet side of the drum type scrubber, a water spray tower connected to the exhaust hood, and a gas connected to the exhaust side of the water spray tower. A contaminated soil treatment facility comprising an adsorption tower and an exhaust device for guiding gas from a drum type scrubber to the gas adsorption tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06561497A JP3215065B2 (en) | 1997-03-05 | 1997-03-05 | Methods and equipment for treating contaminated soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06561497A JP3215065B2 (en) | 1997-03-05 | 1997-03-05 | Methods and equipment for treating contaminated soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10244248A JPH10244248A (en) | 1998-09-14 |
JP3215065B2 true JP3215065B2 (en) | 2001-10-02 |
Family
ID=13292087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06561497A Expired - Lifetime JP3215065B2 (en) | 1997-03-05 | 1997-03-05 | Methods and equipment for treating contaminated soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3215065B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001334227A (en) * | 2000-05-26 | 2001-12-04 | Okutama Kogyo Co Ltd | Stabilizing treatment method for waste containing heavy metal |
JP4632586B2 (en) * | 2001-07-19 | 2011-02-16 | 前田建設工業株式会社 | Purification method for contaminated soil |
JP4990865B2 (en) * | 2001-11-30 | 2012-08-01 | 松田技研工業株式会社 | Solidified insolubilizer for soil and soil treatment method |
JP2004030433A (en) * | 2002-06-27 | 2004-01-29 | Japan Wall:Kk | Soil disposal planning device and soil disposal planning method |
GB2450341A (en) * | 2007-06-20 | 2008-12-24 | Aqs Holdings Ltd | Treatment of contaminated soil |
EP2835359B1 (en) | 2012-03-30 | 2023-07-05 | Yoshino Gypsum Co., Ltd. | Uses of a material for insolubilizing specific toxic substances, method for insolubilizing specific toxic substances, and soil improvement method |
KR101606870B1 (en) * | 2013-12-11 | 2016-03-28 | 지에스건설 주식회사 | Soil remediation apparatus and system including thereof |
CN109758714B (en) * | 2019-01-23 | 2020-12-18 | 浙江理工大学 | Method for restoring antibiotic-polluted soil |
KR102212259B1 (en) * | 2020-05-18 | 2021-02-04 | 한국지질자원연구원 | Method for detecting subsurface contamnants using neutron activation analysis |
CN114643277B (en) * | 2022-03-31 | 2023-05-26 | 鲁东大学 | Soil pollution control device and method |
-
1997
- 1997-03-05 JP JP06561497A patent/JP3215065B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10244248A (en) | 1998-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ke et al. | Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching | |
Basta et al. | Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil | |
EP0663960B1 (en) | Method for removing mercury from contaminated soils and industrial wastes and related apparatus | |
Ogundiran et al. | Mobility and speciation of heavy metals in soils impacted by hazardous waste | |
Papassiopi et al. | Removal of heavy metals from calcareous contaminated soils by EDTA leaching | |
Li et al. | Mobility of Zn, Cd and Pb in soils as affected by poultry litter extract—I. Leaching in soil columns | |
JP3215065B2 (en) | Methods and equipment for treating contaminated soil | |
US7736291B2 (en) | Method for stabilization of heavy metals and odor control with dicalcium phosphate dihydrate powder | |
US7530939B2 (en) | Method for stabilization of heavy metals in incinerator bottom ash and odor control with dicalcium phosphate dihydrate powder | |
US11535516B2 (en) | Method and reagent system for remediating mine waste and other solid waste contaminated with heavy metals | |
US20040024281A1 (en) | Method for stabilization of material or waste to reduce metals and fluoride leaching potential | |
JP3862394B2 (en) | Detoxification method of soil | |
US6258018B1 (en) | Fixation and stabilization of metals in contaminated soils and materials | |
US12053809B2 (en) | Reagent system for treating mercury-contaminated material | |
JP2004292806A (en) | Soil renewing agent and method for renewal of soil | |
JP2006075799A (en) | Polluted soil excavation and recovery method | |
JPH11226558A (en) | Continuous process for detoxification of fly ash, separation of salt and recycling | |
KR100557768B1 (en) | Method for immobilizing heavy metal in soil or incineration ash using phosphate compound and method of treatment of soil or incineration ash using the same | |
JP5109036B2 (en) | Detoxification method of soil | |
JP4019109B2 (en) | Method and apparatus for purification of contaminated soil | |
JP2003290758A (en) | Contaminated soil decontamination method and regeneration method | |
WO2001014261A1 (en) | Method of treating incineration ashes with sulfate reducing bacteria | |
Tokunaga | Soil pollution: state-of the art in Japan and soil washing process | |
JP3490345B2 (en) | How to clean the soil | |
JP2004243226A (en) | Exuding prevention method for contaminant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010717 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080727 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090727 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090727 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110727 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120727 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120727 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130727 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |