JP3214546U - Hybrid compact power generator - Google Patents

Hybrid compact power generator Download PDF

Info

Publication number
JP3214546U
JP3214546U JP2017005169U JP2017005169U JP3214546U JP 3214546 U JP3214546 U JP 3214546U JP 2017005169 U JP2017005169 U JP 2017005169U JP 2017005169 U JP2017005169 U JP 2017005169U JP 3214546 U JP3214546 U JP 3214546U
Authority
JP
Japan
Prior art keywords
rotating shaft
generator
mounting frame
power generation
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017005169U
Other languages
Japanese (ja)
Inventor
谷島 昇
昇 谷島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMOTECH CO., LTD.
Original Assignee
COSMOTECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMOTECH CO., LTD. filed Critical COSMOTECH CO., LTD.
Priority to JP2017005169U priority Critical patent/JP3214546U/en
Application granted granted Critical
Publication of JP3214546U publication Critical patent/JP3214546U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】水力と風力で効率よく安定した電力を設置工事なしに提供できるハイブリッド小型発電装置を提供する。【解決手段】サポニウス式風車3を第一の回転軸5に設け、ワンウェイクラッチ6を介して垂直羽根式風車4を設ける。第一の回転軸5はプーリー8、10とベルト9を介して発電機7に回転を伝え、風車軸受け22を介して風車取り付けフレーム12に設け、該風車取り付けフレームと発電機は発電ベース板13に固定する。更に、発電ベース板の下に浮体21と水車取り付けフレーム14を設け、該水車取り付けフレームに水車を設け、該水車から第二の回転軸15、第一のギア17、第二のギア18、第三の回転軸19を介して発電機に回転を伝える。【選択図】図1To provide a hybrid small-sized power generator capable of providing stable electric power efficiently by hydropower and wind power without installation work. A Saponius type windmill is provided on a first rotating shaft, and a vertical blade type windmill is provided via a one-way clutch. The first rotating shaft 5 transmits rotation to the generator 7 via pulleys 8 and 10 and a belt 9 and is provided on the windmill mounting frame 12 via a windmill bearing 22. Secure to. Furthermore, a floating body 21 and a water wheel mounting frame 14 are provided under the power generation base plate, and a water wheel is provided on the water wheel mounting frame. The rotation is transmitted to the generator via the three rotary shafts 19. [Selection] Figure 1

Description

本考案は、水力と風力を利用して発電を行うハイブリッド小型発電装置に関するものである。  The present invention relates to a hybrid compact power generator that generates power using hydropower and wind power.

従来、風力発電や水力発電、太陽光発電などの自然エネルギーを組み合わせて安定した発電を行う装置が考案されている。  2. Description of the Related Art Conventionally, an apparatus that stably generates power by combining natural energy such as wind power generation, hydroelectric power generation, and solar power generation has been devised.

小型の発電装置においては、少ない風力や水力でも効率よく安定して発電できる装置が求められている。  In a small power generator, a device capable of generating power stably and efficiently even with a small amount of wind power or hydraulic power is required.

従来の風力発電や水力発電の自然エネルギーで発電を行うためには、風が強く、水流の大きい場所を選択して設置する必要がある。一方、小型の発電装置においては発電した電気を使う場所の近くに設置することが求められる。近くに風が強く、水流の大きい場所がない場合、弱風や少水流でも発電が出来れば、小型発電装置が広く活用される。  In order to generate power using the natural energy of conventional wind power generation or hydroelectric power generation, it is necessary to select and install a place where the wind is strong and the water flow is large. On the other hand, a small power generator is required to be installed near a place where the generated electricity is used. If the wind is strong and there is no place with a large water flow, a small power generator can be widely used if power can be generated even with a low wind or a small water flow.

また、発電装置を設置するためには設置工事が必要となり、設置するためには時間と費用が多く必要である。  In addition, installation work is required to install the power generation device, and it takes a lot of time and money to install.

本考案はこのような問題を解決するため、風力発電のための羽根を2種類用意して、一つは弱風でも回転するサポニウス式形状、もう一つは風力が強くなった時に効率よく回転する垂直式形状を採用して、垂直式形状の風車の回転軸をワンウェイクラッチ機構で結合する。  In order to solve such problems, the present invention provides two types of blades for wind power generation, one is a Saponius type that rotates even in low winds, and the other is efficient rotation when wind power becomes strong. Adopting a vertical shape, the vertical axis of the wind turbine's rotating shaft is coupled by a one-way clutch mechanism.

また、水力発電用の螺旋型の水車を設け、該水車の回転軸を前記垂直式形状風車の回転軸から回転を伝達する機構を介して、発電機を回転させる。発電機は、内部の磁石配列が隣り合う磁石の磁極の向きが90度ずつ回転した配列の構成を持たせる。  Further, a helical water turbine for hydroelectric power generation is provided, and the generator is rotated through a mechanism for transmitting the rotation shaft of the water turbine from the rotation shaft of the vertical wind turbine. The generator has a configuration in which the internal magnet arrangement is rotated by 90 degrees in the direction of the magnetic poles of adjacent magnets.

前記構成の発電装置をベース板の上下に構成して、このベース板の下に浮体21を設け、発電装置を川や海の水上に浮かべて発電を行う。  The power generation device having the above-described configuration is configured above and below the base plate, and a floating body 21 is provided below the base plate, and power generation is performed by floating the power generation device over river or sea water.

本考案によれば、弱風や少水流でも効率良く発電ができ、設置工事の必要がない小型発電機を提供できる。  According to the present invention, it is possible to provide a small power generator that can efficiently generate power even in a light wind or a small water flow and does not require installation work.

本考案の実施形態における小型発電装置の構成図である。It is a lineblock diagram of a small power generator in an embodiment of the present invention. 本考案のサポニウス式風車の構成図である。It is a block diagram of the Saponius type windmill of this invention. 本考案の垂直羽根式風車の構成図である。It is a block diagram of the vertical blade | wing type windmill of this invention. 本考案の発電機の内部構成図である。It is an internal block diagram of the generator of this invention.

以下、この考案にかかる好適な実施形態を図面に基づいて説明する。図1において、この考案にかかる小型発電機の実施形態の構成図を示すと、小型発電機は、尾翼1と、カバー2と、サポニウス式風車3と、垂直羽根式風車4と、第一の回転軸5と、ワンウェイクラッチ6と、発電機7と、第二の回転軸15と、螺旋式水車16と、発電ベース板13と、浮体21を有する。  DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In FIG. 1, a configuration diagram of an embodiment of a small generator according to the present invention is shown. The small generator includes a tail 1, a cover 2, a saponius wind turbine 3, a vertical vane wind turbine 4, and a first generator. The rotating shaft 5, the one-way clutch 6, the generator 7, the second rotating shaft 15, the helical water turbine 16, the power generation base plate 13, and the floating body 21 are included.

サポニウス式風車3は第一の回転軸5に結合されている。  The Saponius wind turbine 3 is coupled to the first rotating shaft 5.

前記サポニウス式風車3は、羽根の構造により弱い風でも回転することができる特徴がある。また、該サポニウス式風車3の上部には尾翼1が設けられ、該尾翼1の動く方向に合わせて、該サポニウス式風車3の風上に対する回転方向と反対側の前側をカバー2で風を遮る構造になっている。前記構造とすることによって、回転方向にだけ風が当たるようになり効率よく前記サポニウス式風車3が回転する。  The Saponius type windmill 3 is characterized by being able to rotate even in a weak wind due to the blade structure. Further, a tail blade 1 is provided on the upper part of the Saponius wind turbine 3, and the wind is blocked by the cover 2 on the front side opposite to the rotation direction of the Saponius wind turbine 3 with respect to the windward direction in accordance with the moving direction of the tail blade 1. It has a structure. By adopting the above-described structure, wind is applied only in the rotation direction, and the Saponius wind turbine 3 rotates efficiently.

前記サポニウス式風車3の上面図を図2に示すと、サポニウス式風車は羽根31が回転軸に対して円形に配置されている。また、風向きから向かって右側にカバー32が設けられ、尾翼33が風向きに応じて向きを変えるのと連動して該カバー32も向きを変える構成となっている。  When the top view of the Saponius wind turbine 3 is shown in FIG. 2, the blades 31 of the Saponius wind turbine are arranged in a circle with respect to the rotation axis. In addition, a cover 32 is provided on the right side from the wind direction, and the cover 32 also changes the direction in conjunction with the tail blade 33 changing the direction according to the wind direction.

また、図1において、前記第一の回転軸5にはワンウェイクラッチ6を介して垂直羽根式風車4が設けられている。該垂直羽根式風車4も前記サポニウス式風車3上部の前記尾翼1の動く方向に合わせて、該垂直羽根式風車4の風向きから向かって右の前側をカバー2で風を遮る構造になっている。前記構造とすることによって、回転方向にだけ風が当たるようになり効率よく前記垂直羽根式風車4が回転する。  In FIG. 1, the first rotary shaft 5 is provided with a vertical blade type windmill 4 via a one-way clutch 6. The vertical vane wind turbine 4 is also configured to block the wind with the cover 2 on the right front side from the wind direction of the vertical vane wind turbine 4 in accordance with the moving direction of the tail blade 1 above the Saponius wind turbine 3. . By adopting the above structure, the wind is applied only in the rotation direction, and the vertical blade type windmill 4 is efficiently rotated.

前記垂直羽根式風車4の上面図を図3に示すと、垂直羽根式風車4は全体が円柱の形状をしており羽根41が回転軸に対して円形に配置されている。また、風向きから向かって右側にカバー42が設けられ、尾翼1が風向きに応じて向きを変えるのと連動して該カバー42も向きを変える構成となっている。  FIG. 3 is a top view of the vertical blade type windmill 4. The vertical blade type windmill 4 has a cylindrical shape as a whole, and the blades 41 are arranged in a circle with respect to the rotation axis. Further, a cover 42 is provided on the right side from the wind direction, and the cover 42 also changes its direction in conjunction with the direction of the tail 1 changing its direction according to the wind direction.

更に、図1において前記ワンウェイクラッチ6は前記垂直羽根式風車4が前記第一の回転軸5よりも回転が速く回転すると該垂直羽根式風車4のトルクを該第一の回転軸5に伝え、反対に該垂直羽根式風車4が該第一の回転軸5よりも回転が遅く回転すると該垂直羽根式風車4のトルクは該第一の回転軸5に伝えられなくなる動作をする。すなわち、風が弱い期間は前記サポニウス式風車3の回転が前記垂直羽根式風車4の回転より速く回転するため、該サポニウス式風車3の回転トルクで該第一の回転軸5が回転し、風が強くなり、該垂直羽根式風車4の回転速度が該サポニウス式風車3の回転速度より速く回転すると該垂直羽根式風車4の回転トルクが該第一の回転軸5に伝えられ、該第一の回転軸5は該垂直羽根式風車4の回転トルクと前記サポニウス式風車3の回転トルクで回転する。  In FIG. 1, the one-way clutch 6 transmits the torque of the vertical vane wind turbine 4 to the first rotary shaft 5 when the vertical vane wind turbine 4 rotates faster than the first rotary shaft 5. On the contrary, when the vertical blade type windmill 4 rotates slower than the first rotating shaft 5, the torque of the vertical blade type windmill 4 is not transmitted to the first rotating shaft 5. That is, during the period when the wind is weak, the rotation of the Saponius wind turbine 3 rotates faster than the rotation of the vertical vane wind turbine 4, so that the first rotating shaft 5 rotates with the rotational torque of the Saponius wind turbine 3, and the wind When the rotational speed of the vertical blade wind turbine 4 rotates faster than the rotational speed of the Saponius wind turbine 3, the rotational torque of the vertical blade wind turbine 4 is transmitted to the first rotary shaft 5, The rotating shaft 5 is rotated by the rotational torque of the vertical blade wind turbine 4 and the rotational torque of the Saponius wind turbine 3.

前記第一の回転軸5には、第一のプーリー8が設けられ、ベルト9を介して第二のプーリー10に結合され、該第二のプーリー10は電磁クラッチ11を介して発電機7の軸に結合され、該発電機7を回転させることにより発電を行う。一方、前記第一の回転軸5は風車軸受け22、風車取り付けフレーム12を介して発電ベース板13に固定されている。更に、該発電機7は発電ベース板13に固定されている。また、回転センサー25が風車取り付けフレーム12に設けられ、前記第二のプーリー10の回転速度を測定する。該回転センサーが発生する信号は制御盤20に接続されており、該制御盤20が前記電磁クラッチ11を制御する。  The first rotary shaft 5 is provided with a first pulley 8 and is coupled to a second pulley 10 via a belt 9, and the second pulley 10 is connected to the generator 7 via an electromagnetic clutch 11. The power is generated by rotating the generator 7 coupled to the shaft. On the other hand, the first rotating shaft 5 is fixed to the power generation base plate 13 via a windmill bearing 22 and a windmill mounting frame 12. Further, the generator 7 is fixed to the power generation base plate 13. A rotation sensor 25 is provided on the windmill mounting frame 12 and measures the rotation speed of the second pulley 10. A signal generated by the rotation sensor is connected to the control panel 20, and the control panel 20 controls the electromagnetic clutch 11.

前記電磁クラッチ11は前記第二のプーリー10の回転速度が規定値以上になった場合に、該プーリー10の回転を該発電機7の軸に回転を伝える動作をする。つまり、発電機7を回転させるトルクに満たない回転速度の場合には、前記サポニウス式風車3の回転を該発電機7から該電磁クラッチ11で切り離し、該サポニウス式風車3の回転速度が規定値以上になった場合に該電磁クラッチ11で結合する。この方法によって、確実に該発電機7を始動できる構成となっている。  The electromagnetic clutch 11 operates to transmit the rotation of the pulley 10 to the shaft of the generator 7 when the rotation speed of the second pulley 10 exceeds a specified value. That is, when the rotational speed is less than the torque for rotating the generator 7, the rotation of the Saponius wind turbine 3 is separated from the generator 7 by the electromagnetic clutch 11, and the rotational speed of the Saponius wind turbine 3 is a specified value. When it becomes above, it connects with this electromagnetic clutch 11. With this method, the generator 7 can be reliably started.

一方、発電ベース板13下部には、水車取り付けフレーム14が設けられ、該水車取り付けフレーム14には水車軸受け23を介して第二の回転軸15が設けられ、該第二の回転軸15には螺旋式水車16が設けられている。該螺旋式水車16は一般に落差が少なく流量の多い所で効率的に回転する特長がある。本考案の実施例として該螺旋式水車16をプロペラ式水車で置き換えることも可能である。水車の形状については限定しない。  On the other hand, a turbine mounting frame 14 is provided below the power generation base plate 13, and a second rotating shaft 15 is provided on the turbine mounting frame 14 via a turbine wheel bearing 23. A spiral water turbine 16 is provided. The helical water turbine 16 has a feature that it generally rotates efficiently in a place where there is little drop and there is a large flow rate. As an embodiment of the present invention, the spiral water turbine 16 can be replaced with a propeller water turbine. The shape of the water wheel is not limited.

一方、前記第二の回転軸15には、第一のギア17が設けられている。該第一のギア17は第二のギア18と噛み合い、該第二のギア18は第三の回転軸19に接続されており、該第三の回転軸19のもう片方は前記発電機7の回転軸に軸継手で結合されており、前記発電機7を回転させる構成になっている。一方、前記第三の回転軸19は、発電機軸受け24を介して水車取り付けフレーム14に固定されている。  On the other hand, a first gear 17 is provided on the second rotating shaft 15. The first gear 17 meshes with the second gear 18, and the second gear 18 is connected to the third rotating shaft 19. The other end of the third rotating shaft 19 is connected to the generator 7. It is connected to a rotating shaft by a shaft coupling, and is configured to rotate the generator 7. On the other hand, the third rotating shaft 19 is fixed to the water turbine mounting frame 14 via a generator bearing 24.

前記発電機7は内部の磁石配列が隣り合う磁石の磁極の向きが90度ずつ回転した配列の発電機となっている。前記配列にすることによって、発電に必要な磁束密度が高くなり発電量が多くなる、また該発電機7のゴギングも少なくなると言う特長がある。本考案の実施例として該発電機7の内部磁石配列の磁極の向きが、180度ずつ回転した磁石配列の発電機も含むものである。  The generator 7 is a generator having an internal magnet arrangement in which the magnetic poles of adjacent magnets are rotated by 90 degrees. This arrangement has the advantage that the magnetic flux density required for power generation is increased, the power generation amount is increased, and the gogging of the generator 7 is also reduced. As an embodiment of the present invention, the generator 7 includes a generator having a magnet array in which the direction of the magnetic poles of the internal magnet array is rotated by 180 degrees.

発電機7の断面を図4に示すと、ローター51の内側に磁石52が設けられ、該磁石52の配列は隣り合う磁石の磁極の向きが90度ずつ回転した配列となっている。また、ローター51が回転軸55と結合されている。一方、ステーター54の外周にコイル53が設けられ、前記磁石52が回転すると該コイル53に電流が発生する構成となっている。また、発電効率を上げるために、前記コイル53の内側にも隣り合う磁石の磁極の向きが90度ずつ回転した配列の磁石を設ける事についても限定しない。  When the cross section of the generator 7 is shown in FIG. 4, the magnet 52 is provided inside the rotor 51, and the arrangement of the magnet 52 is an arrangement in which the directions of the magnetic poles of adjacent magnets are rotated by 90 degrees. In addition, the rotor 51 is coupled to the rotation shaft 55. On the other hand, a coil 53 is provided on the outer periphery of the stator 54, and a current is generated in the coil 53 when the magnet 52 rotates. Further, in order to increase the power generation efficiency, there is no limitation on providing an array of magnets in which the direction of the magnetic poles of adjacent magnets is rotated by 90 degrees inside the coil 53.

一方、図1において前記制御盤20が前記発電ベース板13に固定されており、該制御盤20は前記発電機7によって発電された電気の整流、蓄電、電力変換、小型発電機全体の制御を行い、安定した電力を外部へ供給する仕組みとなっている。  On the other hand, in FIG. 1, the control panel 20 is fixed to the power generation base plate 13, and the control panel 20 controls rectification, storage, power conversion, and overall control of the small generator generated by the generator 7. This is a mechanism for supplying stable power to the outside.

一方、前記発電ベース板13の下側の両端には、平行な向きに二個の浮体21が取り付けられている。該浮体21は片方がボートの先端の形状をしており、川や海の流れがある所でも水の抵抗を受けにくい構造になっている。小型発電機を水上に浮かべて、水に流されてしまう事を防ぐためにチェーン又はワイヤー、ロープを使って陸又は川底、海底に固定する。  On the other hand, two floating bodies 21 are attached to both lower ends of the power generation base plate 13 in parallel directions. One side of the floating body 21 has the shape of the tip of a boat, and is structured to be resistant to water resistance even where there is a river or sea flow. A small generator is floated on the water, and it is fixed to the land, riverbed or seabed using a chain, wire or rope to prevent it from being washed away.

本考案では上記固定方法で行う事によって、発電装置本体を設置する工事を行う必要がないと言う特徴がある。  The present invention is characterized in that it is not necessary to perform construction for installing the power generator main body by performing the fixing method.

なお、本考案は、前記実施形態に限定されるものではなく、本考案の目的を達成できる範囲における構成や形態をも含むものである。  In addition, this invention is not limited to the said embodiment, The structure and form in the range which can achieve the objective of this invention are also included.

以下に本考案の一実施形態によるハイブリッド小型発電機の実施例を示す。
電気設備のない場所に、地震観測所などを設置する場合、計測器や記録機、通信機などを動作させる必要があるが、本発電機を使用する事で、風が弱く風力発電量が少なくても水力発電で補うことができ安定して電力を供給することができる。
An example of a hybrid small power generator according to an embodiment of the present invention will be described below.
When installing a seismic observatory in a place without electrical facilities, it is necessary to operate measuring instruments, recorders, communication devices, etc., but using this generator will result in weak wind and less wind power generation. However, it can be supplemented by hydroelectric power generation, and power can be supplied stably.

本考案は、電気設備のない場所で電力を供給する装置に適している。  The present invention is suitable for a device that supplies electric power in a place without electrical equipment.

1 尾翼
2 カバー
3 サポニウス式風車
4 垂直羽根式風車
5 第一の回転軸
6 ワンウェイクラッチ
7 発電機
8 第一のプーリー
9 ベルト
10 第二のプーリー
11 電磁クラッチ
12 風車取り付けフレーム
13 発電ベース板
14 水車取り付けフレーム
15 第二の回転軸
16 螺旋式水車
17 第一のギア
18 第二のギア
19 第三の回転軸
20 制御盤
21 浮体
22 風車軸受け
23 水車軸受け
24 発電機軸受け
25 回転センサー
31 羽根
32 カバー
33 尾翼
41 羽根
42 カバー
51 ローター
52 磁石
53 コイル
54 ステーター
55 回転軸
DESCRIPTION OF SYMBOLS 1 Tail 2 Cover 3 Saponius type windmill 4 Vertical vane type windmill 5 1st rotating shaft 6 One-way clutch 7 Generator 8 1st pulley 9 Belt 10 2nd pulley 11 Electromagnetic clutch 12 Windmill attachment frame 13 Power generation base plate 14 Waterwheel Mounting frame 15 Second rotating shaft 16 Spiral turbine 17 First gear 18 Second gear 19 Third rotating shaft 20 Control panel 21 Floating body 22 Wind turbine bearing 23 Water turbine bearing 24 Generator bearing 25 Rotation sensor 31 Blade 32 Cover 33 Tail 41 Blade 42 Cover 51 Rotor 52 Magnet 53 Coil 54 Stator 55 Rotating shaft

Claims (1)

電力を発生させる装置であって、サポニウス式風車と垂直羽根式風車が設けられ、該サポニウス式風車に結合された第一の回転軸に、ワンウェイクラッチを介して垂直羽根式風車が設けられ、該第一の回転軸は軸受けを介して風車取り付けフレームに固定され、該風車取り付けフレームは発電ベース板に固定され、前記第一の回転軸の片方に第一のプーリーが設けられ、該第一のプーリーと第二のプーリーにはベルトが掛けられ、該第二のプーリーは電磁クラッチを介して発電機の軸に結合され、該発電機は前記発電ベース板に設けられ、該発電ベース板の下部には水車取り付けフレームと浮体が設けられ、該水車取り付けフレームには軸受けを介して第二の回転軸が設けられ、該第二の回転軸の片方には水車が設けられ、もう一方には第一のギアが設けられ、該第一のギアは第二のギアと噛み合わされ、該第二のギアは第三の回転軸の片方に設けられ、該第三の回転軸のもう一方は前記発電機の回転軸に結合され、該第三の回転軸は軸受けを介して水車取り付けフレームに設けられたことを特徴とするハイブリッド小型発電機。  An apparatus for generating electric power, wherein a Saponius wind turbine and a vertical blade wind turbine are provided, and a first blade shaft coupled to the Saponius wind turbine is provided with a vertical blade wind turbine via a one-way clutch, The first rotating shaft is fixed to the windmill mounting frame via a bearing, the windmill mounting frame is fixed to the power generation base plate, and a first pulley is provided on one side of the first rotating shaft, A belt is hung on the pulley and the second pulley, the second pulley is coupled to a generator shaft through an electromagnetic clutch, the generator is provided on the power generation base plate, and a lower portion of the power generation base plate Is provided with a water wheel mounting frame and a floating body, the water wheel mounting frame is provided with a second rotating shaft via a bearing, a water wheel is provided on one side of the second rotating shaft, and the other is provided with a second rotating shaft. one A gear is provided, the first gear meshes with the second gear, the second gear is provided on one side of the third rotating shaft, and the other of the third rotating shaft is connected to the generator. A hybrid small-sized generator coupled to a rotating shaft, wherein the third rotating shaft is provided on a water turbine mounting frame via a bearing.
JP2017005169U 2017-10-25 2017-10-25 Hybrid compact power generator Expired - Fee Related JP3214546U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017005169U JP3214546U (en) 2017-10-25 2017-10-25 Hybrid compact power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017005169U JP3214546U (en) 2017-10-25 2017-10-25 Hybrid compact power generator

Publications (1)

Publication Number Publication Date
JP3214546U true JP3214546U (en) 2018-01-25

Family

ID=61007904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017005169U Expired - Fee Related JP3214546U (en) 2017-10-25 2017-10-25 Hybrid compact power generator

Country Status (1)

Country Link
JP (1) JP3214546U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023956A (en) * 2018-08-06 2020-02-13 酒見 裕幸 Natural fluid power generator
JP2020034000A (en) * 2019-10-15 2020-03-05 酒見 裕幸 Hydraulic power generation device using natural fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023956A (en) * 2018-08-06 2020-02-13 酒見 裕幸 Natural fluid power generator
JP2020034000A (en) * 2019-10-15 2020-03-05 酒見 裕幸 Hydraulic power generation device using natural fluid
JP7048925B2 (en) 2019-10-15 2022-04-06 裕幸 酒見 Hydroelectric power generation device using natural fluid

Similar Documents

Publication Publication Date Title
US7652388B2 (en) Wave-flow power installation
US7319278B2 (en) Ocean wave generation
US9000604B2 (en) Unidirectional hydro turbine with enhanced duct, blades and generator
US8461711B2 (en) Counter rotation subsurface current generator
US10378506B2 (en) Commutator-less and brush-less direct current generator and applications for generating power to an electric power system
US20100123316A1 (en) Power generator barge
CN104454299A (en) Direct driving vertical axis current power generation devices for underwater vehicle
JP3214546U (en) Hybrid compact power generator
CN103573557A (en) Tidal and wind power integrated generator
KR20140027654A (en) Power generation system using current and wind power
CN203230525U (en) Ocean energy power generation device and frame thereof
KR20040033160A (en) Current energy power generation apparatus using impeller type water mill
KR20070119311A (en) Wind force and water power generator using a buoyancy
RU2663969C1 (en) Electric power generating module
KR101301830B1 (en) Waves and tides, and wind turbines
CN107124071B (en) Integrated ocean current energy collection device
CN109026503B (en) Hydroelectric power generation equipment
RU183408U1 (en) Hydro-driven turbogenerator from the sea current
KR20110063994A (en) Current energy power generation apparatus having simple structure
KR100964813B1 (en) Power generator using water current
KR101756108B1 (en) A underwater power generation apparatus using the wing folding waterwheel structure
CN205078392U (en) Take acceleration mechanism's vertical axis rivers generator
RU2736158C1 (en) Method for increasing efficiency of power takeoff from wind- and hydraulic flows and hybrid power plant for its implementation
CN220227066U (en) Novel hydroelectric generator
CN111946549A (en) Wind-water power comprehensive power generation system

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3214546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees