JP3213250B2 - Optical measurement device - Google Patents

Optical measurement device

Info

Publication number
JP3213250B2
JP3213250B2 JP01554497A JP1554497A JP3213250B2 JP 3213250 B2 JP3213250 B2 JP 3213250B2 JP 01554497 A JP01554497 A JP 01554497A JP 1554497 A JP1554497 A JP 1554497A JP 3213250 B2 JP3213250 B2 JP 3213250B2
Authority
JP
Japan
Prior art keywords
light
signal light
signal
optical
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01554497A
Other languages
Japanese (ja)
Other versions
JPH10213485A (en
Inventor
キンプイ チャン
耕自 佐鳥
Original Assignee
株式会社生体光情報研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社生体光情報研究所 filed Critical 株式会社生体光情報研究所
Priority to JP01554497A priority Critical patent/JP3213250B2/en
Publication of JPH10213485A publication Critical patent/JPH10213485A/en
Application granted granted Critical
Publication of JP3213250B2 publication Critical patent/JP3213250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検体にコヒーレ
ント光を照射しその被検体を経由透過あるいは反射した
光を利用してその被検体の光計測を行なう光計測装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical measurement apparatus for irradiating a subject with coherent light and measuring the light of the subject using light transmitted or reflected through the subject.

【0002】[0002]

【従来の技術】人体やその他の生体組織のような、光に
対して顕著な光散乱体を被検体とする光計測の最大の難
点は、被検体から四方八方に出射する透過光あるいは反
射光のうち追跡が可能な光路に沿った光をどのようにし
て抽出するかということにある。これを可能にする方法
として、例えば極めて短いレーザパルス(ピコ秒;10
-12 sec程度のレーザパルス)を被検体に入射して、
その出射光の時間プロファイルを超高速ストリックカメ
ラを用いて測定し、最短距離を通過した光成分、すなわ
ち、見かけ上の透過直進光成分を抽出する方法が知られ
ている(例えばS.Anderson−Engele
s, R.Berg, S.Svanberg, O.
Jarlman ”Optics Letters”
vol.15,1179(1990)参照。)一方、散
乱光の方向性の消失に着目し、アンテナ特性として知ら
れている優れた方向選択性を持つ光ヘテロダイン検出法
を用いて、方向性を保った透過直進光成分および近軸前
方散乱光成分のみを検出する方法も提案されている(例
えば、M.Toida, M.Kondo, T.Ic
himura, H.Inaba ”Electron
ic Letters” vol.26,700(19
90)参照)。
2. Description of the Related Art Light, such as the human body and other living tissues, is exposed to light.
The biggest difficulty in optical measurement with a remarkable light scatterer as the subject
The points indicate transmitted light or reflected light emitted from the subject in all directions.
How the light along the traceable light path
To extract. How to make this possible
For example, an extremely short laser pulse (picosecond; 10
-12 laser pulse for about sec)
The time profile of the emitted light
Light component that has passed through the shortest distance,
There is a known method for extracting an apparent transmitted straight light component.
(Eg, S. Anderson-Engele)
s, R.S. Berg, S.M. Svanberg, O .;
Jarman "Optics Letters"
vol. 15, 1179 (1990). ) Meanwhile, scattered
Focusing on the loss of directionality of scattered light, it is known as antenna characteristics.
Optical heterodyne detection method with excellent direction selectivity
The transmitted straight light component and the paraxial front
A method of detecting only the scattered light component has also been proposed (eg,
For example, M. Toida, M .; Kondo, T .; Ic
himura, H .; Inaba "Electron
ic Letters "vol. 26, 700 (19
90)).

【0003】光ヘテロダイン検出法に基づく光計測は、
本質的には、散乱を受けながらも前進して、入射光の時
間コヒーレンス性を一部保持したまま散乱体から出射す
る光信号を選択的に検出するという特徴をもつことも指
摘されている(例えば、K.P.Chan, M.Ya
mada, H.Inaba ”Applied Ph
ysics” B, vol.63,249(199
6)参照)。
[0003] Optical measurement based on the optical heterodyne detection method,
It has also been pointed out that, in principle, it has the characteristic of moving forward while being scattered and selectively detecting an optical signal emitted from the scatterer while partially retaining the time coherence of the incident light ( For example, KP Chan, M. Ya
mada, H .; Inaba "Applied Ph
ysics "B, vol. 63, 249 (199)
6)).

【0004】さらに、光ヘテロダイン検出法に基づく光
計測の高速化と高分解能を図るために、透過光を二次元
的に検出する二次元光ヘテロダイン検出器アレイの導入
も提案されている(K.P.Chan, M.Yama
da, H.Inaba ”Electronics
Letters” vol.30, 1753(199
4)参照)。
Further, in order to achieve high-speed and high-resolution optical measurement based on the optical heterodyne detection method, the introduction of a two-dimensional optical heterodyne detector array for two-dimensionally detecting transmitted light has been proposed (K. P. Chan, M. Yama
da, H .; Inaba "Electronics"
Letters, vol. 30, 1753 (199
4)).

【0005】[0005]

【発明が解決しようとする課題】ところが、光ヘテロダ
イン検出法は、信号光にコヒーレンス性を要求する上、
各々の光路を辿り、このため、各々異なる光路長を有す
る近軸前方散乱光は受光器上に不定(ランダム)な合成
位相をなし、光干渉信号の強度も不定となる。これはレ
ーザスペックル現象としてよく知られている(例えば、
J.C.Dainty編”Laser Speckle
And Related Phenomena ”S
pringer−Verlag社出版(New Yor
k,1975)参照)。
However, the optical heterodyne detection method requires coherence in the signal light,
Following each optical path, the paraxial forward scattered lights having different optical path lengths each have an indefinite (random) combined phase on the light receiver, and the intensity of the optical interference signal is also indefinite. This is well known as the laser speckle phenomenon (for example,
J. C. Dainty Edition "Laser Speckle"
And Related Phenomena "S
publisher-Verlag Publishing (New Yor
k, 1975)).

【0006】図5〜図7は、レーザスペックル現象によ
る信号強度の時間変化を示した図である。図5,図6,
図7は、厚みがともに1cmの、それぞれ、じゃがい
も、赤身牛肉、および鶏の胸肉に直径約400μmのレ
ーザ光(波長1.06μm)を入射し、それぞれの試料
を透過した光をヘテロダイン方式で検出したときのヘテ
ロダイン信号強度の時間経過を示している。
FIG. 5 to FIG. 7 are diagrams showing the time change of the signal intensity due to the laser speckle phenomenon. Figure 5, Figure 6,
FIG. 7 shows that a laser beam (wavelength: 1.06 μm) having a diameter of about 400 μm was incident on potato, lean beef, and chicken breast each having a thickness of 1 cm, and the light transmitted through each sample was subjected to a heterodyne method. The time course of the heterodyne signal strength at the time of detection is shown.

【0007】これらの結果からわかるようにスペックル
の時間的な変遷、すなわち、ヘテロダイン信号強度が変
化する周期は試料毎に極めて大きく異なっている。スペ
ックルの影響による光ヘテロダイン信号の強度分布は統
計的にレーリ分布に従うことが周知であり、スペックル
平均、すなわち信号強度の時間平均を行なえば、スペッ
クルの影響を有効に解消することができることが知られ
ている。しかし、図7の例に示されるような、スペック
ルが統計的にランダムな状況に変化するのに約1分も要
する試料の場合、独立したスペックルの多数回の平均を
行なうには、かなりの長時間を要する結果となる。
As can be seen from these results, the temporal change of speckles, that is, the period in which the heterodyne signal intensity changes, varies greatly from sample to sample. It is well known that the intensity distribution of an optical heterodyne signal due to the effect of speckle statistically follows a Rayleigh distribution.Speckle averaging, that is, time averaging of signal intensity, can effectively eliminate the effect of speckle. It has been known. However, for a sample such as the example in FIG. 7 where the speckles change to a statistically random situation for about one minute, averaging multiple independent speckles can be quite significant. It takes a long time.

【0008】本発明は、試料によらず短時間でスペック
ルの影響を有効に解消することのできる光計測装置を提
供することを目的とする。
An object of the present invention is to provide an optical measurement device capable of effectively eliminating the effect of speckle in a short time regardless of a sample.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明の光計測装置は、コヒーレント光を出射する光源と、
被検体が配置される被検体配置部と、上記光源から出射
されたコヒーレント光を、被検体配置部を経由する信号
光と、被検体配置部を経由する光路とは異なる光路を経
由する参照光とに二分するとともに、被検体配置部を経
由した後の信号光と、異なる光路を経由した参照光とを
互いに重畳することにより該信号光と該参照光とが干渉
した干渉光を生成する干渉光学系と、干渉光学系で生成
された干渉光を受光する受光器と、被検体配置部に達す
る前の信号光の光路上に配置され、信号光のビーム内を
複数の領域に分割したときの各分割領域の位相を相互に
異ならせるとともに、これら複数の分割領域の位相パタ
ーンを時間的に順次変化させる位相分布変調器とを備え
たことを特徴とする。
According to the present invention, there is provided an optical measuring apparatus which emits coherent light,
The object placement section where the object is placed, the coherent light emitted from the light source, the signal light passing through the object placement section, and the reference light passing through an optical path different from the optical path passing through the subject placement section. And the signal light after passing through the subject placement section and the reference light via different optical paths are superimposed on each other to generate interference light that interferes with the signal light and the reference light. When an optical system, a light receiving device for receiving the interference light generated by the interference optical system, and a signal light before reaching the object placement portion are arranged on the optical path of the signal light, and the inside of the signal light beam is divided into a plurality of regions. And a phase distribution modulator that sequentially changes the phase patterns of the plurality of divided regions with time, while making the phases of the divided regions different from each other.

【0010】ここで、上記本発明の光計測装置におい
て、上記干渉光学系は、典型的には、信号光のビーム径
を拡大して上記位相分布変調器に導くものである。ま
た、上記本発明の光計測装置には、上記受光器が干渉光
のビーム内を複数の領域に分割したときの各分割領域そ
れぞれを独立に受光する、配列された複数の受光素子を
有するものであってもよい。
Here, in the optical measuring apparatus of the present invention, the interference optical system typically expands the beam diameter of the signal light and guides the signal light to the phase distribution modulator. Further, the optical measurement device of the present invention has a plurality of light receiving elements arranged so as to independently receive each of the divided regions when the light receiver divides the inside of the beam of the interference light into a plurality of regions. It may be.

【0011】さらに、上記本発明の光計測装置には、上
記位相分布分布変調器で上記信号光の位相パターンとを
順次変化させる間の上記受光器の出力を平均化する平均
演算部が備えられ、ないしは接続される。本発明の光計
測装置は、上記位相分布変調器を備え、入射信号光の位
相パターンを順次変化させるものであり、入射信号光の
位相パターンを変化させる毎にランダムなスペックルパ
ターンが得られる。したがって試料自体ではスペックル
の変化速度が極めて遅い試料の場合であっても入射光の
位相パターンを変化させる毎にスペックルパターンを変
化させることができ、平均化を高速に行なうことがで
き、高速な光計測が可能となる。
Further, the optical measuring device of the present invention is provided with an averaging unit for averaging the output of the photodetector while the phase distribution distribution modulator sequentially changes the phase pattern of the signal light. Or connected. The optical measurement device of the present invention includes the above phase distribution modulator and sequentially changes the phase pattern of the incident signal light. A random speckle pattern is obtained every time the phase pattern of the incident signal light is changed. Therefore, the speckle pattern can be changed every time the phase pattern of the incident light is changed, even in the case of the sample itself in which the change speed of the speckle is extremely slow, and the averaging can be performed at a high speed. Light measurement becomes possible.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態について
説明する。図1は、本発明の光計測装置の第1実施形態
の構成図である。レーザ光源11から出射したレーザ光
11aは、ビームスプリッタ12により信号光11bと
参照光11cとに二分される。信号光11bは、2枚の
レンズ13a,13bからなるビームエクスパンダ13
によりそのビーム径が拡大されて、駆動回路141によ
り駆動される位相分布変調器14に入射する。この位相
分布変調器14は、詳細は後述するが、ビームエクスパ
ンダ13によりビーム径が拡大された信号光のビーム内
を複数の領域に分割した時の各分割領域の位相を相互に
異ならせるとともに、それら複数の分割領域の位相パタ
ーンを時間的に順次変化させるものである。この位相分
布変調器14を経由した信号光は、被検体配置部15に
配置された光散乱被検体10を透過し、ビームスプリッ
タ16に入力する。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a first embodiment of the optical measurement device of the present invention. The laser light 11a emitted from the laser light source 11 is split into two parts by a beam splitter 12 into a signal light 11b and a reference light 11c. The signal light 11b is applied to a beam expander 13 including two lenses 13a and 13b.
As a result, the beam diameter is expanded, and the beam enters the phase distribution modulator 14 driven by the drive circuit 141. As will be described in detail later, the phase distribution modulator 14 makes the phases of the respective divided regions different from each other when the beam of the signal light whose beam diameter is expanded by the beam expander 13 is divided into a plurality of regions. The phase patterns of the plurality of divided regions are sequentially changed in time. The signal light having passed through the phase distribution modulator 14 passes through the light scattering object 10 arranged in the object arrangement section 15 and enters the beam splitter 16.

【0013】一方、ビームスプリッタ12により信号光
11bとに二分された参照光11cは、ミラー18で反
射し音響光学的変調器(AOM)19により周波数シフ
トを受け、2枚のレンズ20a,20bからなるビーム
エクスパンダ20によりビーム径が拡げられ、さらにミ
ラー21で反射してビームスプリッタ16に入射する。
On the other hand, the reference light 11c, which has been split into the signal light 11b by the beam splitter 12, is reflected by the mirror 18, frequency-shifted by the acousto-optic modulator (AOM) 19, and transmitted from the two lenses 20a, 20b. The beam diameter is expanded by the beam expander 20, and the light is further reflected by the mirror 21 and enters the beam splitter 16.

【0014】ビームスプリッタ16には、上記のように
して、信号光と参照光との双方が入射して互いに重畳さ
れ、それら信号光と参照光が干渉した干渉光となって受
光器17に入射する。受光器17には、二次元的に配列
された複数の受光素子17a,17b,…,17nが備
えられており、それら複数の受光素子17a,17b,
…,17nにより、被検体10の、透過率分布を表わす
複数のビート信号が生成される。各受光素子17a,1
7b,…,17nで得られるビート信号はAOM19に
よる周波数シフト量に対応する周波数を持つ信号であ
る。受光器17を構成する複数の受光素子17a,17
b,…,17nで得られた複数のビート信号は信号処理
部22に入力され、信号処理部22では、これら複数の
ビート信号の信号強度により表わされる、被検体10の
透過率分布が求められる。この透過率分布を求めるにあ
たっては、位相分布変調器14で信号光の位相パターン
を変化させる毎にビート信号を取り込み、それら時間的
に順次入力される複数の位相パターンのビート信号に基
づいて、それらの間の時間平均的な透過率分布が求めら
れ、これにより、スペックルの影響が高精度にかつ高速
に取り除かれる。ディスプレイ23には、信号処理部2
2で得られた透過率分布を表わす画像が表示される。
As described above, both the signal light and the reference light enter the beam splitter 16 and are superimposed on each other. I do. The light receiver 17 is provided with a plurality of light receiving elements 17a, 17b,..., 17n arranged two-dimensionally, and the plurality of light receiving elements 17a, 17b,.
, 17n, a plurality of beat signals representing the transmittance distribution of the subject 10 are generated. Each light receiving element 17a, 1
The beat signals obtained at 7b,..., 17n are signals having a frequency corresponding to the frequency shift amount by the AOM 19. A plurality of light receiving elements 17a, 17 constituting the light receiver 17
The plurality of beat signals obtained in b,..., 17n are input to the signal processing unit 22, and the signal processing unit 22 obtains the transmittance distribution of the subject 10 represented by the signal intensities of the plurality of beat signals. . In determining the transmittance distribution, a beat signal is fetched every time the phase pattern of the signal light is changed by the phase distribution modulator 14, and based on the beat signals of a plurality of phase patterns sequentially input in time, the beat signal is obtained. , A time-average transmittance distribution is obtained, whereby the effect of speckle is removed with high accuracy and at high speed. The display 23 includes the signal processing unit 2
An image representing the transmittance distribution obtained in step 2 is displayed.

【0015】図2は、図1によるブロックで示す位相分
布変調器14の一構成例を示す図である。それぞれが、
例えば1mm×1mmの面積を持つ複数のミラー142
a,142b,142c,…が2次元的に配列されてお
り、各ミラー142a,142b,142c,…の背面
には、各ミラー142a,142b,142c,…駆動
するための圧電素子143a,143b,143c,…
が固定されている。駆動回路141が各圧電素子143
a,143b,143c,…に電圧を印加すると電圧の
印加を受けた圧電素子の厚みがその印加電圧に応じた量
だけ変化し、その圧電素子が固定されたミラーがx方向
に微小移動する。これらのミラー142a,142b,
142c,…には、図1に模式的に示すように位相の揃
った信号光が入射するが、駆動回路141により各圧電
素子143a,143b,143c,…にそれぞれ異な
る電圧を印加すると、各ミラー142a,142b,1
42c,…で反射した信号光は、図1に模式的に示すよ
うに、その信号光のビーム内で位相分布を持つ信号光と
なる。その位相パターンは、駆動回路141が圧電素子
143a,143b,143c,…に印加する電圧パタ
ーンを変更する毎に変化する。
FIG. 2 is a diagram showing a configuration example of the phase distribution modulator 14 shown by the block in FIG. Each is
For example, a plurality of mirrors 142 having an area of 1 mm × 1 mm
are arranged two-dimensionally, and on the back surface of each of the mirrors 142a, 142b, 142c,..., piezoelectric elements 143a, 143b, for driving each of the mirrors 142a, 142b, 142c,. 143c, ...
Has been fixed. The drive circuit 141 is connected to each piezoelectric element 143
When a voltage is applied to a, 143b, 143c,..., the thickness of the piezoelectric element to which the voltage is applied changes by an amount corresponding to the applied voltage, and the mirror to which the piezoelectric element is fixed moves minutely in the x direction. These mirrors 142a, 142b,
As shown in FIG. 1, signal lights having the same phase are incident on the mirrors 142c,... When the driving circuit 141 applies different voltages to the piezoelectric elements 143a, 143b, 143c,. 142a, 142b, 1
The signal light reflected at 42c,... Becomes a signal light having a phase distribution in the signal light beam, as schematically shown in FIG. The phase pattern changes each time the drive circuit 141 changes the voltage pattern applied to the piezoelectric elements 143a, 143b, 143c,.

【0016】図1に示す光散乱被検体10から出射した
信号光には、後に実験データを示すように、もともと入
射した光軸に対し、コヒーレント性をある程度保ったま
ま数mm程度位置ずれを生じてその光軸に対しほとんど
平行に出射する近軸前方散乱光が存在し、このような近
軸前方散乱光が相互に入り込むため、入射信号光の位相
を、そのビーム内で例えば1mm×1mm程度の領域毎
に変化させると、全く異なったスペックルパターンを伴
った信号光が得られる結果となる。
As shown in experimental data, the signal light emitted from the light scattering object 10 shown in FIG. 1 is displaced by several mm with respect to the originally incident optical axis while maintaining a certain degree of coherence. There is paraxial forward scattered light that exits almost parallel to the optical axis, and such paraxial forward scattered light enters each other. Therefore, the phase of the incident signal light is changed to, for example, about 1 mm × 1 mm in the beam. In this case, a signal light with a completely different speckle pattern can be obtained.

【0017】したがって、位相分布変調器14により信
号光の位相パターンを高速に種々に変化させながら、信
号処理部22によりその間の平均の透過率分布を求める
ことにより、被検体10自身は、例えば図7に示すよう
にゆっくりとした変化しか示さない場合であっても、ラ
ンダムに現れるスペックルパターンの影響を効果的にか
つ高速に除去することができる。
Therefore, while the phase distribution modulator 14 changes the phase pattern of the signal light at high speed and variously, the signal processing unit 22 obtains the average transmittance distribution between them, so that the subject 10 itself can, for example, Even if only a slow change is shown as shown in FIG. 7, the influence of the speckle pattern that appears randomly can be effectively and rapidly removed.

【0018】尚、図2に示す位相分布変調器14は信号
光を反射する反射型のものであるが、例えば印加電圧に
より屈折率が変化する素子を配列し、そこを透過する信
号光に位相分布を与えてもよく、本発明にいう位相分布
変調器は特定の構成のものに限定されるものではない。
図3は、位相分布変調器を備えることの有効性を示す実
験結果を表わした図である。
The phase distribution modulator 14 shown in FIG. 2 is of a reflection type that reflects signal light. For example, an element whose refractive index changes according to an applied voltage is arranged, and the phase of the signal light transmitted therethrough is changed. A distribution may be given, and the phase distribution modulator according to the present invention is not limited to a specific configuration.
FIG. 3 is a diagram showing experimental results showing the effectiveness of providing a phase distribution modulator.

【0019】図3(A)は、厚み1mmのとりのささみ
肉に波長1.06μmのNd:YAGレーザ(ビーム径
約400μm)を入射して、その透過光を8×8の二次
元ヘテロダイン検出器アレイ(各受光素子の大きさは3
00μm×300μm、アレイ全体の大きさは3mm×
3mm)で検出した結果である。また、図3(B)は、
同じ実験を厚み7mmのとりのささ身肉について実施し
た結果である。
FIG. 3A shows an Nd: YAG laser (beam diameter: about 400 μm) having a wavelength of 1.06 μm incident on a 1 mm thick fillet, and transmitting the transmitted light to an 8 × 8 two-dimensional heterodyne detector. Array (the size of each light receiving element is 3
00 μm × 300 μm, the entire array size is 3 mm ×
3 mm). FIG. 3 (B)
It is the result of having carried out the same experiment with 7 mm thick chicken meat.

【0020】これらの結果から、顕著な光散乱が起きる
媒質においても入射光軸の近傍で散乱を受けながら伝播
した近軸前方散乱光はコヒーレンスをもっており、その
結果、光ヘテロダイン検出法で測定した入射ビームの像
は、入射ビーム径よりも広がった像となっている。以上
の実験結果から入射ビームを拡大し、さらにそれを多数
の位相差をもつ平面波に分割するという方式を採用し、
これら平面波の分割領域の広さを適切に設定すれば、各
光波の透過光成分どうしが観測面上で干渉し合うことは
明白である。各分割領域どうしの位相差を0〜2πの間
でランダムに高速変化させれば、これに追随したスペッ
クル変化からスペックル平均を行なうことが可能であ
る。
From these results, even in a medium where remarkable light scattering occurs, the paraxial forward scattered light propagated while being scattered in the vicinity of the incident optical axis has coherence. As a result, the incident light measured by the optical heterodyne detection method The beam image is an image wider than the incident beam diameter. Based on the above experimental results, we adopted a method of expanding the incident beam and dividing it into plane waves with many phase differences.
It is clear that the transmitted light components of each light wave interfere with each other on the observation plane if the width of the divided area of the plane wave is appropriately set. If the phase difference between the divided regions is randomly changed at high speed between 0 and 2π, it is possible to perform speckle averaging based on the speckle change following the phase difference.

【0021】尚、二次元ヘテロダインアレイを用いた前
例として、例えば「K.P.Chan, D.K.Ki
llinger ”Optics Letters”
vol.16, 1219(1991)」はその種の最
初の例ともいわれるが、そこでの実験は、各アレイ素子
の出力を合成して伝播光路上ではげしい空間コヒーレン
ス損を生じた光信号の信号対雑音比を向上させようとい
うものであり、本発明とは本質的に異なるものである。
As a prior example using a two-dimensional heterodyne array, for example, “KP Chan, DK Ki
llinger "Optics Letters"
vol. 16, 1219 (1991) "is also referred to as the first example of such a kind, but the experiment there is performed by combining the outputs of the respective array elements to generate a signal-to-noise ratio of an optical signal that causes a large spatial coherence loss on the propagating optical path. This is essentially different from the present invention.

【0022】図4は、本発明の光計測装置の第2実施形
態の構成図である。図1に示す実施形態の構成要素と同
一の構成要素には図1に付した符号を同一の符号を付し
て示す。レーザ光源11から出射したレーザ光11a
は、偏光子100で直線偏光にされた後、偏光ビームス
プリッタ12により、互いに直交する方向に偏光した信
号光11bと参照光11cとに二分される。信号光11
bは、ビームエクスパンダ13および位相分布変調器1
4を経た後、偏光プリズム101に入射する。この偏光
プリズム101は、位相分布変調器14側から入射した
信号光を透過する向きに配置されている。この偏光プリ
ズム101を透過した信号光は、更にλ/4板102を
透過し、被検体配置部15に配置された被検体10を透
過し、ミラー103で反射して被検体10を再度透過
し、さらにλ/4板102をもう一度透過することによ
り、往路の信号光と比べその偏光方向が90度回転した
状態で偏光プリズム101に再入射する。この偏光プリ
ズム101に再入射した信号光は往路の信号光と比べ、
その偏光方向が90度異なっているため、今度はその偏
光プリズム101で反射し、ビームスプリッタ104に
より、偏光方向が同一の参照光11cと強度的に重畳さ
れる。
FIG. 4 is a block diagram of a second embodiment of the optical measuring device of the present invention. The same components as those of the embodiment shown in FIG. 1 are denoted by the same reference numerals as those in FIG. Laser light 11a emitted from laser light source 11
After being converted into linearly polarized light by the polarizer 100, the polarized light is split by the polarizing beam splitter 12 into signal light 11b and reference light 11c, which are polarized in directions orthogonal to each other. Signal light 11
b denotes the beam expander 13 and the phase distribution modulator 1
After passing through 4, the light enters the polarizing prism 101. The polarizing prism 101 is arranged in a direction to transmit the signal light incident from the phase distribution modulator 14 side. The signal light that has passed through the polarizing prism 101 further passes through the λ / 4 plate 102, passes through the subject 10 disposed in the subject placement unit 15, is reflected by the mirror 103, and passes through the subject 10 again. Further, by passing through the λ / 4 plate 102 once again, the light enters the polarizing prism 101 again with its polarization direction rotated by 90 degrees as compared with the signal light on the outward path. The signal light that reenters the polarizing prism 101 is compared with the signal light on the outward path,
Since the polarization directions are different from each other by 90 degrees, the reflected light is reflected by the polarization prism 101 and is superposed by the beam splitter 104 in intensity on the reference light 11c having the same polarization direction.

【0023】一方、偏光ビームスプリッタ12で信号光
11bとに二分された参照光11cは、ミラー18で反
射し、AOM19で周波数シフトを受け、2枚のレンズ
20a,20bからなるビームエクスパンダ20でビー
ム径が拡大され、ビームスプリッタ104により信号光
と強度的に重畳される。上述したように、信号光はλ/
4板102を2回透過することによりその偏光方向が9
0度回転し、これにより参照光と同一の偏光方向を持つ
光となる。したがって、受光器17にはそれら信号光と
参照光が干渉した干渉光が入射する。
On the other hand, the reference light 11c, which has been split into the signal light 11b by the polarizing beam splitter 12, is reflected by the mirror 18, frequency-shifted by the AOM 19, and transmitted by the beam expander 20 comprising two lenses 20a and 20b. The beam diameter is enlarged, and the beam is split by the beam splitter 104 in intensity with the signal light. As described above, the signal light is λ /
By transmitting through the four plates 102 twice, the polarization direction becomes 9
The light is rotated by 0 degrees, and becomes light having the same polarization direction as the reference light. Therefore, the interference light in which the signal light and the reference light interfere with each other is incident on the light receiver 17.

【0024】本実施形態では駆動回路141により駆動
された位相分布変調器14により、位相空間分布が種々
に高速に変化した信号光が生成され、その位相分布を種
々に変化させている間の時間平均的な透過率分布が求め
られ、スペックルの影響が除去される。本実施形態では
信号光が被検体10を二度透過しているため、被検体1
0の透過率分布が一層はっきりとした信号強度分布とし
て現れた画像を得ることができる。
In the present embodiment, the phase distribution modulator 14 driven by the driving circuit 141 generates signal light whose phase space distribution is changed at various high speeds, and the time during which the phase distribution is changed variously. An average transmittance distribution is determined, and the effect of speckle is removed. In the present embodiment, since the signal light has transmitted through the subject 10 twice, the subject 1
It is possible to obtain an image in which the transmittance distribution of 0 appears as a more clear signal intensity distribution.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
統計的にランダムなスペックルパターンを強制的に高速
に変化させることができ、スペックルパターンに起因す
る雑音を有効に、かつ高速に除去することができ、高速
の光計測が可能となる。
As described above, according to the present invention,
Statistically random speckle patterns can be forcibly changed at high speed, noise caused by speckle patterns can be effectively and quickly removed, and high-speed optical measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光計測装置の第1実施形態の構成図で
ある。
FIG. 1 is a configuration diagram of a first embodiment of an optical measurement device of the present invention.

【図2】図1にブロックで示す位相分布変調器の一構成
例を示す図である。
FIG. 2 is a diagram showing an example of a configuration of a phase distribution modulator shown by a block in FIG.

【図3】位相分布変調器を備えることの有効性を示す実
験結果を表わした図である。
FIG. 3 is a diagram showing experimental results showing the effectiveness of providing a phase distribution modulator.

【図4】本発明の光計測装置の第2実施形態の構成図で
ある。
FIG. 4 is a configuration diagram of a second embodiment of the optical measurement device of the present invention.

【図5】レーザスペックル現象による信号強度の時間変
化を示した図である。
FIG. 5 is a diagram showing a time change of a signal intensity due to a laser speckle phenomenon.

【図6】レーザスペックル現象による信号強度の時間変
化を示した図である。
FIG. 6 is a diagram showing a time change of signal intensity due to a laser speckle phenomenon.

【図7】レーザスペックル現象による信号強度の時間変
化を示した図である。
FIG. 7 is a diagram showing a time change of signal intensity due to a laser speckle phenomenon.

【符号の説明】[Explanation of symbols]

10 光散乱被検体 11 レーザ光源 11a レーザ光 11b 信号光 11c 参照光 12 ビームスプリッタ 13 ビームエクスパンダ 14 位相分布変調器 15 被検体配置部 16 ビームスプリッタ 17 受光器 17a,17b,…,17n 受光素子 18 ミラー 19 AOM 20 ビームエクスパンダ 22 信号処理部 23 ディスプレイ 100 偏光子 101 偏光プリズム 102 λ/4板 103 ミラー 141 駆動回路 Reference Signs List 10 light scattering object 11 laser light source 11a laser light 11b signal light 11c reference light 12 beam splitter 13 beam expander 14 phase distribution modulator 15 object placement unit 16 beam splitter 17 light receiver 17a, 17b,..., 17n light receiving element 18 Mirror 19 AOM 20 beam expander 22 signal processing unit 23 display 100 polarizer 101 polarizing prism 102 λ / 4 plate 103 mirror 141 drive circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 9/00 - 9/04 G01N 21/00 - 21/61 G01B 9/00 - 9/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G01J 9/00-9/04 G01N 21/00-21/61 G01B 9/00-9/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コヒーレント光を出射する光源と、 被検体が配置される被検体配置部と、 前記光源から出射されたコヒーレント光を二分して、前
記被検体配置部を経由するビーム径が拡大された信号光
と、該被検体配置部を経由する光路とは異なる光路を経
由する、ビーム径が拡大された、前記信号光とは相対的
に周波数が異なる参照光とを生成するとともに、該被検
体配置部を経由した後の信号光と、異なる光路を経由し
た参照光とを互いに重畳することにより該信号光と該参
照光とが干渉した干渉光を生成する干渉光学系と、 前記干渉光学系で生成された干渉光のビーム内を複数の
領域に分割したときの各分割領域それぞれを独立に受光
する、配列された複数の受光素子を有する受光器と、 前記被検体配置部に達する前の信号光の光路上に配置さ
れ、該信号光のビーム内を複数の領域に分割したとき
の、これら複数の分割領域の位相パターンを時間的に順
次変化させる位相分布変調器と、前記位相分布変調器で前記信号光の位相パターンを順次
変化させる間の前記受光器の出力を平均化する平均演算
部と を備えたことを特徴とする光計測装置。
1. A light source that emits coherent light, an object placement section on which an object is placed, and coherent light emitted from the light source are split into two to increase a beam diameter passing through the object placement section. The signal light that has passed through an optical path different from the optical path that passes through the subject placement section , the beam diameter has been enlarged, and the signal light is relatively
A reference light having a different frequency is generated , and the signal light after passing through the object placement section and the reference light having passed through different optical paths are superimposed on each other, whereby the signal light and the reference light interfere with each other. An interference optical system that generates the interfering light , and a plurality of beams within the beam of the interference light generated by the interference optical system .
Independently receive each divided area when divided into areas
To, a photodetector to have a plurality of light receiving elements arranged, the is disposed on the optical path of the signal light before reaching the subject placement unit, when dividing the inside of the beam of the signal light into a plurality of regions
Of the phase distribution modulator to temporally sequentially changing the phase pattern of these plurality of divided regions, the phase pattern of the signal light by the phase distribution modulator sequentially
Averaging to average the output of the receiver while changing
Optical measuring device is characterized in that a part.
JP01554497A 1997-01-29 1997-01-29 Optical measurement device Expired - Lifetime JP3213250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01554497A JP3213250B2 (en) 1997-01-29 1997-01-29 Optical measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01554497A JP3213250B2 (en) 1997-01-29 1997-01-29 Optical measurement device

Publications (2)

Publication Number Publication Date
JPH10213485A JPH10213485A (en) 1998-08-11
JP3213250B2 true JP3213250B2 (en) 2001-10-02

Family

ID=11891741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01554497A Expired - Lifetime JP3213250B2 (en) 1997-01-29 1997-01-29 Optical measurement device

Country Status (1)

Country Link
JP (1) JP3213250B2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1434522B1 (en) 2000-10-30 2010-01-13 The General Hospital Corporation Optical systems for tissue analysis
AU2004225188B2 (en) 2003-03-31 2010-04-15 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP4995720B2 (en) 2004-07-02 2012-08-08 ザ ジェネラル ホスピタル コーポレイション Endoscopic imaging probe with double clad fiber
US8208995B2 (en) 2004-08-24 2012-06-26 The General Hospital Corporation Method and apparatus for imaging of vessel segments
JP2008521516A (en) 2004-11-29 2008-06-26 ザ ジェネラル ホスピタル コーポレイション Configuration, apparatus, endoscope, catheter, and method for performing optical image generation by simultaneously illuminating and detecting multiple points on a sample
EP2085929A1 (en) 2005-04-28 2009-08-05 The General Hospital Corporation Evaluating optical coherence tomography information for an anatomical structure
EP1889037A2 (en) 2005-06-01 2008-02-20 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
JP4613110B2 (en) * 2005-07-20 2011-01-12 アンリツ株式会社 Optical interference type phase detector
KR101387454B1 (en) 2005-08-09 2014-04-22 더 제너럴 하스피탈 코포레이션 Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
EP2275026A1 (en) 2005-09-29 2011-01-19 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9087368B2 (en) 2006-01-19 2015-07-21 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
WO2007084903A2 (en) 2006-01-19 2007-07-26 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and method for producing one or more optical arrangements
CN101370426A (en) * 2006-01-20 2009-02-18 通用医疗公司 Systems, arrangement and process for providing speckle reductions using a wave front modulation for optical coherence tomography
US7538859B2 (en) 2006-02-01 2009-05-26 The General Hospital Corporation Methods and systems for monitoring and obtaining information of at least one portion of a sample using conformal laser therapy procedures, and providing electromagnetic radiation thereto
EP1983921B1 (en) 2006-02-01 2016-05-25 The General Hospital Corporation Systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
WO2007101026A2 (en) 2006-02-24 2007-09-07 The General Hospital Corporation Methods and systems for performing angle-resolved fourier-domain optical coherence tomography
WO2007133961A2 (en) 2006-05-10 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing frequency domain imaging of a sample
US8838213B2 (en) 2006-10-19 2014-09-16 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
WO2010009136A2 (en) 2008-07-14 2010-01-21 The General Hospital Corporation Apparatus and methods for color endoscopy
JP5731394B2 (en) 2008-12-10 2015-06-10 ザ ジェネラル ホスピタル コーポレイション System, apparatus and method for extending imaging depth range of optical coherence tomography through optical subsampling
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
CN104134928A (en) 2009-02-04 2014-11-05 通用医疗公司 Apparatus and method for utilization of a high-speed optical wavelength tuning source
BR112012001042A2 (en) 2009-07-14 2016-11-22 Gen Hospital Corp fluid flow measurement equipment and method within anatomical structure.
DK2542154T3 (en) 2010-03-05 2020-11-23 Massachusetts Gen Hospital APPARATUS FOR PROVIDING ELECTROMAGNETIC RADIATION TO A SAMPLE
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
WO2011150069A2 (en) 2010-05-25 2011-12-01 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
EP2575597B1 (en) 2010-05-25 2022-05-04 The General Hospital Corporation Apparatus for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
JP5883018B2 (en) 2010-10-27 2016-03-09 ザ ジェネラル ホスピタル コーポレイション Apparatus, system, and method for measuring blood pressure within at least one blood vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
EP2769491A4 (en) 2011-10-18 2015-07-22 Gen Hospital Corp Apparatus and methods for producing and/or providing recirculating optical delay(s)
WO2013148306A1 (en) 2012-03-30 2013-10-03 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
WO2014031748A1 (en) 2012-08-22 2014-02-27 The General Hospital Corporation System, method, and computer-accessible medium for fabrication minature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
WO2014121082A1 (en) 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
WO2014186353A1 (en) 2013-05-13 2014-11-20 The General Hospital Corporation Detecting self-interefering fluorescence phase and amplitude
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
WO2015010133A1 (en) 2013-07-19 2015-01-22 The General Hospital Corporation Determining eye motion by imaging retina. with feedback
ES2893237T3 (en) 2013-07-26 2022-02-08 Massachusetts Gen Hospital Apparatus with a laser arrangement using optical scattering for applications in optical coherence tomography in the Fourier domain
WO2015105870A1 (en) 2014-01-08 2015-07-16 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
EP3171766B1 (en) 2014-07-25 2021-12-29 The General Hospital Corporation Apparatus for in vivo imaging and diagnosis
CN105445492B (en) * 2015-12-14 2019-11-26 华中科技大学 A kind of laser speckle current velocity testing method and device through scattering medium

Also Published As

Publication number Publication date
JPH10213485A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
JP3213250B2 (en) Optical measurement device
JP4020434B2 (en) Apparatus and method for selective optical measurement
US6037579A (en) Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
JP4505807B2 (en) Multiplexed spectral interferometric optical coherence tomography
US6437867B2 (en) Performing selected optical measurements with optical coherence domain reflectometry
JP2001272331A (en) Spatial delay type fizeau interferometer
WO1998025105A9 (en) A system and method for performing selected optical measurements
WO2014057998A1 (en) Lighting device and microscope, and lighting method and observation method
JP2011174920A (en) Method and apparatus of measuring optical interference
US7405814B2 (en) Frequency multiplexed, multiple channel heterodyne interferometer
US6124930A (en) Method and arrangement for transverse optical coherence tomography
US10386171B1 (en) Apparatus for a dynamic multi-axis heterodyne interferometric vibrometer
JP3076016B2 (en) Optical measurement device
JP2022523764A (en) Optical measuring device and multi-mirror
JP2006250849A (en) Optical image measuring method using light coherence tomography apparatus and optical image measuring device
JP2010164574A (en) Multiplexing spectrum interference optical coherence tomography
JPH0886745A (en) Spatial-coherence type light wave reflection measuring device and light-wave echo tomographic device using same
JPH11108763A (en) Light measuring device
JPH1123372A (en) Method and apparatus for light-wave coherence image
JP4486433B2 (en) Absorption measuring device
JPS6344136A (en) Heterodyne michelson interferometer related to polarimetry
JP2014092425A (en) Optical interference tomographic imaging apparatus and optical interference tomographic imaging method
JPH0749306A (en) Light wave echotomography apparatus
JPH0658291B2 (en) Optical transmission loss measuring method and apparatus
JP2763271B2 (en) Transmitted light measurement device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010710